
8 Graphs and Flows

Lectures 8 through 11 will be concerned with flow problems on graphs and networks.

A directed graph, or network, G = (V, E) consists of a set V of vertices and a set

E ⊆ V × V of edges. When the relation E is symmetric, G is called an undirected

graph, and we can write edges as unordered pairs {i, j} ∈ E for i, j ∈ V. The degree of

vertex i ∈ V in graph G is the number |{j ∈ V : (i, j) ∈ E or (j, i) ∈ E}| of other vertices

connected to it by an edge. A walk from u ∈ V to w ∈ V is a sequence of vertices

v1, . . . , vk ∈ V such that v1 = u, vk = w, and (vi, vi+1) ∈ E for i = 1, . . . , k − 1.

In a directed graph, we can also consider an undirected walk where (vi, vi+1) ∈ E or

(vi+1, vi) ∈ E for i = 1, . . . , k − 1. A walk is a path if v1, . . . , vk are pairwise distinct,

and a cycle if furthermore v1 = vk. A graph that does not contain any cycles is called

acyclic. A graph is called connected if for every pair of vertices u, v ∈ V there is an

undirected path from u to v. A tree is a graph that is connected and acyclic. A graph

G ′ = (V ′, E ′) is a subgraph of graph G = (V, E) if V ′ ⊆ V and E ′ ⊆ E. In the special

case where G ′ is a tree and V ′ = V, it is called a spanning tree of G.

8.1 Minimum Cost Flows

Consider a network G = (V, E) with |V | = n, and let b ∈ R
n. Here, bi denotes the

amount of flow that enters or leaves the network at vertex i ∈ V. If bi > 0, we say

that i is a source supplying bi units of flow. If bi < 0, we say that i is a sink with a

demand of |bi| units of flow. Further let C,M,M ∈ R
n×n, where cij denotes the cost

associated with one unit of flow on edge (i, j) ∈ E, and mij and mij respectively denote

lower and upper bounds on the flow across this edge. The minimum cost flow problem

then asks for flows xij that conserve the flow at each vertex, respect the upper and

lower bounds, and minimize the overall cost. Formally, x ∈ R
n×n is a minimum cost

flow of G if it is an optimal solution of the following optimization problem:

minimize
∑

(i,j)∈E

cijxij

subject to bi +
∑

j:(j,i)∈E

xji =
∑

j:(i,j)∈E

xij for all i ∈ V,

mij 6 xij 6 mij for all (i, j) ∈ E.

Note that
∑

i∈V bi = 0 is required for any feasible flows to exist, and we make this

assumption in the following. We further assume without loss of generality that the net-

work G is connected. Otherwise the problem can be decomposed into several smaller

problems that can be solved independently. An important special case is that of un-

capacitated flows, where mij = 0 and mij = ∞ for all (i, j) ∈ E.
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Figure 8.1: A flow network with a spanning tree T indicated by hatched edges. Since

the network is uncapacitated, we have to set L = E \ T and U = ∅, and thus flows are

zero for edges not in T . Flows for the edges in T can be determined inductively starting

from the leafs. Note that the resulting spanning tree solution is feasible.

The minimum cost flow problem is a linear programming problem, with constraints

of the form Ax = b where

aik =






1 kth edge starts at vertex i,

−1 kth edge ends at vertex i,

0 otherwise.

Given this rather simple structure, we may hope that minimum cost flow problems are

easier to solve than general linear programs. Indeed, we will see that basic feasible

solutions of a minimum cost flow problem take a special form, and will obtain an

algorithm that exploits this form.

8.2 Spanning Tree Solutions

Consider a minimum cost flow problem for a connected network G = (V, E). A solution

x to this problem is called spanning tree solution if there exists a spanning tree (V, T)

of G and two sets L,U ⊆ E with L ∩ U = ∅ and L ∪ U = E \ T such that xij = mij

if (i, j) ∈ L and xij = mij if (i, j) ∈ U. For every choice of T , L and U, the flow

conservation constraints uniquely determine the values xij for (i, j) ∈ T . An example

is shown in Figure 8.1.

It is not hard to show that the basic solutions of a minimum cost flow problem are

precisely its spanning tree solutions.

Theorem 8.1. A flow vector is a basic solution of a minimum cost flow problem

if and only if it is a spanning tree solution.
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8.3 The Network Simplex Method

We will now derive a variant of the simplex method, the network simplex method, that

works directly with spanning tree solutions. The network simplex method maintains

a feasible solution for the primal and a corresponding dual solution, but unlike the

simplex method does not guarantee that these two solutions satisfy complementary

slackness. Rather, it uses a separate condition to either establish both dual feasibility

and complementary slackness, and thus optimality, or identify a new spanning tree

solution.

The Lagrangian of the minimum cost flow problem is

L(x, λ) =
∑

(i,j)∈E

cijxij −
∑

i∈V

λi

(

∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji − bi

)

=
∑

(i,j)∈E

(cij − λi + λj)xij +
∑

i∈V

λibi

(8.1)

Let c̄ij = cij − λi + λj be the reduced cost of edge (i, j) ∈ E. Dual feasibility requires

that c̄ij > 0 whenever mij = ∞, and holds trivially if all edges are subject to finite

capacities. Minimizing L(x, λ) subject to the regional constraints mij 6 xij 6 mij for

(i, j) ∈ E further yields the following complementary slackness conditions:

c̄ij > 0 implies xij = mij,

c̄ij < 0 implies xij = mij, and

mij < xij < mij implies c̄ij = 0.

