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1 Optimization

An optimization problem has the standard form

minimize f(x)

subject to h(x) = b

x ∈ X.
(1.1)

It consists of a vector x ∈ Rn of decision variables, an objective function f : Rn → R,
a functional constraint h(x) = b where h : Rn → Rm and b ∈ Rm, and a regional
constraint x ∈ X where X ⊆ Rn. The set X(b) = { x ∈ X : h(x) = b } is called the
feasible set, and a problem is called feasible if X(b) is non-empty and bounded if f(x)
is bounded from below on X(b). A vector x∗ is called optimal if it is in the feasible
set and minimizes f among all vectors in the feasible set. The assumption that the
functional constraint holds with equality is without loss of generality: an inequality
constraint like g(x) 6 b can be re-written as g(x) + z = b, where z is a new slack
variable with the additional regional constraint z > 0.

1.1 Lagrangian Methods

A well-known method for solving constrained optimization problems is the method
of Lagrange multipliers. The idea behind this method is to reduce constrained opti-
mization to unconstrained optimization, and to take the (functional) constraints into
account by augmenting the objective function with a weighted sum of them. To this
end, define the Lagrangian associated with (1.1) as

L(x, λ) = f(x) − λT (h(x) − b), (1.2)

where λ ∈ Rm is a vector of Lagrange multipliers.
The following result provides a condition under which minimizing the Lagrangian,

subject only to the regional constraints, yields a solution to the original constrained
problem. The result is easy to prove, yet extremely useful in practice.

Theorem 1.1 (Lagrangian Sufficiency Theorem). Let x ∈ X and λ ∈ Rm such that
L(x, λ) = infx ′∈X L(x ′, λ) and h(x) = b. Then x is an optimal solution of (1.1).

Proof. We have that

min
x ′∈X(b)

f(x ′) = min
x ′∈X(b)

[f(x ′) − λT (h(x ′) − b)]

> min
x ′∈X

[f(x ′) − λT (h(x ′) − b)]

= f(x) − λT (h(x) − b) = f(x).

1



2 1 · Optimization

Equality in the first line holds because h(x ′) − b = 0 when x ′ ∈ X(b). The inequality
on the second line holds because the minimum is taken over a larger set. In the third
line we finally use that x minimizes L and that h(x) = b.

Two remarks are in order. First, a vector λ of Lagrange multipliers satisfying the
conditions of the theorem is not guaranteed to exist in general, but it does exist for a
large class of problems. Second, the theorem appears to be useful mainly for showing
that a given solution x is optimal. In certain cases, however, it can also be used to find
an optimal solution. Our general strategy in these cases will be to minimize L(x, λ) for
all values of λ, in order to obtain a minimizer x∗(λ) that depends on λ, and then find
λ∗ such that x∗(λ∗) satisfies the constraints. Let us apply this strategy to a concrete
example.

Example 1.2. Consider minimizing x21 + x
2
2 subject to a1x1 + a2x2 = b and x1, x2 > 0

for some a1, a2, b > 0. The Lagrangian is

L((x1, x2), λ) = x
2
1 + x

2
2 − λ(a1x1 + a2x2 − b),

and taking partial derivaties reveals that it has a unique stationary point at (x1, x2) =
(λa1/2, λa2/2). We now choose λ such that the constraint a1x1+a2x2 = b is satisfied at
this point, which happens for λ = 2b/(a21+a

2
2). Since ∂

2L/∂2x21 > 0, ∂
2L/∂2x22 > 0, and

∂2L/(∂x1∂x2) = 0 for this value of λ, we have found a minimum with value b2/(a21+a
2
2)

at (x1, x2) = (a1b, a2b)/(a
2
1 + a

2
2).

More generally, to

minimize f(x) subject to h(x) 6 b, x ∈ X, (1.3)

we proceed as follows:

1. Introduce a vector z of slack variables to obtain the equivalent problem

minimize f(x) subject to h(x) + z = b, x ∈ X, z > 0.

