
6 The Complexity of Linear Programming

6.1 A Lower Bound for the Simplex Method

The complexity of the simplex method depends on two factors, the number of steps in

each round and the number of iterations. It is not hard to see that the tableau form

requires O(mn) arithmetic operations in each round. We will now describe an instance

of the linear programming problem, and a specific pivot rule, such that the simplex

method requires an exponential number of iterations to find the optimal solution. For

this, we construct a polytope with an exponential number of vertices, and a so-called

spanning path that traverses all of the vertices, in such a way that consecutive vertices

are adjacent and a certain linear objective strictly increases along the path. This shows

that the simplex method requires an exponential number of iterations in the worst case,

for the specific pivoting rule that follows the spanning path.

Consider the unit cube in R
n, given by the constraints

0 6 xi 6 1 for i = 1, . . . , n.

The unit cube has 2n vertices, because either one of the two constraints 0 6 xi and

xi 6 1 can be active for each dimension i. Further consider a spanning path of the unit

cube constructed inductively as follows. In dimension 1, the path moves from x1 = 0

to x1 = 1. In dimension k, the path starts with xk = 0 and traverses the spanning path

for dimensions x1 to xk−1, which exists by the induction hypothesis. It then moves to

the adjacent vertex with x1 = 1, and traverses the spanning path for dimensions x1 to

xk−1 in the reverse direction. This construction is illustrated of the left of Figure 6.1.

Now assume that we are trying to minimize the objective −xn, and observe that so

far it decreases only once, namely in the middle of the path. This can easily be fixed.

Let ǫ ∈ (0, 1/2), and consider the perturbed unit cube with constraints

ǫ 6 x1 6 1,

ǫxi−1 6 xi 6 1− ǫxi−1 for i = 2, . . . , n
(6.1)

An example is shown on the right of Figure 6.1. It is easily verified that xn now

increases strictly along the path described above. We obtain the following result.

Theorem 6.1. Consider the linear programming problem of minimizing −xn sub-

ject to (6.1). Then there exists a pivoting rule and an initial basic feasible solution

such that the simplex method requires 2n − 1 iterations before it terminates.

Observe that each of the numbers in the description of the perturbed unit cube can

be represented using O(log ǫ−n) = O(n) bits, the number of iterations is therefore also

exponential in the input size.
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Figure 6.1: Spanning paths of the three-dimensional unit cube (left) and of the per-

turbed two-dimensional unit cube with ǫ = 1/10 (right)

Interestingly, the first and last vertices of the spanning paths constructed above are

adjacent, which means that a different pivoting rule could reach the optimal solution

in a single step. However, similar worst-case instances have been constructed for many

other pivot rules, and no pivot rule is known to guarantee a polynomial worst-case run-

ning time. The diameter of a polytope, i.e., the maximum number of steps necessary

to get from any vertex to any other vertex, provides a lower bound of the number of

iterations of the simplex method that is independent of the pivoting rule. The Hirsch

conjecture, which states that the diameter of a polytope in dimension d with n facets

cannot be greater than n−d, was disproved in 2010. Whether the diameter is bounded

by a polynomial function of n and d remains open.

In practice, the performance of the simplex method is often much better, usually

linear in the number of constraints. However, it is not clear how the intuition of a good

average-case performance could be formalized, because this would require a natural

probability distribution over instances of the linear programing problem. This is a

problem that applies more generally to the average-case analysis of algorithms.

6.2 The Idea for a New Method

Again consider the linear program (2.2) and its corresponding dual:

min { cTx : Ax = b, x > 0 }

max {bTλ : ATλ 6 c }.

By strong duality, each of these problems has a bounded optimal solution if and only

if the following set of linear constraints is feasible:

cTx = bTλ, Ax = b, x > 0, ATλ 6 c.

We can thus concentrate on the following decision problem: given a matrix A ∈ R
m×n

and a vector b ∈ R
m, is the set {x ∈ R

n : Ax > b} non-empty? We will now consider a

method for solving this problem, known as the ellipsoid method.
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Figure 6.2: A step of the ellipsoid method where xt /∈ P but xt+1 ∈ P. The polytope P

and the half-ellipsoid that contains it are shaded.

