
12 Semidefinite Programming

Again consider the standard form (2.2) of a linear program,

min { cTx : Ax = b, x > 0 }.

The goal in linear programming is to optimize a linear objective over the intersection of

the non-negative orthant R
n
+
= {x ∈ R

n : x > 0} with an affine space, described by the

linear equation Ax = b. The non-negative orthant is a convex cone, i.e., a set C ⊆ R
n

for which αx+ βy ∈ C for all α,β ∈ R with α,β > 0 and all x, y ∈ C.

Semidefinite programming replaces the non-negative orthant with a different con-

vex cone. Let S
n = {X ∈ R

n×n : XT = X} be the set of all symmetric n × n matrices,

and call A ∈ S
n positive semidefinite, denoted A � 0, if zTAz > 0 for all z ∈ R

n. Let

S
n
+
= {A ∈ S

n : A � 0}. It is easy to see that Sn
+

is a convex cone, henceforth called the

convex cone of positive semidefinite matrices, or simply the positive semidefinite cone.

A linear function of X ∈ S
n can be expressed in terms of the inner product

〈C,X〉 = tr(CX) =

n∑

i=1

n∑

j=1

cijxij

for some C ∈ S
n. A semidefinite program (SDP) therefore has the form

minimize 〈C,X〉
subject to 〈Ai, X〉 = bi for all i = 1, . . . ,m

X � 0,

(12.1)

where C,A1, . . . , Am ∈ S
n and b ∈ R

m.

An equivalent formulation, which is sometimes more convenient, is to

minimize cTx

subject to B0 + x1B1 + · · ·+ xkBk � 0,

where B0, B1, . . . , Bk ∈ S
n and c ∈ R

k. A problem of this type can be brought into the

form of (12.1) by setting X = B0 + x1B1 + · · · + xkBk. The entries of X then depend

in a linear way on the variables x1, . . . , xk, which leads to linear relationships between

the former when the latter are eliminated.

To see that linear programming is a special case of semidefinite programming, ob-

serve that v > 0 for a vector v ∈ R
n if and only if

diag(v) =


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


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0 v2
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is positive semidefinite. The linear program (2.2) can thus be written as

minimize 〈diag(c),diag(x)〉
subject to 〈diag(ai),diag(x)〉 = bi for all i = 1, . . . ,m

diag(x) � 0,

where ai = (ai1, . . . , ain)
T , for i = 1, . . . ,m, is a vector consisting of the elements of

the ith row of A. This problem can be brought into the form of (12.1) by replacing the

diagonal matrix diag(x) by a general symmetric matrix X, and adding linear constraints

to ensure that the off-diagonal entries of X are zero.

SDPs can be viewed as having an infinite number of linear constraints on X, namely,

zTXz > 0 for all z ∈ R
n. As a consequence, there are optimization problems that can

be written as an SDP, but not as an LP.

There are good reasons to study semidefinite programming. It includes important

classes of convex optimization problems as special cases, for example linear program-

ming and quadratically constrained quadratic programming. In a later lecture we will

see that it can be used to obtain approximate solutions to hard combinatorial and non-

convex optimization problems. Moreover, SDPs can often be solved very efficiently,

both in theory and in practice.

12.1 SDP Duality

The Lagrangian of (12.1) can be written as

L(X, λ, Z) = 〈C,X〉−
m∑

i=1

λi(〈Ai, X〉− bi) − 〈Z,X〉,

where the last term takes account of the constraint X � 0. This works because for any

Y ∈ S
n, maxZ�0 −〈Z, Y〉 is finite if and only if Y � 0, so (12.1) is equivalent to the

unconstrained problem minX∈Sn maxλ∈Rm,Z�0 L(X, λ, Z). Then,

g(λ, Z) = inf
X∈Sn

L(X, λ, Z) =

{
λTb if C−

∑m
i=1 λiAi − Z = 0,

−∞ otherwise.

By eliminating Z, we obtain the following dual of (12.1), which is itself an SDP:

maximize λTb

subject to C−
∑m

i=1 λiAi � 0.

