
2 Convex and Linear Optimization

2.1 Convexity and Strong Duality

Let S ⊆ R
n. S is called a convex set if for all δ ∈ [0, 1], x, y ∈ S implies that

δx + (1 − δ)y ∈ S. A function f : S → R is called convex function if for all x, y ∈ S

and δ ∈ [0, 1], δf(x) + (1 − δ)f(y) > f(δx + (1 − δ)y). A point x ∈ S is called an

extreme point of S if for all y, z ∈ S and δ ∈ (0, 1), x = δy + (1 − δ)z implies that

x = y = z. A point x ∈ S is called an interior point of S if there exists ǫ > 0 such that

{y : ||y− x||2 6 ǫ} ⊆ S. The set of all interior points of S is called the interior of S.

We saw in the previous lecture that strong duality is equivalent to the existence of

a supporting hyperplane. The following result establishes a sufficient condition for the

latter.

Theorem 2.1 (Supporting Hyperplane Theorem). Suppose that φ is convex and

b ∈ R lies in the interior of the set of points where φ is finite. Then there exists

a (non-vertical) supporting hyperplane to φ at b.

The following result identifies a condition that guarantees convexity of φ.

Theorem 2.2. Consider the optimization problem to

minimize f(x)

subject to h(x) 6 b

x ∈ X,

and let φ be given by φ(b) = infx∈X(b) f(x). Then, φ is convex when X, f, and h

are convex.

Proof. Consider b1, b2 ∈ R
m such that φ(b1) and φ(b2) are defined, and let δ ∈ [0, 1]

and b = δb1 + (1 − δ)b2. Further consider x1 ∈ X(b1), x2 ∈ X(b2), and let x =

δx1 + (1− δ)x2. Then convexity of X implies that x ∈ X, and convexity of h that

h(x) = h(δx1 + (1− δ)x2)

6 δh(x1) + (1− δ)h(x2)

= δb1 + (1− δ)b2

= b.

Thus x ∈ X(b), and by convexity of f,

φ(b) 6 f(x) = f(δx1 + (1− δ)x2) 6 δf(x1) + (1− δ)f(x2).

This holds for all x1 ∈ X(b1) and x2 ∈ X(b2), so taking infima on the right hand

side yields

φ(b) 6 δφ(b1) + (1− δ)φ(b2).
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Observe that an equality constraint h(x) = b is equivalent to constraints h(x) 6 b

and −h(x) 6 −b. In this case, the above result requires that X, f, h, and −h are all

convex, which in particular requires that h is linear.

2.2 Linear Programs

A linear program is an optimization problem in which the objective and all constraints

are linear. It has the form

minimize cTx

subject to aT
i x > bi, i ∈ M1

aT
i x 6 bi, i ∈ M2

aT
i x = bi, i ∈ M3

xj > 0, j ∈ N1

xj 6 0, j ∈ N2

where c ∈ R
n is a cost vector, x ∈ R

n is a vector of decision variables, and constraints

are given by ai ∈ R
n and bi ∈ R for i ∈ {1, . . . ,m}. Index sets M1,M2,M3 ⊆ {1, . . . ,m}

and N1, N2 ⊆ {1, . . . , n} are used to distinguish between different types of contraints.

An equality constraint aT
i x = bi is equivalent to the pair of constraints aT

i 6 bi and

aT
i x > bi, and a constraint of the form aT

i x 6 bi can be rewritten as (−ai)
Tx > −bi.

Each occurrence of an unconstrained variable xj can be replaced by x+j + x−j , where x+j
and x−j are two new variables with x+j > 0 and x−j 6 0. We can thus write every linear

program in the general form

min { cTx : Ax > b, x > 0 } (2.1)

where x, c ∈ R
n, b ∈ R

m, and A ∈ R
m×n. Observe that constraints of the form xj > 0

and xj 6 0 are just special cases of constraints of the form aT
i x > bi, but we often

choose to make them explicit.

A linear program of the form

min { cTx : Ax = b, x > 0 } (2.2)

is said to be in standard form. The standard form is of course a special case of the

general form. On the other hand, we can also bring every general form problem into

the standard form by replacing each inequality constraint of the form aT
i x 6 bi or

aT
i x > bi by a constraint aT

i x + si = bi or aT
i x − si = bi, where si is a new so-called

slack variable, and an additional constraint si > 0.

The general form is typically used to discuss the theory of linear programming,

while the standard form is often more convenient when designing algorithms for linear

programming.
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Figure 2.1: Geometric interpretation of the linear program of Example 2.3

Example 2.3. Consider the following linear program, which is illustrated in Figure 2.1:

minimize −(x1 + x2)

subject to x1 + 2x2 6 6

x1 − x2 6 3

x1, x2 > 0

Solid lines indicate sets of points for which one of the constraints is satisfied with

equality. The feasible set is shaded. Dashed lines, orthogonal to the cost vector c,

indicate sets of points for which the value of the objective function is constant. The

optimal value over the feasible set is attained at point C.

2.3 Linear Program Duality

Consider problem (2.1) and introduce slack variables z to turn it into

min { cTx : Ax− z = b, x, z > 0 }.

We have X = {(x, z) : x > 0, z > 0} ⊆ R
m+n. The Lagrangian is given by

L((x, z), λ) = cTx− λT (Ax− z− b) = (cT − λTA)x+ λTz+ λTb

and has a finite minimum over X if and only if

λ ∈ Y = {µ ∈ R
m : cT − µTA > 0, µ > 0 }.
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For λ ∈ Y, the minimum of L((x, z), λ) is attained when both (cT − λTA)x = 0 and

λTz = 0, and thus

g(λ) = inf
(x,z)∈X

L((x, z), λ) = λTb.

