
10 Maximum Flows and Perfect Matchings

10.1 The Maximum Flow Problem

Consider a flow network (V, E) with a single source 1, a single sink n, and finite capac-

ities mij = Cij for all (i, j) ∈ E. We will also assume for convenience that mij = 0 for

all (i, j) ∈ E. The maximum flow problem then asks for the maximum amount of flow

that can be sent from vertex 1 to vertex n, i.e., the goal is to

maximize δ

subject to
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =















δ if i = 1

−δ if i = n

0 otherwise

0 6 xij 6 Cij for all (i, j) ∈ E.

(10.1)

To see that this is again a special case of the minimum cost flow problem, set

cij = 0 for all (i, j) ∈ E, and add an additional edge (n, 1) with infinite capacity and

cost cn1 = −1. Since the new edge (n, 1) has infinite capacity, any feasible flow of

the original network is also feasible for the new network. Cost is clearly minimized by

maximizing the flow across the edge (n, 1), which by the flow conservation constraints

for vertices 1 and n maximizes flow through the original network. This kind of problem

is known as a circulation problem, because there are no sources or sinks but flow merely

circulates in the network.

10.2 The Max-Flow Min-Cut Theorem

Consider a flow network G = (V, E) with capacities Cij for all (i, j) ∈ E. A cut of G is a

partition of V into two sets, and the capacity of a cut is defined as the sum of capacities

of all edges across the partition. Formally, for S ⊆ V, the capacity of the cut (S, V \ S)

is given by

C(S) =
∑

(i,j)∈E∩(S×(V\S))

Cij.

Assume that x is a feasible flow vector that sends δ units of flow from vertex 1 to

vertex n. It is easy to see that δ is bounded from above by the capacity of any cut S

with 1 ∈ S and n ∈ V \ S. Indeed, for X, Y ⊆ V, let

f(X, Y) =
∑

(i,j)∈E∩(X×Y)

xij.

47

48 10 · Maximum Flows and Perfect Matchings

Then, for any S ⊆ V with 1 ∈ S and n ∈ V \ S,

δ =
∑

i∈S

(

∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji

)

= f(S, V) − f(V, S)

= f(S, S) + f(S, V \ S) − f(V \ S, S) − f(S, S)

= f(S, V \ S) − f(V \ S, S) 6 f(S, V \ S) 6 C(S).

(10.2)

The following result states that this upper bound in fact tight, i.e., that there exists

a flow of size equal to the minimum capacity of a cut that separates vertex 1 from

vertex n.

Theorem 10.1 (Max-flow min-cut theorem). Let δ be the optimal solution of (10.1)

for a network (V, E) with capacities Cij for all (i, j) ∈ E. Then,

δ = min {C(S) : S ⊆ V, 1 ∈ S, n ∈ V \ S } .

Proof. It remains to be shown that there exists a cut that separates vertex 1 from

vertex n and has capacity equal to δ. Consider a feasible flow vector x. A path

P = v0, v1, . . . , vk is called an augmenting path for x if xvi−1vi
< Cvi−1vi

or xvivi−1
> 0

for every i = 1, . . . , k. If there exists an augmenting path from vertex 1 to vertex n,

then we can push flow along the path, by increasing the flow on every forward edge

and decreasing the flow on every backward edge along the path by the same amount,

such that all constraints remain satisfied and the amount of flow from 1 to n increases.

Now assume that x is optimal, and let

S = {1} ∪ { i ∈ V : there exists an augmenting path for x from 1 to i }.

By optimality of x, n ∈ V \ S. Moreover,

δ = f(S, V \ S) − f(V \ S, S) = f(S, V \ S) = C(S).

The first equality holds by (10.2). The second equality holds because xij = 0 for

every (i, j) ∈ E ∩ ((V \ S) × S). The third equality holds because xij = Cij for every

(i, j) ∈ E ∩ (S× (N \ S)).

10.3 The Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm attempts to find a maximum flow by repeatedly push-

ing flow along an augmenting path, until such a path can no longer be found:

1. Start with a feasible flow vector x.

2. If there is no augmenting path from 1 to n, then stop.

3. Otherwise pick some augmenting path from 1 to n, and push a maximum amount

of flow along this path without violating any constraints. Then go to Step 2.

10.4 · Max-Flow Min-Cut from Strong Duality 49

Assume that all capacities are integral and that we start with an integral flow vector,

e.g., the flow vector x such that xij = 0 for all (i, j) ∈ E. It is then not hard to see

that the flow vector always remains integral and overall flow increases by at least one

unit in each iteration. The algorithm is therefore guaranteed to find a maximum flow

after a finite number of iterations. It can in fact be shown that O(|E| · |V |) iterations

suffice if only augmenting paths with a minimum number of edges are used. Such an

augmenting path can for example be found using breadth-first search, which requires

O(|E|) steps and leads to an overall running time of O(|E|2 · |V |).