Primal and dual SDP satisfy weak duality, because

〈C,X〉− λTb = 〈C,X〉−
m∑

i=1

λibi = 〈C,X〉−
m∑

i=1

λi〈Ai, X〉 = 〈C−

m∑

i=1

λiAi, X〉 > 0,
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where the last inequality holds because both C−
∑m

i=1 λiAi and X are positive semidef-

inite. If the duality gap 〈C,X〉 − λTb is zero, then X and λ are optimal solutions of

the primal and dual, respectively. Unlike in the case of LPs, strong duality might not

hold. Consider for example the SDP to

minimize x1

subject to

(

x1 1

1 x2

)

� 0.

The positive semidefiniteness condition is equivalent to the constraints x1 > 0, x2 > 0,

and x1x2 > 1, which in turn are satisfied if and only if x1 > 0 and x2 > 1/x1. The

SDP thus has an optimum of 0, but the optimum is not attained. There exist SDPs

whose minimum duality gap is strictly positive or even infinite. Strong duality does

hold, on the other hand, if both primal and dual have a feasible solution that is positive

definite, i.e., lies in the interior of the positive semidefinite cone.

While no algorithm is known for solving SDPs in a finite number of steps, they can

be solved approximately in polynomial time, for example by a variant of the ellipsoid

method. We will now briefly discuss a different class of methods that run in polynomial

time in the worst case and are also very efficient in practice.

12.2 Primal-Dual Interior-Point Methods

We discuss the method for the primal and dual linear programs

min { cTx : Ax = b, x > 0 } and max {bTλ : ATλ+ z = c, z > 0 }.

The reason why these optimization problems cannot be solved using Newton’s method

are the inequality constraints x > 0 and z > 0. The idea behind barrier methods is to

drop the inequality constraints and instead augment the objective by a so-called barrier

function that penalizes solutions close to the boundary of, or outside, the feasible set.

Primal-dual interior-point methods apply this idea to both the primal and the dual

and try to solve them simultaneously. In the case of the above linear programs we add

a logarithmic barrier and obtain the modified primal and dual problems

min { cTx− µ

n∑

i=1

log xi : Ax = b } and max {bTλ+ µ

m∑

j=1

log zj : A
Tλ+ z = c },

for a parameter µ > 0. The constraint X � 0 in an SDP can be handled analogously

using the barrier

−µ

n∑

i=1

log(κi(X)) = −µ log

(

n∏

i=1

κi(X)

)

= −µ log(det(X)),

where κi is the ith eigenvalue of X. This works because X � 0 if and only if κi > 0 for

all i = 1, . . . , n.
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By considering the Lagrangian, it can be shown that (x, λ, z) is optimal for the

modified primal and dual problems if

Ax = b, x > 0,

ATλ+ z = c, z > 0,

xizi = µ for all i = 1, . . . , n.

(12.2)

Note that for µ = 0, the last constraint is identical to the usual complementary slackness

condition, which ensures optimality for the original problem.

A solution to the modified problems can be found using Newton’s method, and

provides a better and better approximation to a solution of the original problems as µ

tends to zero. When µ is small, however, the modified objective is hard to optimize

using Newton’s method because its second-order partial derivatives vary rapidly near

the boundary of the feasible set. Primal-dual interior-point methods circumvent this

problem by solving a sequence of problems, decreasing µ in each iteration and start-

ing each Newton minimization at the solution obtained in the previous round. The

procedure terminates when µ < ǫ for some desired accuracy ǫ > 0. Suppose that we

have found a solution (x, λ, z) that satisfies (12.2) for a given value of µ. If µ < ǫ, we

stop. Otherwise we update µ, for example to (xTz)/(2n), and use Newton’s method

to compute a solution (x, λ, z)k + (δx, δλ, δz) that satisfied (12.2) for the new value of

µ. Then we proceed with the next round. It can be shown that for an appropriate

choice of the parameters, the method decreases the duality gap from ǫ0 to ǫ in time

O(
√
n log(ǫ0/ǫ)).