2. Compute the Lagrangian L(x, z, λ) = f(x) − λT (h(x) + z− b).

3. Define the set
Y = {λ ∈ Rm : infx∈X,z>0 L(x, z, λ) > −∞}.

4. For each λ ∈ Y, minimize L(x, z, λ) subject only to the regional constraints, i.e.,
find x∗(λ), z∗(λ) satisfying

L(x∗(λ), z∗(λ), λ) = infx∈X,z>0 L(x, z, λ). (1.4)

5. Find λ∗ ∈ Y such that (x∗(λ∗), z∗(λ∗)) is feasible, i.e., such that x∗(λ∗) ∈ X,
z∗(λ∗) > 0, and h(x∗(λ∗)) + z∗(λ∗) = b. By Theorem 1.1, x∗(λ∗) is optimal
for (1.3).
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1.2 The Lagrange Dual

Another useful concept that arises from the method of Lagrange multipliers is that of
a dual problem. Denote by φ(b) = infx∈X(b) f(x) the solution of (1.1), and define the
(Lagrange) dual function g : Rm → R as the minimum value of the Lagrangian over X,
i.e.,

g(λ) = inf
x∈X

L(x, λ).

Then, for all λ ∈ Rm,

inf
x∈X(b)

f(x) = inf
x∈X(b)

L(x, λ) > inf
x∈X

L(x, λ) = g(λ), (1.5)

i.e., the dual function provides a lower bound on the optimal value of (1.1). Since this
holds for every value of λ, it is interesting to choose λ to make the lower bound as large
as possible. This motivates the dual problem to

maximize g(λ)

subject to λ ∈ Y,

where Y = {λ ∈ Rm : g(λ) > −∞}. In this context (1.1) is then referred to as the
primal problem. Equation (1.5) is a proof of the weak duality theorem, which states
that

inf
x∈X(b)

f(x) > max
λ∈Y

g(λ).

The primal problem (1.1) is said to satisfy strong duality if this holds with equality,
i.e., if there exists λ such that

φ(b) = g(λ).

If this is the case, then (1.1) can be solved using the method of Lagrangian multipli-
ers. We can of course just try the method and see whether it works, as we did for
Example 1.2. For certain important classes of optimization problems, however, it can
be guaranteed that strong duality always holds.

1.3 Supporting Hyperplanes

A geometric interpretation of the dual function can be given in terms of φ. Fix b ∈ Rm

and consider φ as a function of c ∈ Rm. Further consider the hyperplane given by
α : Rm → R with

α(c) = β− λT (b− c).

This hyperplane has intercept β at b and slope λ. We can now try to find φ(b) as
follows:

1. For each λ, find βλ = max{β : α(c) 6 φ(c) for all c ∈ Rm}.
2. Choose λ to maximize βλ.
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cb

φ(c)

α(c) = βλ − λ
T (c− b)

βλ

cb

φ(c)

α(c) = βλ − λ
T (c− b)

βλ

Figure 1.1: Geometric interpretation of the dual with optimal value g(λ) = βλ. In the
situation on the left strong duality holds, and βλ = φ(b). In the situation on the right,
strong duality does not hold, and βλ < φ(b).

This approach is illustrated in Figure 1.1. We always have that βλ 6 φ(b). In the
situation on the left of Figure 1.1, this condition holds with equality because there is a
tangent to φ at b. In fact,

g(λ) = inf
x∈X

L(x, λ)

= inf
c∈Rm

inf
x∈X(c)

(
f(x) − λT (h(x) − b)

)
= inf
c∈Rm

(
φ(c) − λT (c− b)

)
= sup

{
β : β− λT (b− c) 6 φ(c) for all c ∈ Rm

}
= βλ

We again see the weak duality result as maxλ βλ 6 φ(b), but we also obtain a
condition for strong duality. Call a hyperplane α : Rm → R a supporting hyperplane
to φ at b if α(c) = φ(b) − λT (b− c) and φ(c) > φ(b) − λT (b− c) for all c ∈ Rm.

Theorem 1.3. The following are equivalent:

1. there exists a (non-vertical) supporting hyperplane to φ at b;

2. the problem satisfies strong duality.

Proof. Suppose there exists a supporting hyperplane to φ at b. This means that there
exists λ ∈ Rm such that for all c ∈ Rm,

φ(b) − λT (b− c) 6 φ(c).

This implies that

φ(b) 6 inf
c∈Rm

(
φ(c) − λT (c− b)

)
= inf
c∈Rm

inf
x∈X(c)

(
f(x) − λT (h(x) − b)

)
= inf
x∈X

L(x, λ)

= g(λ).
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However, by (1.5) we have that φ(b) > g(λ). Hence φ(b) = g(λ), and strong duality
holds.

