
3 The Simplex Method

3.1 Basic Solutions

In the LP of Example 2.3, the optimal solution happened to lie at an extreme point of

the feasible set. This was not a coincidence. Consider an LP in general form,

maximize cTx subject to Ax 6 b, x > 0. (3.1)

The feasible set of this LP is a convex polytope in R
n, i.e., an intersection of half-spaces.

Each level set of the objective function cTx, i.e., each set Lα = {x ∈ R
n : cTx = α} of

points for which the value of the objective function is equal to some constant α ∈ R, is

a k-dimensional flat for some k 6 n. The goal is to find the largest value of α for which

Lα(f) intersects with the feasible set. If such a value exists, the intersection contains

either a single point or an infinite number of points, and it is guaranteed to contain an

extreme point of the feasible set. This fact is illustrated in Figure 3.1, and we will give

a proof momentarily.

The geometric characterization of extreme points, as points that cannot be written

as a convex combination of two different points, is somewhat hard to work with. We

therefore use an alternative, algebraic characterization. To this end, consider the fol-

lowing LP in standard form, which can be obtained from (3.1) by introducing slack

variables:

maximize cTx subject to Ax = b, x > 0, (3.2)

where A ∈ R
m×n and b ∈ R

m. Call a solution x ∈ R
n of the equation Ax = b basic

if at most m of its entries are non-zero, i.e., if there exists a set B ⊆ {1, . . . , n} with

|B| = m such that xi = 0 if i /∈ B. The set B is then called basis, and variable xi is

called basic if i ∈ B and non-basic if i /∈ B. A basic solution x that also satisfies x > 0

is a basic feasible solution (BFS) of (3.2). We finally distinguish basic solutions that

f(x) = α∗

f(x) = α

f(x) = α∗

f(x) = α

Figure 3.1: Illustration of linear programs with one optimal solution (left) and an

infinite number of optimal solutions (right)

13

14 3 · The Simplex Method

have exactly m non-zero entries from those that have strictly fewer, and refer to the

latter as degenerate.

In what follows we will assume that (i) the rows of A are linearly independent and

that (ii) every set of m columns of A are linearly independent. These assumptions are

without loss of generality: if a set of rows are linearly dependent, one of the correspond-

ing constraints can be removed without changing the feasible set; similarly, if a set of

columns are linearly dependent, one of the corresponding variables can be removed.

3.2 Extreme Points and Optimal Solutions

It turns out that the extreme points of the feasible set are precisely the basic feasible

solutions.

Theorem 3.1. A vector is a basic feasible solution of Ax = b if and only if it is

an extreme point of the set X(b) = {x : Ax = b, x > 0}.

Proof. Consider a BFS x and suppose that x = δy + (1 − δ)z for y, z ∈ X(b) and

δ ∈ (0, 1). Since y > 0 and z > 0, x = δy+ (1− δ)z implies that yi = zi = 0 whenever

xi = 0. This means in particular that y − z has at most m non-zero entries. At the

same time, y, z ∈ X(b) implies that Ay = b = Az and thus A(y − z) = 0. This yields

a linear combination of at most m columns of A that is equal to zero, which by (ii)

implies that y = z. Thus x is an extreme point of X(b).

Now consider a feasible solution x ∈ X(b) that is not a BFS. Let i1, . . . , ir be the

rows of x that are non-zero, and observe that r > m. This means that the columns

ai1, . . . , air, where ai = (a1i, . . . , ami)
T , have to be linearly dependent, i.e., there has to

exist a collection of r non-zero numbers yi1, . . . , yir such that yi1a
i1 + · · ·+ yira

ir = 0.

Extending y to a vector in R
n by setting yi = 0 if i /∈ {i1, . . . , ir}, we have Ay =

yi1a
i1 + · · · + yira

ir and thus A(x ± ǫy) = b for every ǫ ∈ R. Since xi is non-zero

whenever yi is non-zero, we can choose ǫ > 0 small enough such that x± ǫy > 0 and

thus x ± ǫy ∈ X(b). Moreover x = 1/2(x − ǫy) + 1/2(x + ǫy), so x is not an extreme

point of X(b).

Moreover, when looking for an optimum, we can restrict our attention to the set of

basic feasible solutions.

Theorem 3.2. If the linear program (3.2) is feasible and bounded, then it has an

optimal solution that is a basic feasible solution.

Proof. Let x be an optimal solution of (3.2). If x has exactly m non-zero entries, then

it is a BFS and we are done. So suppose that x has r non-zero entries for r > n, and

that it is not an extreme point of X(b), i.e., that x = δy+ (1− δ)z for y, z ∈ X(b) with

y 6= y and δ ∈ (0, 1). We will show that there must exist an optimal solution with

strictly fewer than r non-zero entries; the claim then follows by induction.

