
14 Heuristic Algorithms

For all we know, a complete exploration of the search tree, either explicitly or implic-

itly, might be required to guarantee that an optimal solution is found. When this is

impractical, heuristic methods can be used to find a satisfactory, but possibly sub-

optimal, solution. Heuristics sacrifice solution quality in order to gain computational

performance or conceptual simplicity.

14.1 Basic Heuristics for the TSP

A straightforward way of constructing a TSP tour is by starting from an arbitrary

vertex, traversing a minimum cost edge to an unvisited vertex until all vertices have

been visited, and returning to the initial vertex to complete the tour. This greedy al-

gorithm is known as the nearest neighbor heuristic and has an asymptotic complexity

of O(n2), where n is the number of vertices. Intuitively it will work well most of the

time, but will sometimes have to add an edge with very high cost because all vertices

connected to the current one by an edge with low cost have already been visited.

Instead of adding a minimum cost edge among those adjacent to the current vertex,

we could add an edge that has minimum cost overall, while ensuring that the resulting

set of edges will form a tour. This corresponds to ordering the edges by increasing cost

and adding them to the tour in that order, skipping edges that would lead to a vertex

with degree more than two or a cycle of length less than n. This so-called savings

heuristic has complexity O(n2 logn), which is the complexity of sorting a set with n2

elements.

Another intuitive approach is to start with a subtour, i.e., a tour on a subset of

the set of vertices, and extending it with additional vertices. Heuristics following this

general approach are known as insertion heuristics. A particular heuristics of this type

has to specify a way of choosing (i) the initial subtour, (ii) the vertex to be inserted,

and (iii) the way the new vertex is inserted into the subtour. Obvious choices for the

initial subtour are cycles of length two or three. The cheapest insertion heuristic then

chooses a vertex, and a place to insert the vertex into the subtour, in order to minimize

the overall length of the resulting subtour. The farthest insertion heuristic, on the

other hand, inserts a vertex whose minimum distance to any vertex in the current

subtour is maximal. The idea behind the latter strategy is to fix the overall layout of

the tour as soon as possible.

Of course, optimization does not need to end once we have constructed a tour.

Rather, we could try to make a small modification to the tour in order to reduce its

cost, and repeat this procedure as long as we can find such an improving modification.

An algorithm that follows this general procedure is known as local search algorithm,

63



64 14 · Heuristic Algorithms

because it makes local modifications to a solution to obtain a new solution with a better

objective value. A tour created using the nearest neighbor heuristic, for example, will

usually contain a few edges with very high cost, so we would be interested in local

modifications that eliminate these edges from the tour.

14.2 Local Search

Assume that we want to

minimize c(x)

subject to x ∈ X,

and that for any feasible solution x ∈ X, the cost c(x) and a neighborhood N(x) ⊆ X

can be computed efficiently. Local search then proceeds as follows:

1. Find an initial feasible solution x ∈ X.

2. Find a solution y ∈ N(x) such that c(y) < c(x).

3. If there is no such solution, then stop and return x; otherwise set the current

solution x to y and return to Step 2.

The solution returned by this procedure is a local optimum, in the sense that its cost

is no larger than that of any solution in its neighborhood. It need not be globally

optimal, as there might be a solution outside the neighborhood with strictly smaller

cost.

Any of the basic tour construction heuristics can be used to find an initial feasible

solution in Step 1, and the whole procedure can also be run several times with different

initial solutions. Step 2 requires a choice if more than one neighboring solution provides

a decrease in cost. Natural options include the first such solution to be found, or the

solution providing the largest decrease.

Most importantly, however, any implementation of a local search method must

specify the neighborhood function N. A natural neighborhood for the TSP is the k-

OPT neighborhood. Here, the neighbors of a given tour are obtained by removing any

set of k edges, for some k > 2, and reconnecting the k paths thus obtained to a tour

by adding k edges. Viewing tours as permutations, k-OPT cuts a permutation into k

segments and reverses and swaps these segments in a arbitrary way. An illustration for

k = 2 and k = 3 is shown in Figure 14.1.

