
4 Advanced Simplex Procedures

4.1 The Two-Phase Simplex Method

The LP we solved in the previous lecture allowed us to find an initial BFS very easily.

In cases where such an obvious candidate for an initial BFS does not exist, we use an

additional phase I to find a BFS. In phase II we then proceed as in the previous lecture.

Consider the LP to

maximize −6x1 − 3x2

subject to x1 + x2 > 1

2x1 − x2 > 1

3x2 6 2

x1, x2 > 0,

and introduce slack variables to obtain

maximize −6x1 − 3x2

subject to x1 + x2 − z1 = 1

2x1 − x2 − z2 = 1

3x2 + z3 = 2

x1, x2, z1, z2, z3 > 0.

Unfortunately, the basic solution with x1 = x2 = 0, z1 = z2 = −1, and z3 = 2 is

not feasible. We can, however, add an artificial variable to the left-hand side of each

constraint where the slack variable and the right-hand side have opposite signs, and

then minimize the sum of the artificial variables starting from the obvious BFS where

the artificial variables are non-zero instead of the corresponding slack variables. In the

example, we

minimize y1 + y2

subject to x1 + x2 − z1 + y1 = 1

2x1 − x2 − z2 + y2 = 1

3x2 + z3 = 2

x1, x2, z1, z2, z3, y1, y2 > 0,

and the goal of phase I is to solve this LP starting from the BFS where x1 = x2 = z1 =

z2 = 0, y1 = y2 = 1, and z3 = 2. If the original problem is feasible, we will be able

to find a BFS where y1 = y2 = 0. This automatically gives us an initial BFS for the

original problem.

In summary, the two-phase simplex method proceeds as follows:
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1. Bring the constraints into equality form. For each constraint in which the slack

variable and the right-hand side have opposite signs, or in which there is no slack

variable, add a new artificial variable that has the same sign as the right-hand

side.

2. Phase I: minimize the sum of the artificial variables, starting from the BFS where

the absolute value of the artificial variable for each constraint, or of the slack

variable in case there is no artificial variable, is equal to that of the right-hand

side.

3. If some artificial variable has a positive value in the optimal solution, the original

problem is infeasible; stop.

4. Phase II: solve the original problem, starting from the BFS found in phase I.

While the original objective is not needed for phase I, it is useful to carry it along

as an extra row in the tableau, because it will then be in the appropriate form at

the beginning of phase II. In the example, phase I therefore starts with the following

tableau:

x1 x2 z1 z2 z3 y1 y2

y1 1 1 −1 0 0 1 0 1

y2 2 −1 0 −1 0 0 1 1

z3 0 3 0 0 1 0 0 2

II −6 −3 0 0 0 0 0 0

I 3 0 −1 −1 0 0 0 2

Note that the objective for phase I is written in terms of the variables that are not in

the basis. This can be obtained by first writing it in terms of y1 and y2, such that

we have −1 in the columns for y1 and y2 and 0 in all other columns because we are

maximizing −y1 − y2, and then adding the first and second row to make the entries

for all variables in the basis equal to zero.

Phase I now proceeds by pivoting on a21 to get

x1 x2 z1 z2 z3 y1 y2

0 3
2

−1 1
2

0 1 −1
2

1
2

1 −1
2

0 −1
2

0 0 1
2

1
2

0 3 0 0 1 0 0 2

II 0 −6 0 −3 0 0 3 3

I 0 3
2

−1 1
2

0 0 −3
2

1
2
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and on a14 to get
x1 x2 z1 z2 z3 y1 y2

0 3 −2 1 0 2 −1 1

1 1 −1 0 0 1 0 1

0 3 0 0 1 0 0 2

II 0 3 −6 0 0 6 0 6

I 0 0 0 0 0 −1 −1 0

Note that we could have chosen a12 as the pivot element in the second step, and would

have obtained the same result.

This ends phase I as y1 = y2 = 0, and we have found a BFS for the original problem

with x1 = z2 = 1, z3 = 2, and x2 = z1 = 0. After dropping the columns for y1 and y2

and the row corresponding to the objective for phase I, the tableau is in the right form

for phase II:

x1 x2 z1 z2 z3

0 3 −2 1 0 1

1 1 −1 0 0 1

0 3 0 0 1 2

0 3 −6 0 0 6

By pivoting on a12 we obtain the following tableau, corresponding to an optimal solu-

tion of the original problem with x1 = 2/3, x2 = 1/3, and value −5:

x1 x2 z1 z2 z3

0 1 −2
3

1
3

0 1
3

1 0 −1
3

−1
3

0 2
3

0 0 2 −1 1 1

0 0 −4 −1 0 5

It is worth noting that the problem we have just solved is the dual of the LP in

Example 2.3, which we solved in the previous lecture, augmented by the constraint

3x2 6 2. Ignoring the column and row corresponding to z3, the slack variable for this

new constraint, the final tableau is essentially the negative of the transpose of the final

tableau we obtained in the previous lecture. This makes sense because the additional

constraint is not tight in the optimal solution, as we can see from the fact that z3 6= 0.

