
18 Equilibrium Computation

Consider a bimatrix game with payoff matrices P,Q ∈ R
m×n, and assume without loss

of generality that P,Q > 0. It will be convenient to index the actions of the row and

column player by M = {1, . . . ,m} and N = {m+ 1, . . . ,m+n}, respectively, and define

the sets X and Y of strategies accordingly.

A pair (x, y) ∈ X× Y is an equilibrium if and only if all pure strategies in S(x) are

best responses to y and all pure strategies in S(y) are best responses to x, i.e., if

for all i ∈ M, xi > 0 implies (Py)i = max
k∈M

(Py)k and

for all j ∈ N, yj > 0 implies (QTx)j = max
k∈N

(QTx)k.
(18.1)

18.1 Labeled Polytopes

Not every subset of actions can be the support of an equilibrium, and it makes sense to

search for equilibrium supports in a more organized way. In the following we restrict

our attention to non-degenerate games, but note that degeneracies can be handled by

a slight perturbation of the payoff matrices. A bimatrix game is non-degenerate if for

every (x, y) ∈ X × Y, |S(x)| > |S(y)| if y is a best response to x and |S(y)| > |S(x)| if x

is a best response to y.

Let

X̂ = {(x, u) ∈ R
m × R : x > 0, xT1 = 1,QTx 6 u1} and

Ŷ = {(y, v) ∈ R
n × R : y > 0, yT

1 = 1, Py 6 v1},

where 1 denotes an all-ones vector of appropriate dimension. The first two inequalities

for X̂ ensure that x is indeed a strategy of the row player, while the third inequality

ensures that u is an upper bound on the expected payoff for every pure strategy of the

column player. We will be interested in the extreme points of X̂ and Ŷ, because they

satisfy some of the constraints with equality and therefore correspond to strategies with

specific properties: if xi = 0, then the pure strategy i ∈ M is not played in strategy x; if

(QTx)j = u, then the pure strategy j ∈ N is a best response to x. In the case of X̂ there

are m+1 variables, so in addition to the equality constraint at least m of the inequality

constraints have to hold with equality at every extreme point. An extreme point (x, u)

of X̂ thus corresponds to a situation where |S(x)| = k, for some k 6 m, and at least

k pure strategies of the column player are a best response to x. By non-degeneracy,

there in fact have to be exactly k such strategies. Analogously, at every extreme point

(y, v) of Ŷ, |S(y)| = k for some k 6 n and k pure strategies of the row player are a best

response to y. It is easy to see an equilibrium (x, y) of a non-degenerate game must

79

80 18 · Equilibrium Computation

satisfy |S(x)| = |S(y)|, so that every equilibrium of such a game can be described as a

pair of extreme points of X̂ and Ŷ.

Since P,Q > 0 implies that u, v > 0, we can simplify notation and consider

X = {x ∈ R
m : x > 0,QTx 6 1} and

Y = {y ∈ R
n : y > 0, Py 6 1}.

The vectors in X are no longer normalized, but there is a direct correspondence between

the extreme points of X̂ and X, except for the zero vector: for each extreme point (x, u)

of X̂, x/u is an extreme point of X, and for each extreme point x of X, apart from the

zero vector, (x/
∑m

i=1 xi, 1/
∑m

i=1 xi) is an extreme point of X̂. Analogous conditions

hold for Ŷ and Y.

We will now give a characterization of those extreme points of X and Y that corre-

spond to an equilibrium of the underlying game. For given extreme points x and y of X

and Y, let L(x) and L(y) be the index sets of those constraints that hold with equality,

i.e.,
L(x) = {i ∈ M : xi = 0} ∪ {j ∈ N : (QTx)j = 1} and

L(y) = {j ∈ N : yj = 0} ∪ {i ∈ M : (Py)i = 1}.

We refer to the sets L(x) and L(y) as the labels of x and y and call a pair (x, y) fully

labeled if L(x) ∪ L(y) = M ∪N.

Theorem 18.1. A pair of extreme points (x, y) ∈ X × Y with (x, y) 6= (0, 0) corre-

sponds to an equilibrium if and only if it is fully labeled.

Proof. Suppose that L(x) ∪ L(y) = M ∪N, and let

M1 = {i ∈ M : xi = 0}, N1 = {j ∈ N : yj = 0},

M2 = {i ∈ M : (Py)i = 1}, N2 = {j ∈ N : (QTx)j = 1}.

Then, M1 ∪M2 = M and N1 ∪N2 = N, and it is easy to see that (18.1) is satisfied.

