
20 Bargaining

20.1 Bargaining Problems

Bargaining theory investigates how agents should cooperate when non-cooperation may

result in outcomes that are Pareto dominated. Formally, a (two-player) bargaining

problem is a pair (F, d) where F ⊆ R
2 is a convex set of feasible outcomes and d ∈ F is

a disagreement point that results if players fail to agree on an outcome. Here, convexity

corresponds to the assumption that any lottery over feasible outcomes is again feasible.

A bargaining solution then is a function that assigns to every bargaining problem

(F, d) a unique element of F.

The most basic example of a bargaining problem is the so-called ultimatum game

given by F = {(v1, v2) ∈ R
2 : v1 + v2 6 1} and d = (0, 0), in which two players

receive a fixed amount of payoff if they can agree on a way to divide this amount

among themselves. This game has many equilibria when viewed as a normal-form

game, since disagreement results in a payoff of zero to both players. Players’ preferences

regarding these equilibria differ, and bargaining theory tries to answer the question

which equilibrium should be chosen. More generally, a two-player normal-form game

with payoff matrices P,Q ∈ R
m×n can be interpreted as a bargaining problem where

F = conv({(pij, qij) : i = 1, . . . ,m, j = 1, . . . , n}), d1 = maxx∈X miny∈Y p(x, y), and

d2 = maxy∈Y minx∈X q(x, y), given that (d1, d2) ∈ F. Here, conv(S) denotes the convex

hull of set S.

Two kinds of approaches to bargaining exist in the literature: a strategic one that

considers iterative procedures resulting in an outcome in F, and an axiomatic one that

tries to identify bargaining solutions that possess certain desirable properties. We will

focus on the axiomatic approach in this lecture.

20.2 Nash’s Bargaining Solution

For a given bargaining problem (F, d), Nash proposed to

maximize (v1 − d1)(v2 − d2)

subject to v ∈ F

v > d.

(20.1)

The objective function of this optimization problem is strictly quasi-concave and there-

fore has a unique maximum. Formally, a function f : S → R defined on a convex set S

is strictly quasi-concave if for all x, y ∈ S with x 6= y and every δ ∈ (0, 1), f(x) > f(y)

implies f((1 − δ)x + δy) > f(y). In other words, strict quasi-concavity means that

the interior of any line segment joining points on two level sets of f lies strictly above
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Figure 20.1: Illustration of the Nash bargaining solution

the level set corresponding to the lower value of the function. The objective func-

tion of (20.1) satisfies this criterion because its level sets are rectangular hyperbolae

with horizontal and vertical asymptotes. Optimization problem (20.1) thus defines a

bargaining solution, the so-called Nash bargaining solution.

Consider for example the two-player game with payoff matrices

P =

(

0 5

3 1

)

and Q =

(

2 2

4 0

)

.

In this game, the row player can guarantee a payoff of 15/7 by playing the two rows

with probabilities 2/7 and 5/7, respectively. The column player can guarantee a payoff

of 2 by playing the left column. The bargaining problem corresponding to this game is

shown in Figure 20.1. The set F is the convex hull of the four payoff vectors (0, 2), (5, 2),

(3, 4), and (1, 0), and it contains the feasible set B = {v ∈ F : v > d} of (20.1). The

disagreement point is d = (15/7, 2). Level sets of the objective function corresponding

to values 0 and 1 and to the optimal value are drawn as dashed curves. The Nash

bargaining solution v∗ is the unique point in the intersection of F with the optimal

level set.

To compute v∗, we first observe that v∗ ∈ {(v1, v2) : v2 = 7 − v1, 3 6 v1 6 5}. The

objective function becomes

(v1 − d1)(v2 − d2) = (v1 −
15

7
)(5− v1) =

50

7
v1 − v21 −

75

7
,

and has a stationary point if 50/7 − 2v1 = 0. We obtain v∗ = (25/7, 24/7), which is

indeed a maximum.
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While it is not obvious that maximizing the product of the excess of the two players

is a good idea, it turns out that the Nash bargaining solution can be characterized

using a set of simple axioms. Bargaining solution f is

✎ Pareto efficient if f(F, d) is not Pareto dominated in F for any bargaining problem

