
13 Branch and Bound

Lectures 13 through 15 will be concerned with three conceptually different approaches

for optimization problems that are computationally hard: an exact method, which finds

optimal solutions but has an exponential worst-case running time; heuristic methods,

which need not offer guarantees regarding running time or solution quality, but often

provide a good tradeoff between the two in practice; and approximation algorithms,

which run in polynomial time and return solutions with a guaranteed bound on the

degree of suboptimality.

Branch and bound is a general method for solving optimization problems, especially

in the context of non-convex and combinatorial optimization. Suppose for concreteness

that we want to
minimize f(x)

subject to x ∈ X

for some feasible region X. Branch and bound uses an algorithmic technique known

as divide and conquer, which splits a problem into smaller and smaller subproblems

until they become easy to solve. For the above minimization problem, it works by

splitting X into k > 2 sets X1, . . . , Xk such that
⋃

i=1,...,k Xi = X. This step is called

branching, since its recursive application defines a tree structure, the so-called search

tree, whose vertices are the subsets of X. Once optimal solutions have been found for

the subsets X1, . . . , Xk, it is easy to obtain a solution for X, because minx∈X f(x) =

mini=1,...,k minx∈Xi
f(x).

Of course, branching as such doesn’t make the problem any easier to solve, and for

an NP-hard problem there might be no way around exploring an exponential number

of vertices of the search tree. In practice we might hope, however, that we will be

able to prune large parts of the tree that cannot contain an optimal solution. The

procedure that allows us to do this is known as bounding. It tries to find lower and

upper bounds on the optimal solution, i.e., functions ℓ and u such that for all X ′ ⊆ X,

ℓ(X ′) 6 minx∈X ′ f(x) 6 u(X ′). Then, if ℓ(Y) > u(Z) for two sets Y, Z ⊆ X, Y can be

discarded. A particular situations where this happens is when Y does not contain any

feasible solutions, and we assume that ℓ(Y) = ∞ by convention in this case.

For the upper bound, it suffices to store the value U = f(x) of the best feasible

solution x ∈ X found so far. A good way to obtain a lower bound for a set Y ⊆ X

is by letting ℓ(Y) = minx∈Y ′ f(x) for some set Y ′ ⊇ Y for which minimization of f is

computationally tractable. It is easy to see that this indeed provides a lower bound.

Moreover, if minimization over Y ′ yields a solution x ∈ Y, then this solution is optimal

for Y. The branch and bound method stores U and a list L of active sets Y ⊆ X for

which no optimal solution has been found so far, corresponding to vertices in the search

tree that still need to be explored, along with their associated lower bounds. It then

proceeds as follows:

59

60 13 · Branch and Bound

1. Initialize: set U = ∞, L = {X}.

2. Branch: pick a set Y ∈ L, remove it from L, and split it into k > 2 sets Y1, . . . , Yk.

3. Bound: for i = 1, . . . , k, compute ℓ(Yi). If this yields x ∈ X such that ℓ(Yi) =

f(x) < U, then set U to f(x). If ℓ(Yi) < U, but no x ∈ X as above is found, then

add Yi to L.

4. If L = ∅, then stop. The optimum objective value is U. Otherwise go to Step 2.

To apply the method in a concrete setting, we need to specify how a set Y to branch

on is chosen and how it is split into smaller sets, and how lower bounds are computed.

These decisions are of course critical for the practical performance of the procedure.

13.1 Dakin’s Method

Dakin’s method applies the branch and bound idea to integer programs. An obvious

way to obtain lower bounds in this case is by solving the LP relaxation, i.e., the linear

program obtained by dropping the integrality constraints.

Assume that we are branching on a set Y ∈ L, and that the LP relaxation cor-

responding to Y has optimal solution y. If y ∈ Y, then y is optimal for Y. Oth-

erwise, there is some i such that yi is not integral, and we can split Y into two sets

Y1 = {x ∈ Y : xi 6 ⌊yi⌋} and Y2 = {x ∈ Y : xi > ⌈yi⌉}. Note that Y1∪Y2 = Y, as desired.

Moreover, this branching rule forces the solution away from its current value y /∈ Y.

While this does not guarantee that yi becomes integral in the next step, and may even

force another variable away from its integral value, it works remarkably well in practice.

It is worth noting that we do not have to start from scratch when solving the LP re-

laxation for Yi: it was obtained by adding a constraint to an LP that is already solved,

and the dual simplex method often finds a solution satisfying the additional constraint

very quickly. In order to minimize the number of solved LPs that have to be stored to

implement this approach, it makes sense to branch on a set obtained in the previous

step whenever possible, i.e., to traverse the search tree in a depth-first manner.

Example 13.1. Assume that we want to

minimize x1 − 2x2

subject to −4x1 + 6x2 6 9

x1 + x2 6 4

x1 > 0, x2 > 0

x1, x2 ∈ Z.

An illustration is shown in Figure 13.1. Let f(x) = x1 − 2x2, and X = Z2 ∩ X̃ where

X̃ = { x ∈ R2 : −4x1 + 6x2 6 9, x1 + x2 6 4, x1 > 0, x2 > 0 }.

