
16 Non-Cooperative Games

The second part of the course will be concerned with situations in which multiple self-

interested entities, or agents, operate in the same environment. Game theory provides

mathematical models, so-called games, for studying these types of situations. We focus

for now on non-cooperative games, where agents independently optimize different

objectives and outcomes must be self-enforcing. In a later lecture we also consider

cooperative games, which focus on conditions under which cooperation among subsets

of the agents can be sustained.

16.1 Games and Solutions

The central object of study in non-cooperative game theory are normal-form games.

A normal-form game is a tuple Γ = (N, (Ai)i∈N, (pi)i∈N) where N is a finite set

of players, and for each player i ∈ N, Ai is a non-empty and finite set of actions

available to i and pi : ("i∈NAi) → R is a function mapping each action profile, i.e.,

each combination of actions, to a real-valued payoff for i. Unless noted otherwise, the

results we consider are invariant under positive affine transformations, and payoffs and

their relative intensities will not be comparable across players.

More complicated games where players move sequentially and base their decisions

on their and others’ earlier moves can also be represented as normal-form games, by

encoding every possible course of action in the former by an action of the latter. It

should be noted, however, that this generally leads to a large increase in the number

of actions.

We henceforth restrict our attention to two-player games, but note that most con-

cepts and results extend in a straightforward way to games with more than two players.

A two-player game with m actions for player 1 and n actions for player 2 can be repre-

sented by a pair of matrices P,Q ∈ R
m×n, where pij and qij are the payoffs of players 1

and 2 when player 1 plays action i and player 2 plays action j. Two-player games are

therefore sometimes referred to as bimatrix games, and players 1 and 2 as the row and

column player, respectively.

Assume that players can choose their actions randomly and denote the set of possible

strategies of the two players by X and Y, respectively, i.e., X = {x ∈ R
m
>0 :

∑m
i=1 xi = 1}

and Y = {y ∈ R
n
>0 :

∑n
i=1 yi = 1}. A pure strategy is a strategy that chooses some

action with probability one, and we make no distinction between pure strategies and

the corresponding actions. A profile (x, y) ∈ X× Y of strategies induces a lottery over

outcomes, and we write p(x, y) = xTPy and q(x, y) = xTQy for the expected payoff of

the two players in this lottery.

Consider for example the well-known prisoner’s dilemma, involving two suspects
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S T

S (2, 2) (0, 3)

T (3, 0) (1, 1)

Figure 16.1: Representation of the prisoner’s dilemma as a normal-form game. The

matrices P and Q are displayed as a single matrix with entries (pij, qij), and players 1

and 2 respectively choose a row and a column of this matrix. Action S corresponds to

remaining silent, action T to testifying.

C D

C (2, 2) (1, 3)

D (3, 1) (0, 0)

Figure 16.2: The game of chicken, where players can chicken out or dare

accused of a crime who are being interrogated separately. If both remain silent, they

walk free after spending a few weeks in pretrial detention. If one of them testifies against

the other and the other remains silent, the former is released immediately while the

latter is sentenced to ten years in jail. If both suspects testify, each of them receives a

five-year sentence. A representation of this situation as a two-player normal-form game

is shown in Figure 16.1.

It is easy to see what the players in this game should do, because action T yields a

strictly larger payoff than action S for every action of the respective other player. More

generally, for two strategies x, x ′
∈ X of the row player, x is said to (strictly) dominate

x ′ if for every strategy y ∈ Y of the column player, p(x, y) > p(x ′, y). Dominance

for the column player is defined analogously. Strategy profile (T, T) in the prisoner’s

dilemma is what is called a dominant strategy equilibrium, a profile of strategies that

dominate every other strategy of the respective player. The source of the dilemma is

that outcome resulting from (T, T) is strictly worse for both players than the outcome

resulting from (S, S). More generally, an outcome that is weakly preferred to another

outcome by all players, and strictly preferred by at least one player is said to Pareto

dominate that outcome. An outcome that is Pareto dominated is clearly undesirable.

