
9 Transportation and Assignment Problems

We will now consider several special cases of the minimum cost flow problem: the

transportation problem, the assignment problems, the maximum flow problem, and

the shortest path problem.

9.1 The Transportation Problem

In the transportation problem we are given a set of suppliers i = 1, . . . , n producing

si units of a good and a set of consumers j = 1, . . . ,m with demands dj such that∑n
i=1 si =

∑m
j=1 dj. The cost of transporting one unit of the good from supplier i to

consumer j is cij, and the goal is to match supply and demand while minimizing overall

transportation cost. This can be formulated as an uncapacitated minimum cost flow

problem on a bipartite network, i.e., a network G = (S ⊎ C, E) with S = {1, . . . , n},

C = {1, . . . ,m}, and E ⊆ S × C. As far as optimal solutions are concerned, edges not

contained in E are equivalent to edges with a very large cost. We can thus restrict

our attention to the case where E = S × C, known as the Hitchcock transportation

problem :

minimize

n∑

i=1

m∑

j=1

cijxij

subject to

n∑

i=1

xij = dj for all j = 1, . . . ,m

m∑

j=1

xij = si for all i = 1, . . . , n

xij > 0 for all i, j.

It turns out that transportation problems already capture the full expressiveness of

minimum cost flow problems.

Theorem 9.1. Every minimum cost flow problem with finite capacities or non-

negative costs has an equivalent transportation problem.

Proof. Consider a minimum cost flow problem on a network G = (V, E) with supplies

or demands bi, capacities mij and mij, and costs cij. When constructing an initial

feasible tree solution in the previous lecture, we saw that we can assume without loss

of generality that mij = 0 for all i, j. We can further assume that all capacities are

finite: if some edge has infinite capacity but costs are non-negative then setting the

capacity of this edge to a large enough number, for example
∑

i∈V |bi|, does not affect

the optimal solution of the problem.
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Figure 9.1: Representation of flow conservation constraints by a transportation problem

We now construct a transportation problem as follows. For every vertex i ∈ V, we

add a sink vertex with demand
∑

kmik−bi. For every edge (i, j) ∈ E, we add a source

vertex with supply mij, an edge to vertex i with cost cij,j = 0, and an edge to vertex j

with cost cij,j = cij. The situation is shown in Figure 9.1.

We now claim that there exists a direct correspondence between feasible flows of the

two problems, and that these flows have the same costs. To see this, let the flows on

edges (ij, i) and (ij, j) be mij−xij and xij, respectively. The total flow into vertex i then

is
∑

k:(i,k)∈E(mik − xik) +
∑

k:(k,i)∈E xki , which must be equal to
∑

k:(i,k)∈Emik − bi.

This is the case if and only if bi +
∑

k:(k,i)∈E xki −
∑

k:(i,k)∈E xik = 0, which is the flow

conservation constraint for vertex i in the original problem.

9.2 The Network Simplex Method in Tableau Form

When solving a transportation problem using the network simplex method, it is con-

venient to write it down in a tableau of the following form, where λi for i = 1, . . . , n

and µj for j = 1, . . . ,m are the dual variables corresponding to the flow conservation

constraints for suppliers and consumers, respectively:

µ1 · · · µm

λ1 x11 · · · x1m s1
c11 · · · c1m

...
...

. . .
...

......
. . .

...

λn xn1 · · · xnm sn
cn1 · · · cnm

d1 · · · dm

Consider the Hitchcock transportation problem given by the following tableau:

8
5 3 4 6

10
2 7 4 1

9
5 6 2 4

6 5 8 8
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Figure 9.2: Initial basic feasible solution of a transportation problem (left) and a cycle

along which the overall cost can be decreased (right)

An initial BFS can be found by iteratively considering pairs (i, j) of supplier i and

customer j, increasing xij until either the supply si or the demand dj is satisfied,

and moving to the next supplier in the former case or to the next customer in the

latter. Since
∑

i si =
∑

j dj, this process is guaranteed to find a feasible solution, and

the corresponding spanning tree consists of the pairs (i, j) that have been visited. If at

some point both the supply and the demand are satisfied at the same time, the resulting

solution is degenerate. In the example, we can start by setting x11 = min{s1, d1} = 6,

moving to customer 2 and setting x12 = 2, moving to supplier 2 and setting x22 = 3,

and so forth. The resulting spanning tree and flows are shown on the left of Figure 9.2.

To determine the values of the dual variables λi for i = 1, . . . , 3 and µj for j =

1, . . . , 4, observe that λi−µj = cij must be satisfied for all (i, j) ∈ T . By setting λ1 = 0,

we obtain a system of 6 linear equalities with 6 variables, which has a unique solution.

It will finally be convenient to write down λi − µj for (i, j) /∈ T , which we do in the

upper right corner of the respective cells. The tableau now looks as follows:

−5 −3 0 −2

0 6 2
0 2

8
5 3 4 6

4
9

3 7
6

10
2 7 4 1

2
7 5

1 8 9
5 6 2 4

6 5 8 8

If cij > λi − µj for all (i, j) /∈ T , the current flow would be optimal. In our example

this condition is violated, for example, for i = 2 and j = 1. Edge (2, 1) forms a unique

cycle with the spanning tree T , and we would like to increase x21 by pushing flow

along this cycle. Due to the special structure of the network, doing so will alternately

increase and decrease the flow for edges along the cycle. In particular, increasing x21
by θ will increase x12 and decrease x11 and x22 by the same amount. The situation

is shown on the right of Figure 9.2. Increasing x21 by the maximum amount of θ = 3

and re-computing the values of the dual variables λ1 and µj, we obtain the following
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tableau:
−5 −3 −7 −9

0 3 5
7 9

5 3 4 6

−3 3
0

7
6

2 7 4 1

−5
0 −2

1 8
5 6 2 4

Now, c24 < λ2 − µ4, and we can increase x24 by 7 to obtain the following tableau,

which satisfies cij > λi − µj for all (i, j) /∈ T and therefore yields an optimal solution:

−5 −3 −2 −4

0 3 5
2 4

5 3 4 6

−3 3
0 −1

7
2 7 4 1

0
5 3

8 1
5 6 2 4

9.3 The Assignment Problem

An instance of the assignment problem is given by n agents and n jobs, and costs cij
for assigning job j to agent i. The goal is to assign exactly one job to each agent at a

minimum overall cost, i.e., to

minimize

n∑

i=1

n∑

j=1

cijxij

subject to xij ∈ {0, 1} for all i, j = 1, . . . , n

n∑

j=1

xij = 1 for all i = 1, . . . , n

n∑

i=1

xij = 1 for all j = 1, . . . , n

(9.1)

Except for the integrality constraints, this problem is a special case of the Hitchcock

transportation problem. All basic solutions of the LP relaxation of this problem,

which is obtained by replacing the integrality constraint xij ∈ {0, 1} by 0 6 xij 6 1, are

spanning tree solutions and therefore integral. Thus, both the network simplex method

and the general simplex method yield an optimal solution of the original problem when

applied to the LP relaxation. This is not necessarily the case, for example, for the

ellipsoid method.


