
5 Complexity of Problems and Algorithms

We have seen that the simplex algorithm inspects basic feasible solutions and is guaran-

teed to find an optimal solution after a finite number of steps. We have also observed,

however, that the number of basic feasible solutions is generally exponential in n, and

going over all of them would take a long time. It is therefore an interesting question

whether there really are cases where the simplex algorithm has to look at a signifi-

cant fraction of the set of all basic feasible solutions. If this was the case, we could

then ask whether a similar property holds for every algorithm that solves the linear

programming problem.

5.1 Asymptotic Complexity

Formally, an instance of an optimization problem is given by its input. In the case of

linear programming, for example, this input consists of two vectors c ∈ R
n and b ∈ R

m

and a matrix A ∈ R
m×n. If each real value is represented using at most k bits, the

whole instance can be described by a string of (mn +m + n)k bits. We will refer to

this parameter as the input size.

A sensible way to define the complexity of a problem is via the complexity of the

fastest algorithm that solves it. The latter is typically measured in terms of the number

of arithmetic or bit-level operations as a function of the input size, ignoring lower-order

terms resulting from details of the implementation. The following notation is useful in

this context: given two functions f : N → N and g : N → N, write

✎ f(n) = O(g(n)) if there exist constants c and n0 such that for every n > n0,

f(n) 6 cg(n),

✎ f(n) = Ω(g(n)) if there exist constants c and n0 such that for every n > n0,

f(n) > cg(n), and

✎ f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

In other words, f(n) = O(g(n)) and f(n) = Ω(g(n)) mean that the asymptotic growth

of f(n) is respectively bounded from above or below by g(n), up to a constant factor.

Gaussian elimination for example shows that solving a linear system Ax = b with

A ∈ R
n×n has arithmetic complexity O(n3). The same bound can also be shown to

hold for bit complexity.

5.2 P, NP, and Polynomial-Time Reductions

In computational complexity theory, efficient computation is typically associated with

running times that are at most polynomial in the size of the input. In many situations

25



26 5 · Complexity of Problems and Algorithms

of interest, and also in this course, it suffices to study complexity-theoretic questions for

decisions problems, i.e., problems where the answer is just a single bit. An example

of a decision problem in the context of linear programming would be the following:

given a linear program and a number k ∈ R, does the optimal solution of the linear

program have value less than k? Formally, a decision problem can be described by a

language L ⊆ {0, 1}∗, containing precisely the instances for which the answer is 1 in

some encoding as strings of bits.

One might expect the answer to the question whether a particular problem can be

solved efficiently to depend a lot on the details of the computational model one is using.

Quite surprisingly, this turns out not to be the case: all computational models that are

known to be physically realizable can simulate each other, and a particular model, the

Turing machine, can simulate all others with polynomial overhead. A Turing machine

has a finite number of states, finite control, and a readable and writable tape that can

store intermediary results as strings of bits. The Turing machine is started with the

input written on the tape. It then runs for a certain number of steps, and when it

halts the output is inferred from the state or the contents of some designated part of

the tape. In the context of decision problems, a Turing machine is said to accept input

x ∈ {0, 1}∗ if it halts with output 1.

The most important open problem in complexity theory is concerned with the rela-

tionship between the complexity classes P and NP. P is the class of decision problems

that can be solved in polynomial time. Formally, a function f : {0, 1}∗ → {0, 1}∗ is

computable in polynomial time if there exists a Turing machine M and k ∈ N with

the following property: for every x ∈ {0, 1}∗, if M is started with input x, then after

O(|x|k) steps it halts with output f(x). NP is the class of decision problems for which a

given solution can be verified in polynomial time. Formally, L ⊆ {0, 1}∗ is in NP if there

exists a Turing machine M and k ∈ N with the following property: for every x ∈ {0, 1}∗,

x ∈ L if and only if there exists a certificate y ∈ {0, 1}∗ with |y| = O(|x|k) such that

M accepts (x, y) after O(|x|k) steps. The name NP, for nondeterministic polynomial

time, derives from an alternative definition as the class of decision problems solvable

in polynomial time by a nondeterministic Turing machine. A nondeterministic Turing

machine is a Turing machine that can make a non-deterministic choice at each step of

its computation and is required to accept x ∈ L only for some sequence of these choices.

Finding a solution is obviously at least as hard as verifying a solution described by a

certificate. Most people believe that it must be strictly harder, i.e., that P 6= NP.

