
11 Shortest Paths and Minimum Spanning Trees

Consider a network (V, E) with associated costs cij for each edge (i, j) ∈ E, corre-

sponding for example to the physical distance between vertices i and j or the cost of

establishing a link between them. The single-pair shortest path problem then asks

for a (directed) path from a given source s ∈ V to a given destination t ∈ V that has

minimum cost, where the cost of a path is the sum of costs of its edges. The shortest

path problem has numerous applications in transportation and communications, and

also occurs frequently as a subproblem of more complex problems. It is a special case

of the minimum cost flow problem, but can be solved more efficiently using specialized

algorithms.

11.1 The Bellman Equations

It will be instructive to consider a destination t ∈ V and simultaneously look for

shortest paths from any vertex i ∈ V \ {t} to t. This problems is sometimes called the

single-destination shortest path problem, and is equivalent to the minimum cost flow

problem on the same network where one unit of flow is to be routed from each vertex

i ∈ V \ {t} to t, i.e., the one with supply bi = 1 at every vertex i ∈ V \ {t} and demand

bt = −(|V |− 1) at vertex t.

Let λi for i ∈ V be the dual solution corresponding to an optimal spanning tree

solution of this flow problem, and recall that for every edge (i, j) ∈ E with xij > 0,

λi = cij + λj.

By setting λt = 0 and adding these equalities along a path from i to t, we see that λi

is equal to the length of a shortest path from i to t. Moreover, since bi = 1 for all

i ∈ V \ {t}, and given λt = 0, the dual problem is to

maximize
∑

i∈V\{t}

λi subject to λi 6 cij + λj for all (i, j) ∈ E.

In an optimal solution, λi will thus be as large as possible subject to the constraints,

i.e., it will satisfy the so-called Bellman equations

λi = min
j:(i,j)∈E

(cij + λj) for all i ∈ V \ {t},

with λt = 0. The intuition behind these equalities is that in order to find a shortest

path from i to t, one should choose the first edge (i, j) on the path in order to minimize

the sum of the length of this edge and that of a shortest path from j to t. This situation

is illustrated in Figure 11.1.

51

52 11 · Shortest Paths and Minimum Spanning Trees

i j t
cij λk

Figure 11.1: Illustration of the Bellman equations for the shortest path problem

11.2 The Bellman-Ford Algorithm

Let λi(k) be the length of a shortest path from i to t that uses at most k edges. Then,

λt(k) = 0 for all k > 0, and

λi(0) = ∞ and

λi(k) = min
j:(i,j)∈E

(cij + λj(k− 1))

for all i ∈ V \ {t} and k > 1.

The algorithm that successively computes λi(k) for all i and larger and larger values

of k is known as the Bellman-Ford algorithm. It is an example of a method called

dynamic programming, which can be applied to problems that are decomposable into

overlapping subproblems and have what is called optimal substructure, such that an

overall solution can be constructed efficiently from solutions to the subproblems.

Note that λi(|V |) < λi(|V | − 1) for some i ∈ V if and only if there exists a cycle

of negative length, and that otherwise λi = λi(|V | − 1). In any case, O(|V |) iterations

of the Bellman-Ford algorithm suffice to determine λi. Each iteration requires O(|E|)

steps, for an overall running time of O(|E| · |V |). Given the values λi for all i ∈ V, a

shortest path from i to t then leads along an edge (i, j) ∈ E such that λi = cij + λj.

Alternatively, one could store such a successor vertex for every vertex i while running

the algorithm, and update it whenever λi(k) < λi(k− 1).

11.3 Dijkstra’s Algorithm

The Bellman-Ford algorithm does not make any assumptions about edge lengths, and

works in particular if some or all of them are negative. In the special case where all

edges are known to have non-negative lengths, the running time can sometimes be

decreased. The idea is to collect vertices in the order of increasing shortest path length

to t. We assume from now on that E = V × V, and set cij = ∞ if necessary. The

following lemma will be useful.

Lemma 11.1. Consider a graph with vertices V and edge lengths cij > 0 for all

i, j ∈ V. Fix t ∈ V and let λi denote the length of a shortest path from i ∈ V to t.

Let j ∈ V \ {t} such that cjt = mini∈V\{t} cit. Then, λj = cjt and λj = mini∈V\{t} λi.

11.3 · Dijkstra’s Algorithm 53

1

2

3

4

5

2

4

1

6

1

3

4

2

6

5

Figure 11.2: An iteration of Dijkstra’s algorithm with t = 4. In the graph on the left,

c2t = mini∈V\{t} cit and therefore, by Lemma 11.1, λ2 = c2t = 1. The graph on the

right is then obtained by removing vertex 2 and updating c14 to min{c14, c12 + c24} =

min{∞, 5+ 1} = 6 and c34 to min{c34, c32 + c24} = min{6, 4+ 1} = 5.

Proof. Let i ∈ V \ {t}, consider a shortest path from i to t, and let (ℓ, t) be the last

edge on this path. Then, λi > λℓ > cℓt > cjt. This holds in particular for i = j, and on

the other hand λj 6 cjt. Thus λj = cjt 6 λi.