Conversely assume that (x, y) corresponds to an equilibrium. Then, by (18.1),

(M\S(x))∪S(y) ⊆ L(x) and (N\S(y))∪S(x) ⊆ L(y), and thus L(x)∪L(y) = M∪N.

18.2 The Lemke-Howson Algorithm

The relationship between completely labeled pairs of extreme points and equilibria of

the underlying game can be used to obtain a combinatorial algorithm for finding an

equilibrium. The idea is to start from (0, 0) and pivot alternatingly in X and Y until a

completely labeled pair is found. To make this idea precise, let VX and VY be the sets

of extreme points of X and Y, and let EX and EY be the set of edges between adjacent

extreme points, i.e.,

EX = {(x, x ′) ∈ VX × VX : |L(x) ∩ L(x ′)| = m− 1}

EY = {(y, y ′) ∈ VY × VY : |L(y) ∩ L(y ′)| = n− 1}.

18.2 · The Lemke-Howson Algorithm 81

Further let V = VX×VY and E = {((x, y), (x ′, y ′)) ∈ V×V : (x, x ′) ∈ EX or (y, y ′) ∈ EY}.

The key observation is that if we restrict our attention to extreme points that are

almost fully labeled, with the possible exception of a particular label ℓ, then there is

always a unique way in which we can proceed. For ℓ ∈ M ∪ N, let Vℓ = {(x, y) ∈ V :

L(x) ∪ L(y) ⊇ M ∪N \ {ℓ}} and Eℓ = E ∩ (Vℓ × Vℓ).

Theorem 18.2. Let ℓ ∈ M∪N. Then, Vℓ contains (0, 0) as well as every pair (x, y) ∈

V that corresponds to an equilibrium of the underlying game. If the underlying

game is non-degenerate, then (0, 0) and the elements of Vℓ corresponding to an

equilibrium have degree one in the graph (Vℓ, Eℓ), and all other elements of Vℓ

have degree two.

Proof. Both (0, 0) and all pairs corresponding to equilibria are fully labeled, so the

first property is obvious.

For the second property, consider (x, y) ∈ Vℓ and let x̄ and ȳ be the strategies in the

underlying game corresponding to x and y. Since the game is non-degenerate, at most

|S(x̄)| pure strategies can be a best response to x̄, and at most |S(ȳ)| pure strategies can

be a best response to ȳ, so L(x) 6 |M\S(x)|+S(x) = m and L(y) 6 |N\S(y)|+S(y) = n.

Since x and y are extreme points of X and Y, respectively, we have that |L(x)| > m and

|L(y)| > n, and thus L|(x)| = m and |L(y)| = n.

If (x, y) = (0, 0), or if (x̄, ȳ) is an equilibrium, then (x, y) is fully labeled and

therefore L(x)∩ L(y) = ∅. The neighbors of (x, y) are those elements of Vℓ that replace

ℓ with some other label, i.e., those where some other constraint holds with equality

instead of the one corresponding to ℓ. Since the constraints are linear, and by non-

degeneracy, there is exactly one such element.

Otherwise L(x)∩ L(y) = {k} for some k ∈ M∪N. The neighbors of (x, y) can again

be obtained by replacing k with another label. This replacement can be done either

in X or in Y, and for each of the two there is one neighbor by the same reasoning as

before.

This means that the graph (Vℓ, Eℓ) for each ℓ ∈ M ∪N consists of paths and cycles

that are pairwise disjoint, and the ends of the paths correspond to the pair (0, 0) and

to the equilibria of the underlying game. The Lemke-Howson algorithm now takes the

obvious steps: it starts from (0, 0) and follows the path until it reaches the pair of

extreme points at the other end, which must correspond to an equilibrium. Moving

from a vertex (x, y) ∈ Vℓ to a neighboring vertex (x ′, y ′) ∈ Vℓ corresponds to dropping

a label from either x or y and picking up another label with the same element. In the

first round the label that is dropped is ℓ. In subsequent rounds it is the duplicate label

that has been picked up in the previous round, but it is dropped from the respective

other element. Eventually ℓ will be picked up, leading to a fully labeled pair. Formally

the algorithm proceeds as follows:

1. Pick ℓ ∈ M ∪N. Let (x, y) be the pair obtained from (0, 0) by dropping label ℓ.

82 18 · Equilibrium Computation

2. Let k ∈ L(x ′)∩ L(y ′) be the label that was just picked up. If it was picked up by

x, then drop it from y; otherwise drop it from x. Let (x, y) be the resulting pair.

3. If (x, y) is fully labeled, then stop. Otherwise go to Step 2.

Theorem 18.2 also shows that every non-degenerate game has at least one equilib-

rium, and in fact that the number of equilibria in such games is odd.

