
15 Approximation Algorithms

An optimization problem can be represented by a function o : {0, 1}∗×{0, 1}∗ → R, where

o(x, y) is the objective value of output y ∈ {0, 1}∗ for input x ∈ {0, 1}∗. Restricting

our attention to minimization problems, a function f : {0, 1}∗ → {0, 1}∗ provides an

optimal solution to optimization problem o if for every input x ∈ {0, 1}∗, o(x, f(x)) =

min{o(x, y) : y ∈ {0, 1}∗}. When f is hard to compute, one might instead try to find a

solution that is as good as possible. The most common notion of quality in this context

is a worst-case multiplicative one: a function g : {0, 1}∗ → {0, 1}∗ will be called an α-

approximation for o, for some α > 1, if for all x ∈ P, o(x, g(x)) 6 αo(x, f(x)). In what

follows we will be interested in algorithms that compute function g in polynomial time,

and will refer to such an algorithm as a (polynomial-time) α-approximation algorithm

for optimization problem o.

While in principle α could depend on the size of the input, we will only consider

problems in the complexity class APX, which have an α-approximation algorithm for

some constant α. The class PTAS ⊆ APX, for polynomial-time approximation scheme,

contains problems that possess an (1+ǫ)-approximation algorithm for any ǫ > 0, where

the (polynomial) running time can depend on ǫ in an arbitrary way. APX-hardness is

established by a reduction corresponding to the smaller class PTAS, and implies that a

problem can be approximated in polynomial time up to some, but not every, constant

factor.

15.1 The Max-Cut Problem

Given an undirected graph G = (V, E), the max-cut problem asks for a cut of G that

maximizes the number of edges crossing from one side to the other, i.e., a set S ⊆ V

such that |E∩(S×(V \S))| is as large as possible. The max-cut problem is NP-complete

and thus cannot be solved exactly in polynomial time unless P = NP.

On the other hand, a simple greedy algorithm provides a 1/2-approximation. First

of all, observe that every graph has a cut of size at least |E|/2. For this, consider a

random cut S ⊆ V such that for each v ∈ V, v ∈ S independently with probability 1/2.

Then, the number of edges across the cut is a random variable Q =
∑

{i,j}∈E I[Qi 6= Qj],

where I denotes the indicator function on binary events and for each i ∈ V, Qi is a

Bernoulli random variable with parameter 1/2. Thus,

E [Q] = E

[∑

{i,j}∈E

I[Qi 6= Qj]
]

=
∑

{i,j}∈E

E
[

I[Qi 6= Qj]
]

=
∑

{i,j}∈E

P[Qi 6= Qj]
]

= |E|/2,

where the second equality holds by linearity of expectation, so there must exist a cut of

size at least |E|/2. This probabilistic argument can be de-randomized efficiently using

the method of conditional probabilities. To this end, each vertex is considered in turn,

67

68 15 · Approximation Algorithms

replacing the random decision whether the vertex is included in S by a deterministic

one. The goal is to ensure that the conditional probability of obtaining a cut of size at

least |E|/2, assuming that the remaining decisions are taken randomly, remains positive.

While the conditional probability itself may not be easy to determine, it suffices in each

step to maximize the conditional expectation of the random variable Q, because the

maximum is guaranteed to be at least |E|/2. Let U ⊆ V be the set of vertices for which

a decision has already been made, and let S ⊆ U be the resulting cut. The conditional

expectation of Q given this choice is

∣

∣

∣
E ∩

(

S× (U \ S)
)

∣

∣

∣
+

1

2

∣

∣

∣
E ∩

(

V × (V \U)
)

∣

∣

∣
,

and it can be maximized by maximizing the first term. Since the size of a cut can be

at most |E|, a greedy algorithm that considers each vertex in turn and adds it to either

S or U \ S in order to maximize the first term provides a 1/2-approximation.

A better approximation can be obtained using semidefinite programming.

Theorem 15.1 (Goemans and Williamson, 1995). There exists a 0.87856-approxi-

mation algorithm for the max-cut problem.

Proof sketch. The max-cut problem can be written as the following integer quadratic

program:

maximize
∑

{i,j}∈E

1− xixj

2

subject to xi ∈ {−1, 1} for all i ∈ V.

(15.1)

The intuition behind the objective is that xi = 1 if i ∈ S, and edge {i, j} ∈ E contributes

1 to the sum if and only if |{i, j} ∩ S| = 1.

Since the max-cut problem is NP-complete, an optimal solution of (15.1) cannot be

found in polynomial time unless P = NP. Note, however, that

∑

{i,j}∈E

1− xixj

2
=

|E|

2
−

1

4
xTCx =

|E|

2
−

1

4
〈C, xxT 〉,

where C ∈ {0, 1}|V |×|V | with Cij = 1 if {i, j} ∈ E and Cij = 0 otherwise. Moreover, xxT

is a positive semidefinite matrix. We can thus relax the constraints, and obtain an

upper bound on the optimal solution of (15.1), by replacing xxT by a general positive

semidefinite matrix X with Xii = 1 for all i ∈ V. We arrive at the following optimization

problem, which is an SDP:

maximize
|E|

2
−

1

4
〈C,X〉

subject to Xii = 1 for all i ∈ V

X � 0.

Since the constraints have been relaxed, an optimal solution of this SDP need not be

feasible for (15.1). Intuitively, a feasible solution of (15.1) corresponds to a set of |V |

15.2 · Hardness of Approximation 69

unit vectors in R
1, while a feasible solution of the relaxed problem corresponds to a

set of |V | unit vectors in R
n. The latter can be “rounded” to the former, however, by

randomly picking a hyperplane in R
n that passes through the origin and mapping each

unit vector in R
n to −1 or 1 depending on its relative position to this hyperplane.