Dijkstra’s algorithm uses this lemma to determine λj for a particular vertex j,

removes j from the graph, and repeats the process for the new graph:

1. Find a vertex j ∈ V \ {t} with cjt = mini∈V\{t} cit. Set λj = cjt.

2. For every vertex i ∈ V \ {j}, set cit = min{cit, cij + cjt}.

3. Remove vertex j from V. If |V | > 1, return to Step 1.

An example is shown in Figure 11.2.

The algorithm performs |V |− 1 iterations, each of which determines the new length

of one edge for each of the remaining O(|V |) vertices. The overall running time is thus

O(|V |2). This improves on the Bellman-Ford algorithm in graphs with many edges,

and is optimal in the sense that any algorithm for the single-destination shortest path

problem has to inspect all of the edges, of which there are Ω(|V |2) in the worst case.

One might wonder whether there exists a way to transform the edge lengths to

make them non-negative without affecting the structure of the shortest paths, so that

Dijkstra’s algorithm could be used in the presence of negative lengths as well. Let λi

be the length of a shortest path from vertex i to vertex t, and recall that λi 6 cij + λj

for all (i, j) ∈ E. Let c̄ij = cij + λj − λi. Then, c̄ij > 0 for every edge (i, j) ∈ E, and for

an arbitrary path v1, v2, . . . , vk,

k−1∑

i=1

c̄vivi+1
=

k−1∑

i=1

(cvivi+1
+ λvi+1

− λvi
) = λvk

− λv1
+

k−1∑

i=1

cvivi+1
.

So indeed, changing edge lengths from cij to c̄ij allows Dijkstra’s algorithm to work

correctly, and it does not affect the structure of the shortest paths.

This observation is not very useful in the context of single-pair or single-destination

shortest path problems: we do not know the values λi, and computing them is at least

as hard as the problem we are trying to solve. For the all-pairs shortest path problem,

54 11 · Shortest Paths and Minimum Spanning Trees

however, which requires us to find a shortest path between every pair of vertices i, j ∈ V,

the situation is different. The straightforward solution to this problem is to run the

Bellman-Ford algorithm |V | times, once for every possible destination vertex. In a

graph with Ω(|V |2) edges, this leads to an overall running time of |V |·O(|V |3) = O(|V |4).

Using the above observation, we can instead invoke the Bellman-Ford algorithm for one

destination vertex t to obtain the shortest path lengths λi for all i ∈ V, and compute

shortest paths for the remaining destination vertices by running Dijkstra’s algorithm

on the graph with edge lengths c̄ij. This improves the asymptotic running time to

O(|V |3) + |V − 1| ·O(|V |2) = O(|V |3).

11.4 Minimum Spanning Trees and Prim’s Algorithm

The minimum spanning tree problem for a network (V, E) with associated costs cij

for each edge (i, j) ∈ E asks for a spanning tree of minimum cost, where the cost of

a tree is the sum of costs of all its edges. This problem arises, for example, if one

wishes to design a communication network that connects a given set of locations. The

following property of minimum spanning trees will be useful.

Theorem 11.2. Let (V, E) be a graph with edge costs cij for all (i, j) ∈ E. Let U ⊆ V

and (u, v) ∈ U × (V \ U) such that cuv = min(i,j)∈U×(V\U) cij. Then there exists a

spanning tree of minimum cost that contains (u, v).

Proof. Let T ⊆ E be a spanning tree of minimum cost. If (u, v) ∈ T we are done.

Otherwise, T ∪ {(u, v)} contains a cycle, and there must be another edge (u ′, v ′) ∈ T

such that (u ′, v ′) ∈ U× (V \U). Then, (T ∪ {(u, v)}) \ {(u ′, v ′)} is a spanning tree, and

since (u, v) has minimum cost among the edges in U × (V \ U) its cost is no greater

than that of T , and therefore minimum.

Prim’s algorithm uses this property to inductively construct a minimum spanning

tree. It proceeds as follows:

1. Set U = {1} and T = ∅.

2. If U = V, return T . Otherwise find an edge (u, v) ∈ U × (V \ U) such that

cuv = min(i,j)∈U×(V\U) cij.

3. Add v to U and (u, v) to T , and return to Step 2.

Prim’s algorithm is called a greedy algorithm, because it always chooses an edge of

minimum cost.

Suppose that after each iteration, we compute and store for every vertex j ∈ V \U

a minimum cost edge to any vertex in U, i.e., an edge (i, j) ∈ U × (V \ U) such that

cij = min(i ′,j)∈U×(V\U) ci ′j. This only requires a comparison between the previously

stored edge and the edge to the vertex added to U in the current iteration, and can be

done in time O(|V |) per iteration. It then suffices in Step 2 to minimize cost among

vertices in V \ U, of which there are O(|V |). Since the algorithm performs |V | − 1

iterations, it thus has an overall running time of O(|V |2).