The relative complexity of different decision problems can be captured in terms

of reductions. Intuitively, a reduction from one problem to another transforms every

instance of the former into an equivalent instance of the latter, where equivalence

means that both of them yield the same decision. For this transformation to preserve

the complexity of the original problem, the reduction should of course have less power

than is required to actually solve the original problem. In our case it makes sense to use

reductions that can be computed in polynomial time. A decision problem L ⊆ {0, 1}∗ is

called polynomial-time reducible to a decision problem K ⊆ {0, 1}∗, denoted L 6p K,



5.3 · Some NP-Complete Problems 27

P

NP-complete

NP

NP-hard

Figure 5.1: Relationship between P, NP, and the sets of NP-hard and NP-complete

problems. It is not known whether the intersection between P and the set of NP-

complete problems is empty. If it is not, then P = NP.

if there exists a function f : {0, 1}∗ → {0, 1}∗ computable in polynomial time such that

for every x ∈ {0, 1}∗, x ∈ L if and only if f(x) ∈ K. A problem K is called NP-hard if

for every problem L in NP, L 6p K. A problem is called NP-complete if it is both in

NP and NP-hard. The relation 6p is transitive. NP-complete problems are thus the

hardest problems in NP, in the sense that membership of any NP-complete problem in

P would imply that P = NP. The existence of NP-complete problems is less obvious,

but holds nonetheless. Figure 5.1 illustrates the relationship between P and NP.

What is nice about the asymptotic worst-case notions of complexity considered

above is that they do not require any assumptions about low-level details of the imple-

mentation or about the type of instances we will encounter in practice. We do, however,

have to be a bit careful in interpreting results that use these notions. The fact that a

problem is in P does not automatically mean that it can always be solved efficiently

in practice, as the constant overhead hidden in the asymptotic notation might be pro-

hibitively large. In fact, it does not even have to be the case that an algorithm with

a polynomial worst-case running time is better in practice than an algorithm whose

worst-case running time is exponential. Experience has shown, however, that for prob-

lems in P one is usually able to find algorithms that are fast in practice. On the other

hand, NP-hardness of a problem does not mean that it can never be solved in prac-

tice, and we will consider approaches for solving NP-hard optimization problems in a

later lecture. NP-hardness is still a very useful concept because it can help to direct

efforts away from algorithms that are always efficient and toward algorithms with good

practical performance.

5.3 Some NP-Complete Problems

The first problem ever shown to be NP-complete is the Boolean satisfiability problem

(SAT), which asks whether a given Boolean formula is satisfiable. A Boolean formula



28 5 · Complexity of Problems and Algorithms

consists of a set of clauses Ci ⊆ X for i = 1, . . . ,m, where X = {x1, . . . , xn, x̄1, . . . , x̄n} is

a set of literals. It is called satisfiable if there exists a set S ⊆ X such that |S∩{xj, x̄j}| 6 1

for all j = 1, . . . , n and |S ∩ Ci| > 1 for all i = 1, . . . ,m. Since the set S can serve as a

certificate, it is easy to see that SAT is in NP. NP-hardness can be shown by encoding

the operation of an arbitrary nondeterministic Turing machine as a Boolean formula.

Theorem 5.1 (Cook, 1971; Levin, 1973). Boolean satisfiability is NP-complete.

An instance of the 0−1 integer programming problem consists of a matrix A ∈

Z
m×n and a vector b ∈ Z

m, and asks whether there exists a vector x ∈ {0, 1}n such

that Ax > b. Note that this is the feasibility problem associated with a special case

of the integer programs we encountered in the previous lecture, in the context of the

cutting plane method.

Theorem 5.2 (Karp, 1972). 0−1 integer programming is NP complete.

Proof. Membership in NP is again easy to see. NP-hardness can be shown by a reduc-

tion from SAT. Consider a Boolean formula with literals X = {x1, . . . , xn, x̄1, . . . , x̄n}

and clauses Ci, i = 1, . . . ,m, and assume without loss of generality that |Ci∩{xj, x̄j}| 6 1

for all i = 1, . . . ,m and j = 1, . . . , n. Now let A ∈ Z
m×n and b ∈ Z

m be given by

aij =















1 if xj ∈ Ci

−1 if x̄j ∈ Ci

0 otherwise

for i = 1, . . . ,m and j = 1, . . . , n,

bi = 1− |{ j : x̄j ∈ Ci}| for i = 1, . . . ,m.

Intuitively, this integer program represents each Boolean variable by a binary variable,

and each clause by a constraint that requires its literals to sum up to at least 1. To

this end, the left hand side of the contraint contains xj if the corresponding Boolean

variable occurs as a positive literal in the clause, and (1− xj) if it occurs as a negative

literal. The above form is then obtained by moving all constants to the right hand side.

It is now easy to see that there exists x ∈ {0, 1}n such that Ax > b if and only if the

Boolean formula is satisfiable.

The last problem we consider is the traveling salesman problem (TSP). For a given

matrix A ∈ N
n×n and a number k ∈ N, it asks whether there exists a permutation

σ ∈ Sn such that aσ(n)σ(1) +
∑n−1

i=1 aσ(i)σ(i+1) 6 k. If the entries of the matrix A are

interpreted as pairwise distances among a set of locations, we are looking for a tour

with a given maximum length that visits every location exactly once and returns to

the starting point. The special case where A is a symmetric binary matrix and k = 0

is also known as the Hamiltonian cycle problem.

Theorem 5.3 (Karp, 1972). TSP is NP-complete, even if A ∈ {0, 1}n×n symmetric

and k = 0.