Assume that x is a basic feasible solution associated with sets T , U, and L. Then

the system of equations

λ|V | = 0, λi − λj = cij for all (i, j) ∈ T

has a unique solution, which in turn allows us to compute c̄ij for all edges (i, j) ∈ E.

Note that c̄ij = 0 for all (i, j) ∈ T by construction, so the third complementary slackness

condition is always satisfied.

Pivoting

If c̄ij > 0 for all (i, j) ∈ L and c̄ij 6 0 for all (i, j) ∈ U, dual feasibility and the first two

complementary slackness are satisfied as well, meaning that the solution is optimal.

Otherwise, consider an edge (i, j) that violates these conditions, and observe that this

edge and the edges in T forms a unique cycle C. Since (i, j) is the only edge in C

with non-zero reduced cost, we can decrease the objective by pushing flow along C to

increase xij if c̄ij is negative and decrease xij if c̄ij is positive. Doing so will change the

flow on all edges in C by the same amount, with the direction of the change depending

on whether a specific edge is oriented in the same or the opposite direction as (i, j).
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Figure 8.2: Flow network before and after a pivoting step. Edge (i, j) is labeled with

the vector (cij,mij,mij) and the current flow xij, and spanning trees are indicated by

hatched edges. In the situation shown on the left, we have λ3 = 0, λ2 = c23 + λ3 = 2,

and λ1 = c12 + λ2 = 5, and thus c̄13 = c13 − λ1 + λ3 = −4. If we push one unit of

flow around the cycle 1, 3, 2, 1, the flow on (2, 3) reaches the lower bound of m23 = 0

and we obtain a new spanning tree with edges (1, 2) and (1, 3). The new situation is

shown on the right. Now, λ3 = 0, λ1 = c13 + λ3 = 1, and λ2 = λ1 − c12 = −2, and

thus c̄23 = c23 − λ2 + λ3 = 4. Since this is positive and x23 = m23, we have found an

optimal solution.

Let B,B ⊆ C respectively denote the sets of edges whose flow is to decrease or

increase, and let

δ = min

{

min
(k,ℓ)∈B

{xkℓ −mkℓ}, min
(k,ℓ)∈B

{mkℓ − xkℓ}

}

.

be the maximum amount of flow that can be pushed along C. If δ = ∞, the problem

is unbounded. If δ = 0 or if the minimum is attained for more than one edge, the

problem is degenerate. Otherwise, pushing δ units of flow along C yields a unique edge

(k, ℓ) ∈ C whose flow is either mkℓ or mkℓ. If (k, ℓ) ∈ T , we obtain a new BFS with

spanning tree (T \ {(k, ℓ)})∪ {(i, j)}. If instead (k, ℓ) = (i, j), we obtain a new BFS where

(i, j) has moved from U to L, or vice versa. An example of the pivoting step is given in

Figure 8.2.

In the absence of degeneracies the value of the objective function decreases in every

iteration of the network simplex method, and an optimal solution or a certificate of

unboundedness is found after a finite number of iterations. If a degenerate solution is

encountered it will still be possible to identify a new spanning tree or even a new BFS,

but extra care may be required to ensure convergence. This is beyond the scope of this

course.

Finding an initial feasible spanning tree solution

Consider a minimum cost flow problem for a network (V, E) and assume without loss

of generality that mij = 0 for all (i, j) ∈ E. If this is not the case, we can instead

consider the problem obtained by setting mij to zero, mij to mij −mij, and replacing

bi by bi −mij and bj by bj +mij. A solution with flows xij for the new problem then

corresponds to a solution with flows xij +mij for the original problem.
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We now modify the problem such that the set of optimal solutions remains the same,

assuming that the problem was feasible, but an initial feasible spanning tree solution is

easy to find. For this, we introduce a dummy vertex d /∈ V and uncapacitated dummy

edges E ′ = {(i, d) : i ∈ V, bi > 0} ∪ {(d, i) : i ∈ V, bi < 0} with cost equal to
∑

(i,j)∈E cij.

It is easy to see that a dummy edge has positive flow in some optimal solution of the

new problem if and only if the original problem is infeasible. Furthermore, a feasible

spanning tree solution is now easily obtained by letting T = E ′, xid = bi for all i ∈ V

with bi > 0, xdi = −bi for all i ∈ V with bi < 0, and xij = 0 otherwise.

8.4 Integrality of Optimal Solutions

Since the network simplex method does not require any divisions, any finite optimal

solution it obtains for a problem with integer constants is also integral.

Theorem 8.2. Consider a minimum cost flow problem that is feasible and bounded.

If bi is integral for all i ∈ V and mij and mij are integral for all (i, j) ∈ E, then

there exists an integral optimal solution. If cij is integral for all (i, j) ∈ E, then

there exists an integral optimal solution to the dual.


