
7 The Ellipsoid Method

Consider a polytope P = {x ∈ R
n : Ax > b}, given by a matrix A ∈ Z

m×n and a vector

b ∈ Z
m. Assume for now that P is bounded and either empty or full-dimensional. Here,

P is called full-dimensional if Vol(P) > 0. The ellipsoid method takes the following

steps to decide whether P is non-empty:

1. Let U be the largest absolute value among the entries of A and b, and define

v0 = 0, D0 = n(nU)2nI, E0 = E(v0, D0),

V = (2n)n(nU)n
2

, v = n−n(nU)−n2(n+1),

t∗ = ⌈2(n+ 1) log(V/v)⌉.

2. For t = 0, . . . , t∗, do the following:

(a) If t = t∗ then stop; P is empty.

(b) If xt ∈ P then stop; P is non-empty.

(c) Find a violated constraint, i.e., a row j such that aT
j xt < bj.

(d) Let Et+1 = E(xt+1, Dt+1) with

xt+1 = xt +
1

n+ 1

Dtaj
√

aT
j Dtaj

,

Dt+1 =
n2

n2 − 1

(

Dt −
2

n+ 1

Dtaja
T
j Dt

aT
j Dtaj

)

.

The ellipsoid method is a so-called interior point method, because it traverses the

interior of the feasible set rather than following its boundary.

7.1 Proof of Correctness

Observe that E0 is a ball centered at the origin. Given Theorem 6.2, and assuming

that (i) P ⊆ E0 and Vol(E0) < V and that (ii) P is either empty or Vol(P) > v, correct-

ness of the ellipsoid method is easy to see: it either finds a point in P, thereby proving

that P is non-empty, or an ellipsoid Et∗ ⊇ P with Vol(Et∗) < e−t∗/2(n+1)Vol(E0) <

(v/V)Vol(E0) < v, in which case P must be empty.

We now show that the above assumptions hold, starting with the inclusion of P in

E0 and the volume of E0. We use the following lemma.

Lemma 7.1. Let A ∈ Z
m×n and b ∈ R

m. Let U be the largest absolute value among

the entries of A and b. Then every extreme point x of the polytope P = {x ′ ∈ R
n :

Ax ′ > b} satisfies −(nU)n 6 xi 6 (nU)n for all i = 1, . . . , n.
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34 7 · The Ellipsoid Method

Proof. Any extreme point x can be written as x = Â−1b̂ for some invertible submatrix

Â ∈ Z
n×n of A and subvector b̂ ∈ R

n of b, corresponding to n linearly independent

constraints that are active at x. By Cramer’s rule,

xi =
det Âi

det Â
,

where Âi is the matrix obtained by replacing the ith column of Â by b̂. Then, for

i = 1, . . . , n,

∣

∣det Âi
∣

∣ =

∣

∣

∣

∣

∣

∑

σ∈Sn

(−1)|σ|
n
∏

j=1

âi
j,σ(j)

∣

∣

∣

∣

∣

6
∑

σ∈Sn

n
∏

i=1

|âi
j,σ(j)| 6 n!Un

6 (nU)n,

where |σ| is the number of inversions of permutation σ ∈ Sn, i.e., the number of pairs

i, j such that i < j and σ(i) > σ(j). Moreover, det(Â) 6= 0 since Â is invertible,

and |det(Â)| > 1 since all entries of A are integers. Therefore, |xi| 6 (nU)n for all

i = 1, . . . , n.

If P is bounded, it is therefore contained in a cube with side length 2(nU)n. The

ball E0 contains this cube and is itself contained in a cube of volume V = (2n)n(nU)n
2

,

and thus P ⊆ E0 and Vol(E0) 6 V.

We now turn to the lower bound on the volume of P in the case when it is non-empty.

Lemma 7.2. Consider a full-dimensional and bounded polytope P = {x ∈ R
n : Ax >

b}, where A ∈ Z
m×n and b ∈ Z

m and all entries have absolute value at most U.

Then Vol(P) > n−n(nU)−n2(n+1).

Proof sketch. If P is full-dimensional and bounded and has at least one extreme point,

it has n+ 1 extreme points v0, . . . , vn that do not lie on a common hyperplane. Let

Q =

{

x ∈ R
n : x =

n
∑

k=0

λkv
k,

n
∑

k=0

λk = 1, λk > 0

}

.