We need some definitions. A symmetric matrix D ∈ R
n×n is called positive definite

if xTDx > 0 for all non-zero x ∈ R
n. A set of vectors E ⊆ R

n given by

E = E(z,D) = { x ∈ R
n : (x− z)TD−1(x− z) 6 1 }

for a positive definite symmetric matrix D ∈ R
n×n and a vector z ∈ R

n is called an

ellipsoid with center z. If D ∈ R
n×n is non-singular and b ∈ R

n, then the mapping S :

R
n → R

n given by S(x) = Dx+b is called an affine transformation. We further write

S(L) for the image of L ⊆ R
n under S, i.e., S(L) = {y ∈ R

n : y = S(x) for some x ∈ R
n}.

The volume of a set L ⊆ R
n if finally defined as Vol(L) =

∫

x∈L
dx.

Let P = {x ∈ R
n : Ax > b} for some A ∈ R

n×n and b ∈ R
m. To decide whether

P is non-empty, the ellipsoid method generates a sequence {Et} of ellipsoids Et with

centers xt. If xt ∈ P, then P is non-empty and the method stops. If xt /∈ P, then

one of the constraints is violated, i.e., there exists a row j of A such that aT
j xt < bj.

Therefore, P is contained in the half-space {x ∈ R
n : aT

j x > aT
j xt}, and in particular in

the intersection of this half-space with Et, which we will call a half-ellipsoid.

The following is the key result underlying the ellipsoid method. It states that there

exists a new ellipsoid Et+1 that contains the half-ellipsoid and whose volume is only a

fraction of the volume of Et. This situation is illustrated in Figure 6.2.

Theorem 6.2. Let E = E(z,D) be an ellipsoid in R
n and a ∈ R

n non-zero. Consider

the half-space H = {x ∈ R
n : aTx > aTz}, and let

z ′ = z+
1

n+ 1

Da√
aTDa

,

D ′ =
n2

n2 − 1

(

D−
2

n+ 1

DaaTD

aTDa

)

.
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Then D ′ is symmetric and positive definite, and therefore E ′ = E(z ′, D ′) is an

ellipsoid. Moreover, E ∩H ⊆ E ′ and Vol(E ′) < e−1/(2(n+1))Vol(E).

If the procedure is repeated, it will either find a point in P or generate smaller and

smaller ellipsoids containing P. In the next lecture, this procedure will be turned into

an algorithm by observing that the volume of P must either be zero or larger than a

certain threshold that depends on the size of the description of P.

We now sketch the proof of Theorem 6.2. We use the following lemma about affine

transformations, which is not hard to prove.

Lemma 6.3. Let S : Rn → R
n be an affine transformation given by S(x) = Dx + b

and let L ⊆ R
n. Then, Vol(S(L)) = |det(D)|Vol(L).

Proof sketch of Theorem 6.2. We prove the theorem for E = {x ∈ R
n : xTx 6 1} and

H = {x ∈ R
n : x1 > 0}. Since every pair of an ellipsoid and a hyperplane as in the

statement of the theorem can be obtained from E and H via some affine transformation,

the general case then follows by observing that affine transformations preserve inclusion

and, by Lemma 6.3, relative volume of sets.

Let e1 = (1, 0, . . . , 0)T . Then,

E ′ = E

(

e1

n+ 1
,

n2

n2 − 1

(

I−
2

n+ 1
e1e

T
1

))

=

{

x ∈ R
n :

n2 − 1

n2

n
∑

i=1

x2i +
1

n2
+

2(n+ 1)

n2
x1(x1 − 1) 6 1

}

.

Consider an arbitrary x ∈ E ∩ H, and observe that 0 6 x1 6 1 and
∑n

i=1 x
2
i 6 1. It is

easily verified that x ∈ E ′ and thus E ∩H ⊆ E ′.

Now consider the affine transformation F : Rn → R
n given by

F(x) =
e1

n+ 1
+

(

n2

n2 − 1

(

I−
2

n+ 1
e1e

T
1

))
1
2

x.

It is not hard to show that E ′ = F(E). Therefore, by Lemma 6.3,

Vol(E ′)

Vol(E)
=

√

det

(

n2

n2 − 1

(

I−
2

n+ 1
e1e

T
1

))

=

(

n2

n2 − 1

)
n
2
(

1−
2

n+ 1

)
1
2

=
n

n+ 1

(

n2

n2 − 1

)
n−1
2

=

(

1−
1

n+ 1

)(

1+
1

n2 − 1

)
n−1
2

< e−
1

n+1

(

e
1

n2−1

)
n−1
2

= e−
1

2(n+1) ,

where the strict inequality follows by using twice that 1+ a < ea for all a 6= 0.

A more detailed description of the ellipsoid method and an overview of the proof of

correctness will be given in the next lecture.