Now suppose that the problem satisfies strong duality. Then there exists λ ∈ Rm

such that for all x ∈ X,

φ(b) 6 L(x, λ) = f(x) − λT (h(x) − b)

Minimizing the right hand side over x ∈ X(c) yields that for all c ∈ Rm

φ(b) 6 φ(c) − λT (c− b),

and hence
φ(b) − λT (b− c) 6 φ(c).

This describes a supporting hyperplane to φ at b.

In the next lecture we will see that a supporting hyperplane exists for all b ∈ Rm if
φ(b) is a convex function of b, and we will give sufficient conditions for this to be the
case.





2 Convex and Linear Optimization

2.1 Convexity and Strong Duality

Let S ⊆ Rn. S is called a convex set if for all δ ∈ [0, 1], x, y ∈ S implies that
δx + (1 − δ)y ∈ S. A function f : S → R is called convex function if for all x, y ∈ S
and δ ∈ [0, 1], δf(x) + (1 − δ)f(y) > f(δx + (1 − δ)y). A point x ∈ S is called an
extreme point of S if for all y, z ∈ S and δ ∈ (0, 1), x = δy + (1 − δ)z implies that
x = y = z. A point x ∈ S is called an interior point of S if there exists ε > 0 such that
{y : ||y− x||2 6 ε} ⊆ S. The set of all interior points of S is called the interior of S.

We saw in the previous lecture that strong duality is equivalent to the existence of
a supporting hyperplane. The following result establishes a sufficient condition for the
latter.

Theorem 2.1 (Supporting Hyperplane Theorem). Suppose that φ is convex and
b ∈ R lies in the interior of the set of points where φ is finite. Then there exists
a (non-vertical) supporting hyperplane to φ at b.

The following result identifies a condition that guarantees convexity of φ.

Theorem 2.2. Consider the optimization problem to

minimize f(x)

subject to h(x) 6 b

x ∈ X,

and let φ be given by φ(b) = infx∈X(b) f(x). Then, φ is convex when X, f, and h
are convex.

Proof. Consider b1, b2 ∈ Rm such that φ(b1) and φ(b2) are defined, and let δ ∈ [0, 1]

and b = δb1 + (1 − δ)b2. Further consider x1 ∈ X(b1), x2 ∈ X(b2), and let x =

δx1 + (1− δ)x2. Then convexity of X implies that x ∈ X, and convexity of h that

h(x) = h(δx1 + (1− δ)x2)

6 δh(x1) + (1− δ)h(x2)

= δb1 + (1− δ)b2

= b.

Thus x ∈ X(b), and by convexity of f,

φ(b) 6 f(x) = f(δx1 + (1− δ)x2) 6 δf(x1) + (1− δ)f(x2).

This holds for all x1 ∈ X(b1) and x2 ∈ X(b2), so taking infima on the right hand
side yields

φ(b) 6 δφ(b1) + (1− δ)φ(b2).

7



8 2 · Convex and Linear Optimization

Observe that an equality constraint h(x) = b is equivalent to constraints h(x) 6 b

and −h(x) 6 −b. In this case, the above result requires that X, f, h, and −h are all
convex, which in particular requires that h is linear.

2.2 Linear Programs

A linear program is an optimization problem in which the objective and all constraints
are linear. It has the form

minimize cTx

subject to aTi x > bi, i ∈M1

aTi x 6 bi, i ∈M2

aTi x = bi, i ∈M3

xj > 0, j ∈ N1
xj 6 0, j ∈ N2

where c ∈ Rn is a cost vector, x ∈ Rn is a vector of decision variables, and constraints
are given by ai ∈ Rn and bi ∈ R for i ∈ {1, . . . ,m}. Index setsM1,M2,M3 ⊆ {1, . . . ,m}

and N1, N2 ⊆ {1, . . . , n} are used to distinguish between different types of contraints.
An equality constraint aTi x = bi is equivalent to the pair of constraints aTi 6 bi and

aTi x > bi, and a constraint of the form aTi x 6 bi can be rewritten as (−ai)
Tx > −bi.

