
19 Cooperative Games

So far we have considered non-cooperative games, in which each players acts on its own.

The theory of cooperative games, on the other hand, studies which coalitions of players

are likely to form in a given situation. It takes the payoff achievable by any coalition

as given, but requires that coalitions can distribute these payoffs among their members

in such a way that the members are satisfied. We consider games with transferable

payoff, where the payoff obtained by a coalition can be distributed in an arbitrary way

among its members, and restrict our attention to the grand coalition N consisting of

all players.

Formally, a coalitional game is given by a set N = {1, . . . , n} of players, and a

characteristic function v : 2N → R that maps each coalition of players to its value,

the joint payoff the coalition can obtain by working together. For a given game (N, v),

a vector x ∈ R
n of payoffs is said to satisfy (economic) efficiency if

∑
i∈N xi = v(N)

and individual rationality if xi > v({i}) for i = 1, . . . , n. The first condition intuitively

ensures that no payoff is wasted, while the second condition ensures that each player

obtains at least the same payoff it would be able to obtain on its own. A payoff vector

that is both efficient and individually rational is also called an imputation.

19.1 The Core

Efficiency and individual rationality may not be enough to guarantee a stable outcome.

For any two imputations x and y,
∑

i∈N xi =
∑

i∈N yi = v(N), so yi > xi for some

i ∈ N implies that yj < xj for some other j ∈ N. However, there could be some coalition

S ⊆ N such that yi > xi for all i ∈ S. If in addition
∑

i∈S yi 6 v(S), the members of S

could increase their respective payoffs by deviating from the grand coalition, forming

the coalition S, and distributing the payoff thus obtained according to y. The core is the

set of imputations that are stable against this kind of deviation. Formally, imputation

x is in the core of game (N, v) if
∑

i∈S xi > v(S) for all S ⊆ N.

Consider a situation where n > 2 members of an expedition have discovered a

treasure, and any pair of them can carry one piece of the treasure back home. This

situation can be modeled by a coalitional game (N, v) where N = {1, . . . , n} and v(S) =

|S|/2 if |S| is even and v(S) = (|S| − 1)/2 if |S| is odd. The core then contains all

imputations if n = 2, the single imputation (1/2, . . . , 1/2) if n > 4 is even, and is

empty if n is odd. The latter can for example be shown using a characterization of

games with a non-empty core, which we discuss next.

Call a function λ : 2N → [0, 1] balanced if for every player the weights of all coalitions

containing that player sum to 1, i.e., if for all i ∈ N,
∑

S⊆N\{i} λ(S ∪ {i}) = 1. A game

(N, v) is called balanced if for every balanced function λ,
∑

S⊆N λ(S)v(S) 6 v(N). The
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intuition behind this definition is that each player allocates one unit of time among the

coalitions it is a member of, and each coalition earns a fraction of its value proportional

to the minimum amount of time devoted to it by any of its members. Balancedness of

a collection of weights imposes a feasibility condition on players’ allocations of time,

and a game is balanced if there is no feasible allocation that yields more than v(N).

Theorem 19.1 (Bondareva 1963, Shapley 1967). A game has a non-empty core if

and only if it is balanced.

Proof. The core of a game (N, v) is non-empty if and only if the linear program to

minimize
∑

i∈N

xi

subject to
∑

i∈S

xi > v(S) for all S ⊆ N

has an optimal solution with value v(N). This linear program has the following dual:

maximize
∑

S⊆N

λ(S)v(S)

subject to
∑

S⊆N,i∈S

λ(S) = 1 for all i ∈ N

λ(S) > 0 for all S ⊆ N,

where λ : 2N → [0, 1]. Note that λ is feasible for the dual if and only if it is a

balanced function. Both primal and dual are feasible, so by strong duality their optimal

objective values are the same. This means that the core is non-empty if and only if∑
S⊆N λ(S)v(S) 6 v(N) for every balanced function λ.

To see that the core of our example game is empty if n is odd, define λ : 2N → [0, 1]

such that λ(S) = 1/(n − 1) if |S| = 2 and λ(S) = 0 otherwise. Then, for all i ∈ N,∑
S⊆N\{i} λ(S∪{i}) = 1, because each player is contained in exactly (n−1) sets of size 2.

Moreover,
∑

S⊆N λ(S)v(S) = n(n− 1)/2 · 1/(n− 1) = n/2, which is greater than v(N)

if n is odd.