Surprisingly, this changes the objective value by a factor of at most 0.87856, and thus

yields a feasible solution of (15.1) that is within the same factor of an optimal one. All

the necessary steps can be carried out in polynomial time, and the method can also be

de-randomized without affecting the approximation factor.

15.2 Hardness of Approximation

An obvious question is whether the bound of Theorem 15.1 is optimal, or whether

it can be improved further. NP-hardness of a problem establishes that it is hard to

distinguish instances with a certain optimum, like the size of a maximum cut in the case

of the max-cut problem, from instances whose optimum is smaller or larger. A possible

approach for showing that a problem does not admit an α-approximation algorithm

for some α < 1 would be to create a gap between positive and negative instances, and

show that it is hard to distinguish instances with a large optimum from instances with

a small optimum. The problem with this approach is that our characterization of the

class NP is very fragile. Cook’s proof of Theorem 5.1 uses a class of Boolean formulae

to encode the computations of a Turing machine, which in turn are very sensitive to

small changes. And indeed, if one were to inspect the formulae more closely, one would

see that it is very easy for each of them to find an assignment that satisfies every clause

except one. What is needed to show hardness of approximation is a more robust model

of NP. Such a model is provided by probabilistically checkable proofs (PCPs).

PCPs can be obtained using a probabilistic modification of the definition of NP. As

before, we are given access to an input x and to a certificate y which acts as proof that

x satisfies a certain property. Instead of a deterministic Turing machine as in the case

of NP, however, we want to use a probabilistic verifier V to check the proof. The fact

that V is probabilistic can be modeled by assuming that besides x and y it takes an

additional input r, which is a string of random bits, and then performs a deterministic

computation based on x, y, and r. For fixed x and y, we say that V accepts x and y

with probability p if it accepts with this probability for a uniformly distributed random

string r. Note that so far we have only made the verifier more powerful, by giving it

access to a random string. To be able to say something interesting about its relationship

to the class NP, we therefore have to restrict what it can do with its inputs. We call

a verifier V (r(n), q(n))-restricted, for two functions r : Z → Z and q : Z → Z, if for

every input of length n and every certificate y, it queries at most q(n) bits of y and

uses at most r(n) random bits. A problem L then is in the class PCP[r(n), q(n)] if

there exists an (r(n), q(n))-restricted verifier with the following properties: if x ∈ L,

then there exists a certificate y such that V accepts x and y with probability 1; if x /∈ L,

70 15 · Approximation Algorithms

then for every certificate y, V accepts x and y with probability at most 1/2.

It is easy to see, for example, that PCP[O(logn), O(logn)] ⊆ NP: a verifier that

uses a logarithmic number of random bits can easily be de-randomized by considering

all possible random strings of logarithmic length. The PCP theorem states a surprising

converse: every problem in NP has a probabilistic verifier that uses a logarithmic

number of random bits and examines a constant number of bits of the certificate.

Theorem 15.2 (Arora et al., 1998). NP = PCP[O(logn), O(1)]

The PCP theorem can be used to show that max-3SAT, the problem of computing

the maximum number of simultaneously satisfiable clauses of an instance of SAT with

three literals per clause, is APX-hard.

Theorem 15.3 (Arora et al., 1998). There exists ǫ > 0 such that there is no (1−ǫ)-

approximation algorithm for max-3SAT unless P = NP.

Proof sketch. By the PCP Theorem, any NP-complete problem has a (c logn, q)-

restricted verifier V for some constants c and q. For a particular random string r,

V chooses q positions ir1, . . . , i
r
q of the certificate y and a function frx : {0, 1}q → {0, 1},

and accepts if and only if frx(yir1
, . . . , yirq

) = 1.

The proof works by constructing, for each x ∈ L, a Boolean formula φx with variables

v1, . . . , v|y| and clauses representing the constraint frx(vir1, . . . , virq) = 1 for every possible

random string r. Formula φx has a number m of clauses that is polynomial in |x|, and

the following can be shown to hold for ǫ = 1
2

1
q2q :

if x ∈ L, then φx is satisfiable;

if x /∈ L, then no assignment satisfies more than (1− ǫ)m clauses of φx.

By distinguishing between the case where the number of satisfiable clauses is m and

the case where the number of satisfiable clauses is (1 − ǫ)m, we can thus distinguish

between the cases x ∈ L and x /∈ L, thereby solving an NP-complete problem. The

existence of a polynomial-time algorithm for the former problem would thus imply

that P = NP.

Since there is a PTAS reduction from max-3SAT to max-cut, the latter is APX-

hard as well. Improved PCP characterizations of NP have lead to better bounds for

various problems, which in some cases are tight: max-3SAT, for example, is NP-hard

to approximate to a factor of 7/8+ǫ for any ǫ > 0, and a factor of 7/8 can be achieved

easily by choosing a value for each variable uniformly at random. For max-cut the

same techniques yield an upper bound of 16/17 + ǫ, which does not match the lower

bound of Theorem 15.1. The apparent difficulty in improving the upper bound seems

to be related to the fact that constraints in the max-cut problem involve two variables,

compared to three in the case of max-3SAT, and that the known PCP characterizations

corresponding to the two-variable case are weaker. The unique games conjecture

postulates the existence of a PCP construction for the two-variable case that would

imply an upper bound for max-cut that matches the bound of Theorem 15.1.