10.4 Max-Flow Min-Cut from Strong Duality

Consider the following formulation of the maximum flow problem as a minimum cost

flow problem, which we have already discussed above:

minimize −xn1

subject to
∑

j:(i,j)∈E ′

xij −
∑

j:(j,i)∈E ′

xji = 0 for all i ∈ V

0 6 xij 6 Cij for all (i, j) ∈ E

xn1 > 0,

where E ′ = E ∪ {(n, 1)}. The Lagrangian (8.1) becomes

L(x, λ) = (−1− λn + λ1)xn1 −
∑

(i,j)∈E

(λi − λj)xij,

which has a bounded minimum where xn1 > 0 only if λ1 − λn = 1. We know from

the general case that one of the dual variables can be set arbitrarily, so we let λ1 = 1

and obtain λn = 0. For a fixed λ, L(x, λ) is minimized by setting xij = 0 whenever

λi − λj < 0 and xij = Cij whenever λi − λj > 0, and thus

g(λ) = inf
x
L(x, λ) = −

∑

(i,j)∈E

max(λi − λj, 0)Cij.

By introducing new variables dij > max(λi − λj, 0) for (i, j) ∈ E, we obtain

g(λ) > −
∑

(i,j)∈E

dijCij,

with equality if dij = max(λi − λj, 0). We can thus maximize g(λ) by minimizing
∑

(i,j)∈E dijCij subject to dij > λi − λj and dij > 0 for all (i, j) ∈ E, and obtain the

following dual of (10.1):

minimize
∑

(i,j)∈E

dijCij

subject to dij − λi + λj > 0 for all (i, j) ∈ E

dij > 0 for all (i, j) ∈ E

λ1 = 1, λn = 0.

50 10 · Maximum Flows and Perfect Matchings

It can be shown that this dual has an optimal solution in which λi ∈ {0, 1} for all

i ∈ V. By the complementary slackness conditions, the set S = {i ∈ V : λi = 1} must

then be a minimum cut, and the max-flow min-cut theorem follows from strong duality.

10.5 The Bipartite Matching Problem

A matching of a graph (V, E) is a set of edges that do not share any vertices, i.e., a set

M ⊆ E such for all (s, t), (u, v) ∈ M, u 6= s 6= v and u 6= t 6= v. Matching M is called

perfect if it covers every vertex, i.e., if |M| = |V |/2.

A graph is k-regular if every vertex has degree k. Using maximum flows it is easy to

show that every k-regular bipartite graph, for k > 1, has a perfect matching. For this,

consider a k-regular bipartite graph (L⊎R, E), orient all edges from L to R, and add two

new vertices s and t and new edges (s, i) and (j, t) for every i ∈ L and j ∈ R. Finally set

the capacity of every new edge to 1, and that of every original edge to infinity. We can

now send |L| units of flow from s to t by setting the flow to 1 for every new edge and

to 1/k for every original edge. By Theorem 8.2, there must exist an integral solution

with the same value, and it is easy to see that such a solution corresponds to a perfect

matching.

This result is a special case of a well-known characterization of the bipartite graphs

that have a perfect matching. It should not come as a surprise that this characterization

can be obtained from the max-flow min-cut theorem as well.

Theorem 10.2 (Hall’s Theorem). A bipartite graph G = (L ⊎ R, E) with |L| = |R| has

a perfect matching if and only if |N(X)| > |X| for every X ⊆ L, where N(X) = {j ∈

R : i ∈ X, (i, j) ∈ E}.

Proof. The direction from left to right is obvious: in a perfect matching, every vertex

in X is matched to a different vertex in N(X).

For the direction from right to left, assume that G does not have a perfect matching

and again consider the graph with additional vertices s and t described above. The

maximum flow from s to t is this graph must be smaller than |L|, so by the max-flow

min-cut theorem there has to exist a cut S ⊆ L⊎R∪ {s} with s ∈ S and C(S) < |L|. Let

LS = L ∩ S, RS = R ∩ S, and LT = L \ S. Since C(S) is finite, i ∈ S implies that j ∈ S

for every (i, j) ∈ E. On the one hand, this means that N(LS) ⊆ RS. On the other, the

capacity of the cut must thus come precisely from the edges in {s} × LT and RS × {t}.

Each of these edges has capacity 1, so C(S) = |LT |+ |RS|, and we obtain

|N(LS)| 6 |RS| = C(S) − |LT | < |L|− |LT | = |LS|.