19.2 The Nucleolus

In cases where the core is empty, one might consider weakening the requirement that

no coalition should be able to gain, and instead look for an efficient payoff vector that

minimizes the possible gain over all coalitions. This can intuitively be interpreted as

minimizing players’ incentive to deviate from the solution by forming another coalition,

or as a natural notion of fairness when distributing the joint payoff v(N) among the

players.

To this end, define the excess e(S, x) of coalition S ⊆ N for payoff vector x as its

gain from leaving the grand coalition, i.e., e(S, x) = v(S) −
∑

i∈S xi. For a given vector
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x, let Sx
1, . . . , S

x
2n−1 be an ordering of the coalitions such that e(Sx

k, x) > e(Sx
k+1, x) for

k = 1, . . . , 2n − 2, and let E(x) ∈ R
2n

−1 be the vector given by Ek(x) = e(Sx
k, x). We

say that E(x) is lexicographically smaller than E(y) if there exists i ∈ {1, . . . , 2n − 1}

such that Ek(x) = Ek(y) for k = 1, . . . , i − 1 and Ei(x) < Ei(y). The nucleolus is

then defined as the set of efficient payoff vectors x for which E(x) is lexicographically

minimal.

Observe that for each k = 1, . . . , 2n − 1, Ek is a continuous function because

Ek(x) = min
T⊆2N

|T|=k−1

max
S∈2N\T

e(S, x).

Since E1 is continuous, X1 = arg minx∈X0
E1(x), where X0 is the set of efficient pay-

off vectors, is non-empty and compact. By induction, the same holds for Xk =

arg minx∈Xk−1
Ek(x), k > 2. Since X2n−1 is the nucleolus, the nucleolus is non-empty.

It can in fact be shown that the nucleolus always contains exactly one element.

Theorem 19.2. The nucleolus of any coalitional game is a singleton.

Proof. Consider two vectors x and y in the nucleolus, and assume for contradiction

that x 6= y. Observe that E(x) = E(y), and let S1, . . . , S2n−1 be an ordering of the

coalitions such that e(Sk, x) > e(Sk+1, x) for k = 1, . . . , 2n − 2. Since x 6= y, there

has to exist ℓ ∈ {1, . . . , 2n − 1} such that e(Sk, x) = e(Sk, y) for k = 1, . . . , ℓ − 1 and

e(Sℓ, x) 6= e(Sℓ, y). In fact e(Sℓ, x) > e(Sℓ, y), because e(Sℓ, x) < e(Sℓ, y) would imply

that E(x) is lexicographically smaller than E(y). Moreover, for k = ℓ + 1, . . . , 2n − 1,

Ek(x) 6 Eℓ(x) and e(Sk, y) 6 Eℓ(x). The latter inequality holds because e(Sk, y) =

Ek(y) for k = 1, . . . , ℓ − 1, so it must be the case that e(Sk, y) 6 Eℓ(y) = Eℓ(x) for

k = ℓ+ 1, . . . , 2n − 1.

Now consider the vector z = (x + y)/2, and observe that e(Sk, z) = (e(Sk, x) +

e(Sk, y))/2 for k = 1, . . . , 2n−1. Thus Ek(z) = Ek(x) for k = 1, . . . , ℓ−1, Eℓ(z) < Eℓ(x),

and Ek(z) < Eℓ(x) for k = ℓ + 1, . . . , 2n − 1. This means that E(z) is lexicographically

smaller than E(x), contradicting the assumption that x is in the nucleolus.

The set of efficient payoff vectors that minimize maximum excess is the set of optimal

solutions of the following linear program:

minimize ǫ

subject to
∑

i∈S xi > v(S) − ǫ for all S ⊂ N
∑

i∈N xi = v(N).

(P1)

The set of feasible solutions of (P1) for a fixed value of ǫ is also called the ǫ-core, and

the set of optimal solutions of (P1) the least core. The core is non-empty if and only

if the optimal objective value of (P1) is non-positive.

Now let S1 ⊆ 2N\{N} be the set of coalitions whose constraint holds with equality in

every optimal solution of (P1). Clearly, if x is in the nucleolus, then e(S, x) = E1(x) for
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all S ∈ S1. Given that S1 is non-empty, we can thus write down a new linear program

that fixes the excess of the coalitions in S1 to E1(x) and minimizes the next smaller

excess. By repeating this procedure we obtain a sequence of linear programs P2, P3, . . .

defined recursively as follows:

minimize ǫ

subject to
∑

i∈S xi = v(S) − ǫ1 for all S ∈ S1

...
∑

i∈S xi = v(S) − ǫi−1 for all S ∈ Si−1∑
i∈S xi > v(S) − ǫ for all S ∈ S̄i−1∑
i∈N xi = v(N),

(Pi)

where for j = 1, . . . , i − 1, ǫj is the optimal objective value of (Pj), Sj ⊆ S̄j−1 is the

set of coalitions with an inequality constraint in (Pj) that holds with equality in every

optimal solution, and S̄j = (2N \ {N}) \ ∪j
ℓ=1Sℓ.