(F, d);

✎ symmetric if (f(F, d))1 = (f(F, d))2 for every bargaining problem (F, d) such that

(y, x) ∈ F whenever (x, y) ∈ F and d1 = d2;

✎ invariant under positive affine transformations if f(F ′, d ′) = α ◦ f(F, d)+β for

any α,β ∈ R
2 with α > 0 and any two bargaining problems (F, d) and (F ′, d ′)

such that F ′ = {α ◦ x+ β : x ∈ F} and d ′ = α ◦ d+ β; and

✎ independent of irrelevant alternatives if f(F, d) = f(F ′, d) for any two bargaining

problems (F, d) and (F ′, d) such that F ′ ⊆ F with d ∈ F ′ and f(F, d) ∈ F ′.

Here, ◦ denotes component-wise multiplication of vectors, i.e., (s ◦ t)T = (s1t1, s2t2)

for all s, t ∈ R
2.

In the context of bargaining, Pareto efficiency means that no payoff is wasted, and

symmetry is an obvious fairness property. Invariance under positive affine transforma-

tions should hold because payoffs are just a representation of the underlying ordinal

preferences. The intuition behind independence of irrelevant alternatives is that an

outcome only becomes easier to justify as a solution when other outcomes are removed

from the set of feasible outcomes.

Theorem 20.1. Nash’s bargaining solution is the unique bargaining solution that

is Pareto efficient, symmetric, invariant under positive affine transformations,

and independent of irrelevant alternatives.

Proof. We denote the Nash bargaining solution by fN and begin by showing that it

satisfies the axioms. For Pareto efficiency, this follows directly from the fact that the

objective function is increasing in v1 and v2. For symmetry, assume that d1 = d2 and

let v∗ = (v∗1, v
∗

2) = fN(F, d). Clearly (v∗2, v
∗

1) maximizes the objective function, and by

uniqueness of the optimal solution (v∗2, v
∗

1) = (v∗1, v
∗

2) and thus fN1 (F, d) = fN2 (F, d). For

invariance under positive affine transformations, define F ′ and d ′ as above, and observe

that fN(F ′, d ′) is an optimal solution of the problem to maximize (v1−α1d1−β1)(v2−

α2d2 − β2) subject to v ∈ F ′, v1 > d1, and v2 > d2. By setting v ′ = α ◦ v + β, it

follows that fN(F ′, d ′) = α ◦ fN(F, d) + β. For independence of irrelevant alternatives,

let v∗ = fN(F, d) and F ′ ⊆ F. If v∗ ∈ F ′, it remains optimal and thus v∗ = fN(F ′, d).

Now consider a bargaining solution f that satisfies the axioms, and fix F and d. Let

z = fN(F, d), and let F ′ be the image of F under an affine transformation that maps z

to (1/2, 1/2) and d to the origin, i.e.,

F ′ = {α ◦ v+ β : v ∈ F, α ◦ z+ β = (1/2, 1/2)T , α ◦ d+ β = 0}.

Since both f and fN are invariant under positive affine transformations, f(F, d) =

fN(F, d) if and only if f(F ′, 0) = fN(F ′, 0). It thus suffices to show that f(F ′, 0) =

(1/2, 1/2).
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We begin by showing that for all v ∈ F ′, v1 + v2 6 1. Assume for contradiction

that there exists v ∈ F with v1 + v2 > 1, and let tδ = (1 − δ)(1/2, 1/2)T + δv. By

convexity of F ′, tδ ∈ F ′ for δ ∈ (0, 1). Moreover, since the objective function has a

unique maximum, we can choose δ sufficiently small such that tδ1t
δ
2 > 1/4 = fN(F ′, 0),

contradicting optimality of fN(F ′, 0).

Now let F ′′ be the closure of F ′ under symmetry, and observe that for all v ∈ F ′′,

v1+v2 6 1. Therefore, by Pareto optimality and symmetry of f, f(F ′′, 0) = (1/2, 1/2)T .

Since f is independent of irrelevant alternatives, f(F ′, 0) = (1/2, 1/2)T as required.