We obtain the dual

max {bTλ : ATλ 6 c, λ > 0 }. (2.3)

The dual of (2.2) can be determined analogously as

max {bTλ : ATλ 6 c }.

2.4 Complementary Slackness

An important relationship between primal and dual solutions is provided by conditions

known as complementary slackness. Complementary slackness requires that slack does

not occur simultaneously in a variable, of the primal or dual, and the corresponding

constraint, of the dual or primal. Here, a variable is said to have slack if its value is

non-zero, and an inequality constraint is said to have slack if it does not hold with

equality. It is not hard to see that complementary slackness is a necessary condition for

optimality. Indeed, if complementary slackness was violated by some variable and the

corresponding contraint, reducing the value of the variable would reduce the value of

the Lagrangian, contradicting optimality of the current solution. The following result

formalizes this intuition.

Theorem 2.4. Let x and λ be feasible solutions for the primal (2.1) and the

dual (2.3), respectively. Then x and λ are optimal if and only if they satisfy

complementary slackness, i.e., if

(cT − λTA)x = 0 and λT (Ax− b) = 0.

Proof. If x and λ are optimal, then

cTx = λTb

= inf
x ′∈X

(

cTx ′ − λT (Ax ′ − b)
)

6 cTx− λT (Ax− b)

6 cTx.

Since the first and last term are the same, the two inequalities must hold with equality.

Therefore, λTb = cTx − λT (Ax − b) = (cT − λTA)x + λTb, and thus (cT − λTA)x = 0.

Furthermore, cTx− λT (Ax− b) = cTx, and thus λT (Ax− b) = 0.

If on the other hand (cT − λTA)x = 0 and λT (Ax− b) = 0, then

cTx = cTx− λT (Ax− b) = (cT − λTA)x+ λTb = λTb,

and by weak duality x and λ must be optimal.
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2.5 Shadow Prices

A more intuitive understanding of Lagrange multipliers can be obtained by again

viewing (1.1) as a family of problems parameterized by b ∈ R
m. As before, let

φ(b) = inf{f(x) : h(x) = b, x ∈ R
n}. It turns out that at the optimum, the Lagrange

multipliers equal the partial derivatives of φ.

Theorem 2.5. Suppose that f and h are continuously differentiable on R
n, and that

there exist unique functions x∗ : Rm → R
n and λ∗ : Rm → R

m such that for each

b ∈ R
m, h(x∗(b)) = b, λ∗(b) 6 0 and f(x∗(b)) = φ(b) = inf{f(x) − λ∗(b)T (h(x) − b) :

x ∈ R
n}. If x∗ and λ∗ are continuously differentiable, then

∂φ

∂bi

(b) = λ∗

i (b).

Proof. We have that

φ(b) = f(x∗(b)) − λ∗(b)T (h(x∗(b)) − b)

= f(x∗(b)) − λ∗(b)Th(x∗(b)) + λ∗(b)Tb.

Taking partial derivatives of each term,

∂f(x∗(b))

∂bi

=

n∑

j=1

∂f

∂xj
(x∗(b))

∂x∗j

∂bi

(b),

∂λ∗(b)Th(x∗(b))

∂bi

= λ∗(b)T
∂h(x∗(b))

∂bi

+ h(x∗(b))
∂λ∗(b)T

∂bi

=

(

n∑

j=1

(

λ∗(b)T
∂h

∂xj
(x∗(b))

)

∂x∗j

∂bi

(b)

)

+ h(x∗(b))
∂λ∗(b)T

∂bi

,

∂λ∗(b)Tb

∂bi

= λ∗(b)T
∂b

∂bi

+ b
λ∗(b)T

∂bi

.

By summing and re-arranging,

∂φ(b)

∂bi

=

n∑

j=1

(

∂f

∂xj
(x∗(b)) − λ∗(b)T

∂h

∂xj
(x∗(b))

)

∂x∗j

∂bi

(b)

− (h(x∗(b)) − b)
∂λ∗(b)T

∂bi

+ λ∗(b)T
∂b

∂bi

.

The first term on the right-hand side is zero, because x∗(b) minimizes L(x, λ∗(b)) and

thus
∂L(x∗(b), λ∗(b))

∂xj
=

∂f

∂xj
(x∗(b)) −

(

λ∗(b)T
∂h

∂xj
(x∗(b))

)

= 0

for j = 1, . . . , n. The second term is zero as well, because x∗(b) is feasible and thus

(h(x∗(b)) − b)k = 0 for k = 1, . . . ,m, and the claim follows.
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This result continues to hold when the functional constraints are inequalities: if the

ith constraint is not satisfied with equality, then λ∗

i = 0 by complementary slackness,

and therefore also ∂λ∗i/∂bi = 0.

In light of Theorem 2.5, Lagrange multipliers are also known as shadow prices, due

to an economic interpretation of the problem to

maximize f(x)

subject to h(x) 6 b

x ∈ X.

Consider a firm that produces n different goods from m different raw materials. Vector

b ∈ R
m describes the amount of each raw material available to the firm, vector x ∈ R

n

the quantity produced of each good. Functions h : Rn → R
m and f : Rn → R finally

describe the amounts of raw material required to produce, and the profit derived from

producing, particular quantities of the goods. The goal in the above problem thus is

to maximize the profit of the firm for given amounts of raw materials available to it.

The shadow price of raw material i then is the price the firm would be willing to

pay per additional unit of this raw material, which of course should be equal to the

additional profit derived from it, i.e., to ∂φ(b)/∂bi. In this context, complementary

slackness corresponds to the basic economic principle that a particular raw material has

a non-zero price if and only if it is scarce, in the sense that increasing its availability

would increase profit.