The following result establishes that there always exists an inequality constraint

that can be tightened to an equality, which guarantees that we obtain the nucleolus

after a finite number of iterations. In fact, n iterations can be shown to suffice if in

addition to the constraints that are tight in every optimal solution we also fix those

that are linearly dependent on constraints that have already been fixed.

Lemma 19.3. If S̄i−1 6= ∅, then Si 6= ∅.

Proof. Let S̄i−1 = {S1, . . . , Sm}. If m = 0 or if the constraint for some S ∈ S̄i−1 holds

with equality in every optimal solution of (Pi) we are done. Otherwise, for j = 1, . . . ,m,

there exists an optimal solution xj of (Pi) such that e(S, xj) < ǫi. By convexity of the

set of optimal solutions, x̃ = 1/m
∑m

i=1 x
j is optimal for (Pi), which means that there

has to be a coalition S̃ ∈ S̄i−1 such that e(S̃, x̃) = ǫi. Thus,

e(S̃, x̃) =
1

m

m∑

j=1

e(S̃, xj) 6 ǫi,

where the equality holds by convexity of e and the inequality because for j = 1, . . . ,m,

xj is optimal for (Pi) and thus e(S̃, xj) 6 ǫi. If the constraint for S̃ had slack for some

optimal solution of (Pi), i.e., if S̃ = Sj for some j = 1, . . . ,m, then this inequality would

be strict. Since it is not, the constraint for S̃ must hold with equality in every optimal

solution of (Pi).

Consider for example a game with N = {1, 2, 3} and characteristic function v given

by

v({1}) = 1 v({2}) = 2 v({3}) = 1

v({1, 2}) = 2 v({1, 3}) = 3 v({2, 3}) = 5 v({1, 2, 3}) = 4.
(19.1)
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To find the nucleolus of this game, we first

minimize ǫ

subject to x1 > 1− ǫ, x2 > 2− ǫ, x3 > 1− ǫ

x1 + x2 > 2− ǫ, x1 + x3 > 3− ǫ

x2 + x3 > 5− ǫ, x1 + x2 + x3 = 4.

It is easily verified that ǫ = 1 and x = (0, 1, 3) is a feasible solution. By adding the

constraints for {1} and {2, 3} and subtracting the constraint for {1, 2, 3} we see that

ǫ > 1, so the solution must be optimal. For ǫ = 1, the constraints for {1} and {2, 3}

have to hold with equality in every optimal solution, and the constraints for {3}, {1, 2},

and {1, 2, 3} become redundant. Thus x1 = 0, x2 > 1, x3 > 2, and x2 + x3 = 4, and the

least core is {(0, x2, 4− x2) : x2 ∈ [1, 2]}. We now

minimize ǫ

subject to x1 = 0, x2 > 2− ǫ

x3 > 3− ǫ, x2 + x3 = 4

and obtain a unique optimal solution where ǫ = 1/2 and x = (0, 3/2, 5/2), which gives

us the unique element in the nucleolus.

19.3 The Shapley Value

A different notion of fairness in distributing the joint payoff of a coalition among its

members was proposed by Shapley, starting from a set of axioms. Call player i ∈ N

a dummy if its contribution to every coalition is exactly its value, i.e., if v(S ∪ {i}) =

v(S) + v({i}) for all S ⊆ N \ {i}. Call two players i, j ∈ N interchangeable if they

contribute the same to every coalition, i.e., if v(S∪ {i}) = v(S∪ {j}) for all S ⊆ N \ {i, j}.

Let a solution be a function φ : R2n

→ R
n that maps every characteristic function v

to an efficient payoff vector φ(v). Solution φ is said to satisfy

✎ dummies if φi(v) = v({i}) whenever i is a dummy;

✎ symmetry if φi(v) = φj(v) whenever i and j are interchangeable; and

✎ additivity if φ(v+w) = φ(v) + φ(w).

It turns out that there is a unique solution satisfying these axioms.

Theorem 19.4. The Shapley value, given by

φi(v) =
∑

S⊆N\{i}

|S|!(|N|− |S|− 1)!

|N|!

(

v(S ∪ {i}) − v(S)
)

,

is the unique solution that satisfies dummies, symmetry, and additivity.