Clearly, Q ⊆ P and thus Vol(Q) 6 Vol(P). It can now be shown that

Vol(Q) =
1

n!

∣

∣

∣

∣

∣

det

(

1 · · · 1

v0 · · · vn

)∣

∣

∣

∣

∣

.

The ith coordinate of vk is a rational number pk
i /q

k
i , and by the same argument as in

the proof of Lemma 7.1, |qk
i | 6 (nU)n and |pk

i | > 1. Therefore,

Vol(P) > Vol(Q) >
1

n!

∣
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= n−n(nU)−n2(n+1).
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So far we have assumed that the polytope P is bounded and full-dimensional. We

finally lift these assumptions. By Lemma 7.1, all extreme points of P lie in the set

PB = {x ∈ P : |xi| 6 (nU)n for all i = 1, . . . , n}. Moreover, P is non-empty if and only

if it has an extreme point. We can therefore test for non-emptiness of PB instead of P,

and PB is a bounded polytope.

For a polytope P that is not full-dimensional, it is not the case that Vol(P) < v im-

plies P = ∅, and the ellipsoid method can fail. The following result shows, however, that

we can slightly perturb P to obtain a polytope that is either empty or full-dimensional.

Lemma 7.3. Let P = {x ∈ R
n : Ax > b}, where A ∈ Z

m×n and b ∈ Z
m and all entries

have absolute value at most U. Let

Pǫ = { x ∈ R
n : Ax > b− ǫe}

where

ǫ =
1

2(n+ 1)
((n+ 1)U)

−(n+1)

and eT = (1, . . . , 1). Then, Pǫ = ∅ if and only if P = ∅, and either Pǫ = ∅ or

Vol(P) > 0.

Proof. We first show that emptiness of P implies emptiness of Pǫ. If P is empty, then the

linear program min{0Tx : Ax > b} is infeasible and its dual max{λTb : λTA = 0T , λ > 0}

is unbounded. There thus has to exist a basic feasible solution λ to the n+1 constraints

λTA = 0T , λTb = 1, and λ > 0, and, by Lemma 7.1, λi 6 ((n+ 1)U)
n+1 for all

i. Since λ is a BFS, at most n + 1 of its components are non-zero, and therefore
∑m

i λi 6 (n + 1) ((n+ 1)U)
n+1 and λT (b − ǫe) = 1 − ǫ

∑m
i=1 λi >

1
2
> 0. This means

that the dual remains unbounded, and the primal infeasible, if we replace b by b− ǫe,

and thus Pǫ = ∅.

It remains to be shown that Pǫ is full-dimensional if P is non-empty. For this,

consider x ∈ P and let

Y =
{

y ∈ R
n : xi −

ǫ

nU
6 yi 6 xi +

ǫ

nU
for all i = 1, . . . , n

}

.

It is easy to see that Y has volume (2ǫ/(nU))n > 0 and that Y ⊆ Pǫ. Thus Pǫ must be

full-dimensional.

The general case of polytopes P that potentially are unbounded and not full-

dimensional can thus be handled by computing the bounded polytope PB, perturbing

it, and then running the ellipsoid method on the resulting polytope.

7.2 The Complexity of the Ellipsoid Method

For a bounded and full-dimensional polytope P given by a matrix A and vector b with

integer entries bounded by U, the ellipsoid method decides whether P is empty or not in
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O(n log(V/v)) = O(n4 log(nU)) iterations. It can further be shown that O(n6 log(nU))

iterations suffice even when P might be unbounded or not full-dimensional.

For the ellipsoid method to have a polynomial running time, however, the number

of operations in each iteration also has to be bounded by a polynomial function of n

and logU. A potential problem is that the computation of the new ellipsoid involves

taking a square root. This means that in general calculations cannot be done exactly,

and intermediate results have to be stored with sufficiently many bits to ensure that

errors don’t accumulate. It turns out that the algorithm can be made to work, with the

same asymptotic number of iterations as above, when only O(n3 logU) bits are used

for each intermediate value. The proof of this result is very technical.

The ellipsoid method has high theoretical significance, because it provided the first

polynomial-time algorithm for linear programming and can also be applied to larger

classes of convex optimization problems. In practice, however, both the simplex method

and a different interior point method, Karmarkar’s algorithm, tend to be much faster.

It turns out that the latter also has a better worst-case performance than the ellipsoid

method.