In the absence of dominant strategies, it is less obvious how players should proceed.

Consider for example the game of chicken illustrated in Figure 16.2. This game has

its origins in a situation where two cars drive towards each other on a collision course.

Unless one of the drivers yields, both may die in a crash. If one of them yields while

the other goes straight, however, the former will be called a “chicken,” or coward. It is

easily verified that this game does not have any dominant strategies.

The most cautious choice in a situation like this would be to ignore that the other

player is self-interested and choose a strategy that maximizes the payoff in the worst
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case, taken over all of the other player’s strategies. A strategy of this type is known

as a maximin strategy, and the payoff thus obtained as the player’s security level. It

is easy to see that it suffices to maximize the minimum payoff over all pure strategies

of the other player, i.e., to choose x such that minj∈{1,...,n}

∑m
i=1 xipij is as large as

possible. Maximization of this minimum can be achieved by maximizing a lower bound

that holds for all j = 1, . . . , n, so a maximin strategy and the security level for the row

player can be found as a solution of the following linear program with variables v ∈ R

and x ∈ R
m:

maximize v

subject to

m∑

i=1

xipij > v for j = 1, . . . , n

m∑

i=1

xi = 1

x > 0.

(16.1)

The unique maximin strategy in the game of chicken is to yield, for a security level

of 1. This also illustrates that a maximin strategy need not be optimal: assuming that

the other player yields, the best response is in fact to go straight. Formally, strategy

x ∈ X of the row player is a best response to strategy y ∈ Y of the column player if for

all x ′
∈ X, p(x, y) > p(x ′, y). The concept of a best response for the column player is

defined analogously.

16.2 The Minimax Theorem

In the special case when the interests of the two players are diametrically opposed,

maximin strategies turn out to be optimal in a very strong sense. A two-player game

is called zero-sum game if qij = −pij for all i = 1, . . . ,m and j = 1, . . . , n. A game

of this type is sometimes called a matrix game, because it can be represented just by

the matrix P containing the payoffs of the row player. Assuming invariance of utilities

under positive affine transformations, results for zero-sum games in fact apply to the

larger class of constant-sum games, in which the payoffs of the two players always sum

up to the same constant. For games with more than two players, these properties are

far less interesting, as one can always add an extra player who “absorbs” the payoffs of

the others.

Theorem 16.1 (von Neumann, 1928). Let P ∈ R
m×n, X = {x ∈ R

m
>0 :

∑m
i=1 xi = 1},

Y = {y ∈ R
n
>0 :

∑n
i=1 yi = 1}. Then,

max
x∈X

min
y∈Y

p(x, y) = min
y∈Y

max
x∈X

p(x, y).

Proof. Again consider the linear program (16.1), and recall that the optimal solution

of this linear program is equal to maxx∈X miny∈Y p(x, y). By adding a slack variable
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z ∈ R
n with z > 0 we obtain the Lagrangian

L(v, x, z,w, y) = v+

n∑

j=1

yj

(

m∑

i=1

xipij − zj − v
)

−w
(

m∑

i=1

xi − 1
)

=
(

1−

n∑

j=1

yj

)

v+

m∑

i=1

(

n∑

j=1

pijyj −w
)

xi −

n∑

j=1

yjzj +w,

where w ∈ R and y ∈ R
n. The Lagrangian has a finite maximum for v ∈ R and x ∈ R

m

with x > 0 if and only if
∑n

j=1 yj = 1,
∑n

j=1 pijyj 6 w for i = 1, . . . ,m, and y > 0.

The dual of (16.1) is therefore

minimize w

subject to

n∑

j=1

pijyj 6 w for i = 1, . . . ,m

n∑

j=1

yj = 1

y > 0.

It is easy to see that the optimal solution of the dual is miny∈Y maxx∈X p(x, y), and the

theorem follows from strong duality.

The number maxx∈X miny∈Y p(x, y) = miny∈Y maxx∈X p(x, y) is also called the

value of the matrix game with payoff matrix P.