Each occurrence of an unconstrained variable xj can be replaced by x+j + x−j , where x
+
j

and x−j are two new variables with x+j > 0 and x−j 6 0. We can thus write every linear
program in the general form

min { cTx : Ax > b, x > 0 } (2.1)

where x, c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. Observe that constraints of the form xj > 0
and xj 6 0 are just special cases of constraints of the form aTi x > bi, but we often
choose to make them explicit.

A linear program of the form

min { cTx : Ax = b, x > 0 } (2.2)

is said to be in standard form. The standard form is of course a special case of the
general form. On the other hand, we can also bring every general form problem into
the standard form by replacing each inequality constraint of the form aTi x 6 bi or
aTi x > bi by a constraint aTi x + si = bi or aTi x − si = bi, where si is a new so-called
slack variable, and an additional constraint si > 0.

The general form is typically used to discuss the theory of linear programming,
while the standard form is often more convenient when designing algorithms for linear
programming.
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x2 = 0

x1 = 0

x1 + 2x2 = 6

x1 − x2 = 3

c

x1 + x2 = 0

x1 + x2 = 2

x1 + x2 = 5

A

B

C

D

E

F

Figure 2.1: Geometric interpretation of the linear program of Example 2.3

Example 2.3. Consider the following linear program, which is illustrated in Figure 2.1:

minimize −(x1 + x2)

subject to x1 + 2x2 6 6

x1 − x2 6 3

x1, x2 > 0

Solid lines indicate sets of points for which one of the constraints is satisfied with
equality. The feasible set is shaded. Dashed lines, orthogonal to the cost vector c,
indicate sets of points for which the value of the objective function is constant. The
optimal value over the feasible set is attained at point C.

2.3 Linear Program Duality

Consider problem (2.1) and introduce slack variables z to turn it into

min { cTx : Ax− z = b, x, z > 0 }.

We have X = {(x, z) : x > 0, z > 0} ⊆ Rm+n. The Lagrangian is given by

L((x, z), λ) = cTx− λT (Ax− z− b) = (cT − λTA)x+ λTz+ λTb

and has a finite minimum over X if and only if

λ ∈ Y = {µ ∈ Rm : cT − µTA > 0, µ > 0 }.
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For λ ∈ Y, the minimum of L((x, z), λ) is attained when both (cT − λTA)x = 0 and
λTz = 0, and thus

g(λ) = inf
(x,z)∈X

L((x, z), λ) = λTb.

We obtain the dual
max {bTλ : ATλ 6 c, λ > 0 }. (2.3)

The dual of (2.2) can be determined analogously as

max {bTλ : ATλ 6 c }.

2.4 Complementary Slackness

An important relationship between primal and dual solutions is provided by conditions
known as complementary slackness. Complementary slackness requires that slack does
not occur simultaneously in a variable, of the primal or dual, and the corresponding
constraint, of the dual or primal. Here, a variable is said to have slack if its value is
non-zero, and an inequality constraint is said to have slack if it does not hold with
equality. It is not hard to see that complementary slackness is a necessary condition for
optimality. Indeed, if complementary slackness was violated by some variable and the
corresponding contraint, reducing the value of the variable would reduce the value of
the Lagrangian, contradicting optimality of the current solution. The following result
formalizes this intuition.

Theorem 2.4. Let x and λ be feasible solutions for the primal (2.1) and the
dual (2.3), respectively. Then x and λ are optimal if and only if they satisfy
complementary slackness, i.e., if

(cT − λTA)x = 0 and λT (Ax− b) = 0.

Proof. If x and λ are optimal, then

cTx = λTb

= inf
x ′∈X

(
cTx ′ − λT (Ax ′ − b)

)
6 cTx− λT (Ax− b)

6 cTx.

Since the first and last term are the same, the two inequalities must hold with equality.
Therefore, λTb = cTx − λT (Ax − b) = (cT − λTA)x + λTb, and thus (cT − λTA)x = 0.
Furthermore, cTx− λT (Ax− b) = cTx, and thus λT (Ax− b) = 0.

If on the other hand (cT − λTA)x = 0 and λT (Ax− b) = 0, then

cTx = cTx− λT (Ax− b) = (cT − λTA)x+ λTb = λTb,

and by weak duality x and λ must be optimal.
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2.5 Shadow Prices

A more intuitive understanding of Lagrange multipliers can be obtained by again
viewing (1.1) as a family of problems parameterized by b ∈ Rm. As before, let
φ(b) = inf{f(x) : h(x) = b, x ∈ Rn}. It turns out that at the optimum, the Lagrange
multipliers equal the partial derivatives of φ.