3.3 · The Simplex Tableau 15

Since cTx > cTy and cTx > cTz by optimality of x, and since cTx = δcTy+(1−δ)cTz,

we must have that cTx = cTy = cTz, so y and z are optimal as well. As in the proof

of Theorem 3.1, xi = 0 implies that yi = zi = 0, so y and z have at most r non-zero

entries, which must occur in the same rows as in x. If y or z has strictly fewer than

r non-zero entries, we are done. Otherwise let x ′ = δ ′y + (1 − δ ′)z = z + δ ′(y − z),

and observe that x ′ is optimal for every δ ′ ∈ R. Moreover, y− z 6= 0, and all non-zero

entries of y − z occur in rows where x is non-zero as well. We can thus choose δ ′ ∈ R

such that x ′ > 0 and such that x ′ has strictly fewer than r non-zero entries.

Since there are only finitely many basic solutions, a naive approach to solving an LP

would be to go over all basic solutions and pick one that optimizes the objective. The

problem with this approach is that it would not in general be efficient, as the number of

basic solutions may grow exponentially in the number of variables. We will now study

a well-known method for solving linear programs, the simplex method, which explores

the set of basic solutions in a more organized way.

3.3 The Simplex Tableau

One way to understand the simplex method is in terms of the so-called simplex tableau,

which stores all the information required to explore the set of basic solutions.

Let A ∈ R
m×n, b ∈ R

m, and x ∈ R
n such that Ax = b. Let B be a basis, i.e., a set

B ⊆ {1, . . . , n} with |B| = m, corresponding to a choice of m non-zero variables. Then

we have
ABxB +ANxN = b,

where AB ∈ R
m×m and AN ∈ R

m×(n−m) respectively consist of the columns of A

indexed by B and those not indexed by B, and xB and xN respectively consist of the

rows of x indexed by B and those not indexed by B. Moreover, if x is a basic solution,

then there is a basis B such that xN = 0 and ABxB = b, and if x is a basic feasible

solution, there is a basis B such that xN = 0, ABxB = b, and xB > 0.

For every x with Ax = b and every basis B, we have that xB = A−1
B (b − ANxN),

and thus
f(x) = cTx = cTBxB + cTNxN

= cTBA
−1
B (b−ANxN) + cTNxN

= cTBA
−1
B b+ (cTN − cTBA

−1
B AN)xN

Suppose that we want to maximize cTx and find that

cTN − cTBA
−1
B AN 6 0 and A−1

B b > 0. (3.3)

Then, for any feasible x ∈ R
n, it holds that xN > 0 and therefore f(x) 6 cTBA

−1
B b.

The basic solution x∗ with x∗B = A−1
B b and x∗N = 0, on the other hand, is feasible and

satisfies f(x∗) = cTBA
−1
B b. It must therefore be optimal.

If alternatively (cTN − cTBA
−1
B AN)i > 0 for some i, then we can increase the value of

the objective by increasing (xN)i. Either this can be done indefinitely, which means

16 3 · The Simplex Method

that the maximum is unbounded, or the constraints force some of the variables in the

basis to become smaller and we have to stop when the first such variable reaches zero.

In that case we have found a new BFS and can repeat the process.

Assuming that the LP is feasible and has a bounded optimal solution, there exists

a basis B∗ for which (3.3) is satisfied. The basic idea behind the simplex method is to

start from an initial BFS and then move from basis to basis until B∗ is found. The in-

formation required for this procedure can conveniently be represented by the so-called

simplex tableau. For a given basis B, it takes the following form:1

m
︷ ︸︸ ︷

n−m
︷ ︸︸ ︷

1
︷ ︸︸ ︷

B N

m

{

A−1
B AB = I A−1

B AN A−1
B b

1

{

cTB − cTBA
−1
B AB = 0 cTN − cTBA

−1
B AN −cTBA

−1
B b

The first m rows consist of the matrix A and the column vector b, multiplied by the

inverse of AB. It is worth pointing out that for any basis B, the LP with constraints

A−1
B Ax = A−1

B b is equivalent to the one with constraints Ax = b. The first n columns

of the last row are equal to cT − λTA for λT = cTBA
−1
B . The vector λ can be interpreted

as a solution, not necessarily feasible, to the dual problem. In the last column of the

last row we finally have the value −f(x), where x is the BFS with xB = A−1
B b and

xN = 0.

We will see later that the simplex method always maintains feasibility of this so-

lution x. As a consequence it also maintains complementary slackness for x and

λT = cTBA
−1
B : since we work with an LP in standard form, λT (Ax − b) = 0 follows

automatically from the feasibility condition, Ax = b; the condition (cT − λTA)x = 0

holds because xN = 0 and cTB − λTAB = cTB − cTBA
−1
B AB = 0. What it then means

for (3.3) to become satisfied is that cT − λTA 6 0, i.e., that λ is a feasible solution for

the dual. Optimality of x is thus actually a consequence of Theorem 2.4.