4.2 The Dual Simplex Method

The (primal) simplex method maintains feasibility of the primal solution along with

complementary slackness and seeks feasibility of the dual solution. Alternatively one
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could maintain feasibility of the dual solution and complementary slackness and seek

feasibility of the primal solution. This is known as the dual simplex method.

One situation where the dual simplex method can be useful is when an initial feasible

solution for the dual is easier to find than one for the primal. Consider the following

LP, to which we have already added slack variables z1 and z2:

minimize 2x1 + 3x2 + 4x3

subject to x1 + 2x2 + x3 − z1 = 3

2x1 − x2 − 3x3 − z2 = 4

x1, x2, x3, z1, z2 > 0.

The primal simplex algorithm would have to use two phases, since the solution where

z1 = −3 and z2 = −4 is not feasible. On the other hand, c > 0, so the dual solution

with λ1 = λ2 = 0 satisfies cT − λTA > 0 and is therefore feasible. We obtain the

following tableau:

−1 −2 −1 1 0 −3

−2 1 3 0 1 −4

2 3 4 0 0 0

In the dual simplex algorithm the pivot is selected by picking a row i such that ai0 < 0

and a column j ∈ {j ′ : aij ′ < 0} that minimizes −a0j/aij. Pivoting then works just like

in the primal algorithm. In the example we can pivot on a21 to obtain

0 −5
2

−5
2

1 −1
2

−1

1 −1
2

−3
2

0 −1
2

2

0 4 7 0 1 −4

and then on a12 to obtain

0 1 1 −2
5

1
5

2
5

1 0 −1 −1
5

−2
5

11
5

0 0 3 8
5

1
5

−28
5

We have reached the optimum of 28/5 with x1 = 11/5, x2 = 2/5, and x3 = 0.

It is worth pointing out that for problems in which all constraints are inequality

constraints, the optimal dual solution can also be read off from the final tableau. For

problems of this type, the last n − m columns of the extended constraint matrix A

correspond to the slack variables and therefore contain values 1 or −1 on the diagonal

and 0 everywhere else. For the same reason, the last n −m columns of the vector cT

are 0. The values of the dual variables, each of them with opposite sign of the slack

variable in the corresponding constraint, thus appear in the last n−m columns of the

vector (cT −λTA) in the last row of the final tableau. In our example, we have λ1 = 8/5

and λ2 = 1/5.
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4.3 Gomory’s Cutting Plane Method

Another situation where the dual simplex method can be useful is when we need to

add constraints to an already solved LP. While such constraints can make the primal

solution infeasible, they do not affect feasibility of the dual solution. We can therefore

simply add the constraint and continue running the dual LP algorithm from the current

solution until the primal solution again becomes feasible. The need to add constraints

to an LP for example arises naturally in Gomory’s cutting plane approach for solving

integer programs (IPs). An IP is a linear program with the additional requirement that

variables should be integral.

Assume that for a given IP we have already found an optimal (fractional) solution

x∗ with basis B, and let aij denote the entries of the final tableau, i.e., aij = (A−1
B Aj)i

and ai0 = (A−1
B b)i. If x∗ is not integral, there has to be a row i such that ai0 is not

integral, and for every feasible solution x,

xi +
∑

j∈N

⌊aij⌋xj 6 xi +
∑

j∈N

aijxj = ai0.

The inequality holds because x is feasible, i.e., x > 0, the equality follows from the

properties of the final tableau. If x is integral, the left-hand side is integral as well, and

the inequality must still hold if the right-hand side is rounded down. Thus,

xi +
∑

j∈N

⌊aij⌋xj 6 ⌊ai0⌋.

This inequality is satisfied by every (integral) feasible solution, but not by the current

solution x∗, for which x∗i = ai0. It corresponds to a so-called cutting plane, a hyper-

plane that separates the current solution x∗ from the feasible set. The idea behind the

cutting plane method is to iteratively add cutting planes and solve the resulting linear

programs using the dual simplex algorithm. As it turns out, this always leads to an

optimal integral solution after a finite number of steps.

Consider again the final tableau on Page 22, and assume that we are now looking

for an integral solution. By the first row, and assuming that all variables are integral

and non-negative,

x2 + x3 − 1z1 + 0z2 6 x2 + x3 −
2

5
z1 +

1

5
z2 =

2

5
,

and in fact

x2 + x3 − z1 6 0.

If we turn this into an equality constraint using a new slack variable, add it to the

tableau, and bring it into the right form by subtracting the first constraint from it, we

obtain
0 1 1 −2

5
1
5

0 2
5

1 0 −1 −1
5

−2
5

0 11
5

0 0 0 −3
5

−1
5

1 −2
5

0 0 3 8
5

1
5

0 −28
5
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After one more round of the dual simplex algorithm we reach the optimal integral

solution with x1 = 3 and x2 = x3 = 0:

0 1 1 −1 0 1 0

1 0 −1 1 0 −2 3

0 0 0 3 1 −5 2

0 0 3 1 0 1 −6

We will return to IPs, and learn about a different method for solving them that

often works better in practice, in a later lecture.