Theorem 2.5. Suppose that f and h are continuously differentiable on Rn, and that
there exist unique functions x∗ : Rm → Rn and λ∗ : Rm → Rm such that for each
b ∈ Rm, h(x∗(b)) = b, λ∗(b) 6 0 and f(x∗(b)) = φ(b) = inf{f(x) − λ∗(b)T (h(x) − b) :
x ∈ Rn}. If x∗ and λ∗ are continuously differentiable, then

∂φ

∂bi
(b) = λ∗i (b).

Proof. We have that

φ(b) = f(x∗(b)) − λ∗(b)T (h(x∗(b)) − b)

= f(x∗(b)) − λ∗(b)Th(x∗(b)) + λ∗(b)Tb.

Taking partial derivatives of each term,

∂f(x∗(b))

∂bi
=

n∑
j=1

∂f

∂xj
(x∗(b))

∂x∗j

∂bi
(b),

∂λ∗(b)Th(x∗(b))

∂bi
= λ∗(b)T

∂h(x∗(b))

∂bi
+ h(x∗(b))

∂λ∗(b)T

∂bi

=

(
n∑
j=1

(
λ∗(b)T

∂h

∂xj
(x∗(b))

)
∂x∗j

∂bi
(b)

)
+ h(x∗(b))

∂λ∗(b)T

∂bi
,

∂λ∗(b)Tb

∂bi
= λ∗(b)T

∂b

∂bi
+ b

λ∗(b)T

∂bi
.

By summing and re-arranging,

∂φ(b)

∂bi
=

n∑
j=1

(
∂f

∂xj
(x∗(b)) − λ∗(b)T

∂h

∂xj
(x∗(b))

)
∂x∗j

∂bi
(b)

− (h(x∗(b)) − b)
∂λ∗(b)T

∂bi
+ λ∗(b)T

∂b

∂bi
.

The first term on the right-hand side is zero, because x∗(b) minimizes L(x, λ∗(b)) and
thus

∂L(x∗(b), λ∗(b))

∂xj
=
∂f

∂xj
(x∗(b)) −

(
λ∗(b)T

∂h

∂xj
(x∗(b))

)
= 0

for j = 1, . . . , n. The second term is zero as well, because x∗(b) is feasible and thus
(h(x∗(b)) − b)k = 0 for k = 1, . . . ,m, and the claim follows.
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This result continues to hold when the functional constraints are inequalities: if the
ith constraint is not satisfied with equality, then λ∗i = 0 by complementary slackness,
and therefore also ∂λ∗i/∂bi = 0.

In light of Theorem 2.5, Lagrange multipliers are also known as shadow prices, due
to an economic interpretation of the problem to

maximize f(x)

subject to h(x) 6 b

x ∈ X.

Consider a firm that produces n different goods from m different raw materials. Vector
b ∈ Rm describes the amount of each raw material available to the firm, vector x ∈ Rn

the quantity produced of each good. Functions h : Rn → Rm and f : Rn → R finally
describe the amounts of raw material required to produce, and the profit derived from
producing, particular quantities of the goods. The goal in the above problem thus is
to maximize the profit of the firm for given amounts of raw materials available to it.
The shadow price of raw material i then is the price the firm would be willing to
pay per additional unit of this raw material, which of course should be equal to the
additional profit derived from it, i.e., to ∂φ(b)/∂bi. In this context, complementary
slackness corresponds to the basic economic principle that a particular raw material has
a non-zero price if and only if it is scarce, in the sense that increasing its availability
would increase profit.



3 The Simplex Method

3.1 Basic Solutions

In the LP of Example 2.3, the optimal solution happened to lie at an extreme point of
the feasible set. This was not a coincidence. Consider an LP in general form,

maximize cTx subject to Ax 6 b, x > 0. (3.1)

The feasible set of this LP is a convex polytope in Rn, i.e., an intersection of half-spaces.
Each level set of the objective function cTx, i.e., each set Lα = {x ∈ Rn : cTx = α} of
points for which the value of the objective function is equal to some constant α ∈ R, is
a k-dimensional flat for some k 6 n. The goal is to find the largest value of α for which
Lα(f) intersects with the feasible set. If such a value exists, the intersection contains
either a single point or an infinite number of points, and it is guaranteed to contain an
extreme point of the feasible set. This fact is illustrated in Figure 3.1, and we will give
a proof momentarily.