Corollary 18.3. Every non-degenerate bimatrix game has an odd number of equi-

libria.

18.3 Complementary Pivoting

Adding slack variables r ∈ R
m and s ∈ R

n turns the best response conditions into

QTx + s = 1 and Py + r = 1, where x, y, r, s > 0. The pair (x, y) then is completely

labeled if and only if xTr = 0 and yTs = 0. Dropping a label corresponds to increasing or

decreasing one of the variables such that one of the constraints, the one corresponding to

the label being dropped, no longer holds with equality. When the variable is increased

or decreased as much as possible, a different constraint starts to hold with equality, and

the label corresponding to this constraint is picked up. This procedure can be carried

out through pivoting in a tableau, in a very similar way to pivoting in the simplex

method.

Consider for example the bimatrix game given by

P =









3 3

2 5

0 6









and Q =









3 2

2 6

3 1









,

Indexing r and s by M = {1, . . . ,m} and N = {m + 1, . . . ,m + n}, respectively, the

constraint QTx+ s = 1 can be written in tableau form as follows:

x1 x2 x3 s4 s5

3 2 3 1 0 1

2 6 1 0 1 1

Assume that label ℓ = 2 is dropped. In that case, want to add variable x2 to the

basis, by pivoting on the column that corresponds to this variable. The corresponding

pivot row is the one that minimizes the ratio between the entry in the last column and

the entry in the pivot column among those that have a positive entry in the latter.

Pivoting then works by dividing the pivot row by the entry in the pivot column in

order to make that entry equal to one, and adding a multiple of the pivot row to the

other rows in order to make all other entries in the pivot column equal to zero. We

obtain the following tableau:

7
3

0 8
3

1 −1
3

2
3

1
3

1 1
6

0 1
6

1
6

18.4 · The Complexity of Finding an Equilibrium Revisited 83

The second row now corresponds to variable x2 that has entered the basis. On the

other hand, variable s5 has left the basis, and 5 ∈ L(x) ∩ L(y). We thus want to turn

to the constraint Py+ r = 1 and drop the duplicate label 5. The initial tableau for this

constraint looks as follows:

y4 y5 r1 r2 r3

3 3 1 0 0 1

2 5 0 1 0 1

0 6 0 0 1 1

By pivoting on the second column, corresponding to y5, and on the third row, we pick

up label 3 and obtain the following tableau:

3 0 1 0 −1
2

1
2

2 0 0 1 −5
6

1
6

0 1 0 0 1
6

1
6

Pivoting one more time in each of the two polytopes, we drop label 3 to pick up label 4,

and drop label 4 to pick up label ℓ = 2 and obtain a fully labeled pair. The final tableaus

look as follows:
7
8

0 1 3
8

−1
8

1
4

3
16

1 0 − 3
48

3
16

1
8

0 0 1 −3
2

3
4

1
4

1 0 0 1
2

− 5
12

1
12

0 1 0 0 1
6

1
6

Reading off the values of x and y from the last column of each tableau and scaling them

appropriately yields the equilibrium ((0, 1/3, 2/3), (1/3, 2/3)).

18.4 The Complexity of Finding an Equilibrium Revisited

The Lemke-Howson algorithm creates a graph consisting of disjoint paths and cycles,

such that one endpoint of a path can be found very easily and any other endpoint

corresponds to an equilibrium. Clearly, there must be at least one other endpoint, and

this endpoint can be found by following the path from the initial one. The problem is

that the size of the graph, and thus potentially the length of the path in question, is

exponential. Indeed, there exist games for which the Lemke-Howson algorithm takes

an exponential number of steps until it terminates.

It turns out that there is a variety of other computational problems for which the

existence of a solution is guaranteed by the same type of argument. One of them is

the problem of finding a fixed point of a function satisfying the conditions of Brouwer’s

84 18 · Equilibrium Computation

theorem. These problems comprise the complexity class PPAD (for polynomial parity

argument, directed case), and the equilibrium problem is complete for this class under

an appropriate type of reduction.

Theorem 18.4 (Chen and Deng, 2006). Finding an equilibrium of a bimatrix game

is PPAD-complete.

The question whether equilibria can be found in polynomial time is thus equivalent

to the question whether PPAD = P, or whether there exists a general method that

avoids following paths in the graph and instead takes a shortcut to a solution. While

it could in principle be the case that PPAD = P even when P 6= NP, this is still

considered rather unlikely, one of the reasons being that many of the problems in

PPAD are notoriously hard.