The choice of k provides a tradeoff between solution quality and speed: the k-OPT

neighborhood of a solution contains its ℓ-OPT neighborhood if k > ℓ, so the quality of

the solution increases with k; the same is also true for the complexity of the method,

because the k-OPT neighborhood of a tour of length n has size O(nk) and computing

the change in cost between two neighboring tours requires O(k) operations. Empirical

evidence suggests that 3-OPT often performs better than 2-OPT, while there is little

gain in taking k > 3.



14.3 · Simulated Annealing 65

4 3

2

16

5

4 3

2

16

5

4 3

2

16

5

Figure 14.1: A TSP tour (left) and neighboring tours under the 2-OPT (middle) and

3-OPT neighborhoods (right). The tours respectively correspond to the permutations

123456, 143256, and 126534.

Note that the simplex method for linear programming can also be viewed as a local

search algorithm, where two basic feasible solutions are neighbors if their bases differ

by exactly one element. We have seen that in this case every local optimum is also a

global optimum, so that the simplex method yields a globally optimal solution.

In general, however, local search might get stuck in a local optimum and fail to find

a global one. Consider for example the TSP instance given by the cost matrix

A =



















0 1 0 4 4

4 0 1 0 4

4 4 0 1 0

0 4 4 0 1

1 0 4 4 0



















.

There are 4! = 24 TSP tours, and

c(12345) = 5, c(13245) = 6, c(14235) = 10, c(15234) = 6,

c(12354) = 6, c(13254) = 12, c(14253) = 20, c(15243) = 12,

c(12435) = 6, c(13425) = 10, c(14325) = 17, c(15324) = 12,

c(12453) = 10, c(13452) = 6, c(14352) = 9, c(15342) = 17,

c(12534) = 10, c(13524) = 0, c(14523) = 10, c(15423) = 17,

c(12543) = 17, c(13542) = 12, c(14532) = 17, c(15432) = 20.

It is easily verified that the tour 12345 is a local optimum under the 2-OPT neighbor-

hood, while the global optimum is the tour 13524.

14.3 Simulated Annealing

To prevent local search methods from getting stuck in a local optimum, one could allow

transitions to a neighbor even if it has higher cost, with the hope that solutions with

lower cost will be reachable from there. Simulated annealing implements this idea



66 14 · Heuristic Algorithms

using an analogy to the process of annealing in metallurgy, in which a metal is heated

and then cooled gradually in order to bring it to a low-energy state that comes with

better physical properties.

In each iteration, simulated annealing considers a neighbor y of the current solution

x and moves to the new solution with probability

pxy = min

(

1, exp

(

−
c(y) − c(x)

T

))

,

where T > 0 is a parameter, the temperature, that can vary over time. With the

remaining probability the solution stays the same. When T is large, the method allows

transitions even when c(y) exceeds c(x) by a certain amount. As T approaches zero, so

does the probability of moving to a solution with larger cost.

It can further be shown that with a suitable cooling schedule that decreases T

sufficiently slowly from iteration to iteration, the probability of reaching an optimal

solution after t iterations tends to 1 as t tends to infinity. To motivate this claim,

consider the special case where every solution has k neighbors and a neighbor of the

current solution is chosen uniformly at random. The behavior of the algorithm can

then be modeled as a Markov chain with transition probabilities

Pxy =






pxy/k if y ∈ N(x),

1−
∑

z∈N(x) pxz/k if y = x,

0 otherwise.

This Markov chain has a unique stationary distribution π, i.e., a distribution over X

such that for all x ∈ X, πx =
∑

y∈X πyPyx. In addition it can be shown that π must

satisfy the detailed balance condition that πxPxy = πyPyx for every pair of solutions

x, y ∈ X. In fact, detailed balance is not only necessary but also sufficient for stationary,

because it implies that
∑

x∈X πxPxy =
∑

x∈X πyPyx = πy

∑
x∈X Pyx = πy. It is not hard

to show that π with

πx =
e−c(x)/T

∑
z∈X e−c(z)/T

for every x ∈ X is a distribution and satisfies detailed balance, and must therefore be

the stationary distribution. Letting Y ⊆ X be the set of solutions with minimum cost

and πY =
∑

x∈Y πx, we conclude that πY/(1− πY) → ∞ as T → 0.

The idea now is to decrease T slowly enough for the Markov chain to be able to

reach its stationary distribution. A common cooling schedule is to set T = c/ log t in

iteration t, for some constant c.