The geometric characterization of extreme points, as points that cannot be written
as a convex combination of two different points, is somewhat hard to work with. We
therefore use an alternative, algebraic characterization. To this end, consider the fol-
lowing LP in standard form, which can be obtained from (3.1) by introducing slack
variables:

maximize cTx subject to Ax = b, x > 0, (3.2)

where A ∈ Rm×n and b ∈ Rm. Call a solution x ∈ Rn of the equation Ax = b basic
if at most m of its entries are non-zero, i.e., if there exists a set B ⊆ {1, . . . , n} with
|B| = m such that xi = 0 if i /∈ B. The set B is then called basis, and variable xi is
called basic if i ∈ B and non-basic if i /∈ B. A basic solution x that also satisfies x > 0
is a basic feasible solution (BFS) of (3.2). We finally distinguish basic solutions that

f(x) = α∗f(x) = α

f(x) = α∗

f(x) = α

Figure 3.1: Illustration of linear programs with one optimal solution (left) and an
infinite number of optimal solutions (right)

13
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have exactly m non-zero entries from those that have strictly fewer, and refer to the
latter as degenerate.

In what follows we will assume that (i) the rows of A are linearly independent and
that (ii) every set of m columns of A are linearly independent. These assumptions are
without loss of generality: if a set of rows are linearly dependent, one of the correspond-
ing constraints can be removed without changing the feasible set; similarly, if a set of
columns are linearly dependent, one of the corresponding variables can be removed.

3.2 Extreme Points and Optimal Solutions

It turns out that the extreme points of the feasible set are precisely the basic feasible
solutions.

Theorem 3.1. A vector is a basic feasible solution of Ax = b if and only if it is
an extreme point of the set X(b) = {x : Ax = b, x > 0}.

Proof. Consider a BFS x and suppose that x = δy + (1 − δ)z for y, z ∈ X(b) and
δ ∈ (0, 1). Since y > 0 and z > 0, x = δy+ (1− δ)z implies that yi = zi = 0 whenever
xi = 0. This means in particular that y − z has at most m non-zero entries. At the
same time, y, z ∈ X(b) implies that Ay = b = Az and thus A(y − z) = 0. This yields
a linear combination of at most m columns of A that is equal to zero, which by (ii)
implies that y = z. Thus x is an extreme point of X(b).

Now consider a feasible solution x ∈ X(b) that is not a BFS. Let i1, . . . , ir be the
rows of x that are non-zero, and observe that r > m. This means that the columns
ai1 , . . . , air, where ai = (a1i, . . . , ami)

T , have to be linearly dependent, i.e., there has to
exist a collection of r non-zero numbers yi1 , . . . , yir such that yi1a

i1 + · · ·+ yirair = 0.
Extending y to a vector in Rn by setting yi = 0 if i /∈ {i1, . . . , ir}, we have Ay =

yi1a
i1 + · · · + yirair and thus A(x ± εy) = b for every ε ∈ R. Since xi is non-zero

whenever yi is non-zero, we can choose ε > 0 small enough such that x± εy > 0 and
thus x ± εy ∈ X(b). Moreover x = 1/2(x − εy) + 1/2(x + εy), so x is not an extreme
point of X(b).

Moreover, when looking for an optimum, we can restrict our attention to the set of
basic feasible solutions.

Theorem 3.2. If the linear program (3.2) is feasible and bounded, then it has an
optimal solution that is a basic feasible solution.

Proof. Let x be an optimal solution of (3.2). If x has exactly m non-zero entries, then
it is a BFS and we are done. So suppose that x has r non-zero entries for r > n, and
that it is not an extreme point of X(b), i.e., that x = δy+ (1− δ)z for y, z ∈ X(b) with
y 6= y and δ ∈ (0, 1). We will show that there must exist an optimal solution with
strictly fewer than r non-zero entries; the claim then follows by induction.
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Since cTx > cTy and cTx > cTz by optimality of x, and since cTx = δcTy+(1−δ)cTz,
we must have that cTx = cTy = cTz, so y and z are optimal as well. As in the proof
of Theorem 3.1, xi = 0 implies that yi = zi = 0, so y and z have at most r non-zero
entries, which must occur in the same rows as in x. If y or z has strictly fewer than
r non-zero entries, we are done. Otherwise let x ′ = δ ′y + (1 − δ ′)z = z + δ ′(y − z),
and observe that x ′ is optimal for every δ ′ ∈ R. Moreover, y− z 6= 0, and all non-zero
entries of y − z occur in rows where x is non-zero as well. We can thus choose δ ′ ∈ R
such that x ′ > 0 and such that x ′ has strictly fewer than r non-zero entries.