3.4 The Simplex Method in Tableau Form

Consider a tableau of the following form, where the basis can be identified by the

identity matrix embedded in (aij):

(aij) ai0

a0j a00

1The columns of the tableau have been permuted such that those corresponding to the basis appear

on the left. This has been done just for convenience: in practice we will always be able to identify the

columns corresponding to the basis by the embedded identity matrix.

3.4 · The Simplex Method in Tableau Form 17

The simplex method then proceeds as follows:

1. Find an initial BFS with basis B.

2. Check whether a0j 6 0 for every j. If yes, the current solution is optimal, so stop.

3. Choose j such that a0j > 0, and choose i ∈ {i ′ : ai ′j > 0} to minimize ai0/aij.

If aij 6 0 for all i, then the problem is unbounded, so stop. If multiple rows

minimize ai0/aij, the problem has a degenerate BFS.

4. Update the tableau by multiplying row i by 1/aij and adding a −(akj/aij) mul-

tiple of row i to each row k 6= i. Then return to Step 2.

We will now describe the different steps of the simplex method in more detail and

illustrate them using the LP of Example 2.3.

Finding an initial BFS

Finding an initial BFS is very easy when the constraints are of the form Ax 6 b for

b > 0. We can then write the constraints as Ax+ z = b for a vector z of slack variables

with regional constraint z > 0, and obtain a BFS by setting x = 0 and z = b. This can

alternatively be thought of as extending x to (x, z) and setting (xB, xN) = (z, x) = (b, 0).

We then have A−1
B = I and cB = 0, and the entries in the tableau become AN and cTN

for the variables x1 and x2 that are not in the basis, and b and 0 in the last column.

For the LP of Example 2.3 we obtain the following tableau, where rows and columns

have been labeled with the names of the corresponding variables:

x1 x2 z1 z2 ai0

z1 1 2 1 0 6

z2 1 −1 0 1 3

a0j 1 1 0 0 0

If the constraints do not have this convenient form, finding an initial BFS requires

more work. We will discuss this case in the next lecture.

Choosing a pivot column

If a0j 6 0 for all j > 1, the current solution is optimal. Otherwise we can choose a

column j such that a0j > 0 as the pivot column and let the corresponding variable enter

the basis. If multiple candidate columns exist, choosing any one of them will lead to a

new basis, but we could for example break ties toward the column that maximizes a0j

or the one with the smallest index. The candidate variables in our example are x1 and

x2, so let us choose x1. The pivot operation will cause this variable to enter the basis.

Choosing the pivot row

If aij 6 0 for all i, then the problem is unbounded and the objective can be increased

by an arbitrary amount. Otherwise we choose a row i ∈ {i ′ : ai ′j > 0} that minimizes

ai0/aij. This row is called the pivot row, and aij is called the pivot. If multiple rows

18 3 · The Simplex Method

minimize ai0/aij, the problem has a degenerate BFS. In our example there is a unique

choice, corresponding to variable z2. The pivot operation will cause this variable to

leave the basis.

Pivoting

The purpose of the pivoting step is to get the tableau into the appropriate form for the

new BFS. For this, we multiply row i by 1/aij and add a −(akj/aij) multiple of row i

to each row k 6= i, including the last one. Our choice of the pivot row as a row that

minimizes ai0/aij turns out to be crucial, as it guarantees that the solution remains

feasible after pivoting. In our example, we need to subtract the second row from both

the first and the last row, after which the tableau looks as follows:

x1 x2 z1 z2 ai0

z1 0 3 1 −1 3

x1 1 −1 0 1 3

a0j 0 2 0 −1 −3

Note that the second row now corresponds to variable x1, which has replaced z2 in the

basis.

We are now ready to choose a new pivot column. In our example, one further

iteration yields the following tableau:

x1 x2 z1 z2 ai0

x2 0 1 1
3

−1
3

1

x1 1 0 1
3

2
3

4

a0j 0 0 −2
3

−1
3

−5

This corresponds to the BFS where x1 = 4, x2 = 1, and z1 = z2 = 0, with an objective

of −5. All entries in the last row are non-positive, so this solution is optimal.

3.5 Degeneracies and Cycling

In the absence of degeneracies, the value of the objective function increases in every

iteration of the simplex method, and an optimal solution or a certificate for unbound-

edness is found after a finite number of steps. When the simplex method encounters a

degenerate BFS, however, it may remain at the same BFS despite changing basis. This

would obviously cause the value of the objective function to remain the same as well,

and the simplex method may in fact cycle indefinitely through a number of bases that

all represent the same BFS.

Such cycling can be avoided by a more careful choice of pivot rows and columns,

and thus of the variables entering and leaving the basis. Bland’s rule achieves this by

fixing some ordering of the variables and then choosing, among all variables that could

enter and leave in a given iteration, those that are minimal according to the ordering.