We start with U = ∞ and L = {X}. By solving the LP relaxation for X, we find that

ℓ(X) = minx∈X̃ f(x) = f(x0) = −7/2 for x0 = (3/2, 5/2). Set X is the only candidate for

13.2 · The Traveling Salesman Problem 61

x1

x2

0 1

1

2

2

3

3

x1 − 2x2 = −2x0

x2 >
⌈

x02
⌉

x2 6
⌊

x02
⌋

x1

x1 6
⌊

x11
⌋

x1 >
⌈

x11
⌉

x3

x4

Figure 13.1: Illustration of Dakin’s method, applied to the IP of Example 13.1

branching and can for example be split into X1 = Z2 ∩ X̃1 and X2 = Z2 ∩ X̃2, where

X̃1 = {x ∈ X̃ : x2 6 2} and X̃2 = {x ∈ X̃ : x2 > 3}.

We then bound X1 and X2 by solving the corresponding LP relaxations, and obtain

ℓ(X1) = minx∈X̃1 f(x) = f(x1) = −13/4 for x1 = (3/4, 2), and X̃2 = ∅. We thus set

L = {X1}. We now branch by splitting X1 into X3 = Z2 ∩ X̃3 and X4 = Z2 ∩ X̃4, where

X̃3 = {x ∈ X̃1 : x1 6 0} and X̃4 = {x ∈ X̃1 : x1 > 1},

and bounding X3 and X4 to obtain ℓ(X3) = minx∈X̃3 f(x) = f(x3) = −3 for x3 = (0, 3/2)

and ℓ(X4) = minx∈X̃4 f(x) = f(x4) = −3 for x4 = (1, 2). Since x4 ∈ X, we can set

U = f(x4) = −3. Then, ℓ(X3) > U, so we can discard X3 and are done.

13.2 The Traveling Salesman Problem

Recall that in the traveling salesman problem (TSP) we are given a matrix A ∈ Nn×n

and are looking for a permutation σ ∈ Sn that minimizes aσ(n)σ(1) +
∑n−1

i=1 aσ(i)σ(i+1).

Matrix entry aij can be interpreted as a cost associated with edge (i, j) ∈ E of a graph

G = (V, E), and we are then trying to find a tour, i.e., a cycle in G that visits every

vertex exactly once, of minimum overall cost. We have seen that the TSP is NP-hard,

but we could try to encode it as an integer program and solve it using branch and

bound. Consider variables

xij ∈ {0, 1} for i, j = 1, . . . , n, (13.1)

encoding whether the tour traverses edge (i, j). There are various ways to ensure that

these variables indeed encode a tour, i.e., that xij = 1 if and only if σ(n) = i and

62 13 · Branch and Bound

σ(1) = j, or σ(k) = i and σ(k+ 1) = j for some k ∈ {1, . . . , n− 1}. Of course, there has

to be exactly one edge entering and one edge leaving every vertex, i.e.,
n∑

i=1

xij = 1 for j = 1, . . . , n,

n∑

j=1

xij = 1 for i = 1, . . . , n.

(13.2)

The so-called cut-set formulation additionally requires that there are at least two edges

across every cut S ⊆ V, whereas the subtour elimination formulation makes sure that no

set S (V contains more than |S|−1 edges. The problem with both of these formulations

is of course that they require an exponential number of constraints, one for each set

S ⊆ V.

A polynomial formulation can be obtained by introducing, for i = 1, . . . , n, an

auxiliary variable ti ∈ {0, . . . , n − 1} indicating the position of vertex i in the tour. If

xij = 1, it holds that tj = ti + 1. If xij = 0, on the other hand, then tj > ti − (n − 1).

This can be written more succinctly as

tj > ti + 1− n(1− xij) for all i > 1, j > 2, i 6= j. (13.3)

Since values satisfying (13.3) exist for every valid tour, adding this constraint does not

affect solutions corresponding to valid tours. On the other hand, it suffices to rule

out subtours, i.e., cycles of length less than |V |. To see this, consider a solution that

satisfies (13.3), and assume for contradiction that it consists of two or more subtours.

Summing the constraints over the edges in a subtour that does not contain vertex 1

leads to the condition that 0 > k, where k is the number of edges in the subtour, a

contradiction.

A minimum cost tour can thus be found by minimizing
∑

i,j xijaij subject to (13.1),

(13.2), and (13.3). This integer program has a polynomial number of variables and

constraints and can be solved using Dakin’s method, which bounds the optimum by

relaxing the integrality constraints (13.1). There are, however, other relaxations that

are specific to the TSP and can provide better bounds.

Observe, for example, that the integer program obtained by relaxing the subtour

elimination constraints (13.3) is an instance of the assignment problem (9.1). It can be

solved efficiently in practice using the network simplex method, which yields a solution

consisting of one or more subtours. If there is more than one subtour, then taking the

set {e1, . . . , ek} ⊆ E of edges of one or more of the subtours and disallowing each of them

in turn splits the feasible set Y into Y1, . . . , Yk, where Yi = {x ∈ Y : xuv = 0, ei = (u, v)}.

Clearly, the optimal TSP tour cannot contain all edges of a subtour, so it must be

contained in one of the sets Yi. Moreover, adding a constraint of the form xij = 0 is

equivalent to setting the corresponding cost aij to a large enough value, so the new

problem will still be an instance of the assignment problem. Note that none of the sets

Yi contains the optimal solution of the current relaxation, so ℓ(Yi) > ℓ(Y) for all i, and

ℓ(Yi) > ℓ(Y) if the optimal solution of the current relaxation was unique.