Since there are only finitely many basic solutions, a naive approach to solving an LP
would be to go over all basic solutions and pick one that optimizes the objective. The
problem with this approach is that it would not in general be efficient, as the number of
basic solutions may grow exponentially in the number of variables. We will now study
a well-known method for solving linear programs, the simplex method, which explores
the set of basic solutions in a more organized way.

3.3 The Simplex Tableau

One way to understand the simplex method is in terms of the so-called simplex tableau,
which stores all the information required to explore the set of basic solutions.

Let A ∈ Rm×n, b ∈ Rm, and x ∈ Rn such that Ax = b. Let B be a basis, i.e., a set
B ⊆ {1, . . . , n} with |B| = m, corresponding to a choice of m non-zero variables. Then
we have

ABxB +ANxN = b,

where AB ∈ Rm×m and AN ∈ Rm×(n−m) respectively consist of the columns of A
indexed by B and those not indexed by B, and xB and xN respectively consist of the
rows of x indexed by B and those not indexed by B. Moreover, if x is a basic solution,
then there is a basis B such that xN = 0 and ABxB = b, and if x is a basic feasible
solution, there is a basis B such that xN = 0, ABxB = b, and xB > 0.

For every x with Ax = b and every basis B, we have that xB = A−1
B (b − ANxN),

and thus
f(x) = cTx = cTBxB + cTNxN

= cTBA
−1
B (b−ANxN) + c

T
NxN

= cTBA
−1
B b+ (cTN − cTBA

−1
B AN)xN

Suppose that we want to maximize cTx and find that

cTN − cTBA
−1
B AN 6 0 and A−1

B b > 0. (3.3)

Then, for any feasible x ∈ Rn, it holds that xN > 0 and therefore f(x) 6 cTBA
−1
B b.

The basic solution x∗ with x∗B = A−1
B b and x∗N = 0, on the other hand, is feasible and

satisfies f(x∗) = cTBA
−1
B b. It must therefore be optimal.

If alternatively (cTN − cTBA
−1
B AN)i > 0 for some i, then we can increase the value of

the objective by increasing (xN)i. Either this can be done indefinitely, which means
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that the maximum is unbounded, or the constraints force some of the variables in the
basis to become smaller and we have to stop when the first such variable reaches zero.
In that case we have found a new BFS and can repeat the process.

Assuming that the LP is feasible and has a bounded optimal solution, there exists
a basis B∗ for which (3.3) is satisfied. The basic idea behind the simplex method is to
start from an initial BFS and then move from basis to basis until B∗ is found. The in-
formation required for this procedure can conveniently be represented by the so-called
simplex tableau. For a given basis B, it takes the following form:1

m︷ ︸︸ ︷ n−m︷ ︸︸ ︷ 1︷ ︸︸ ︷
B N

m

{
A−1
B AB = I A−1

B AN A−1
B b

1

{
cTB − cTBA

−1
B AB = 0 cTN − cTBA

−1
B AN −cTBA

−1
B b

The first m rows consist of the matrix A and the column vector b, multiplied by the
inverse of AB. It is worth pointing out that for any basis B, the LP with constraints
A−1
B Ax = A

−1
B b is equivalent to the one with constraints Ax = b. The first n columns

of the last row are equal to cT − λTA for λT = cTBA
−1
B . The vector λ can be interpreted

as a solution, not necessarily feasible, to the dual problem. In the last column of the
last row we finally have the value −f(x), where x is the BFS with xB = A−1

B b and
xN = 0.

We will see later that the simplex method always maintains feasibility of this so-
lution x. As a consequence it also maintains complementary slackness for x and
λT = cTBA

−1
B : since we work with an LP in standard form, λT (Ax − b) = 0 follows

automatically from the feasibility condition, Ax = b; the condition (cT − λTA)x = 0

holds because xN = 0 and cTB − λTAB = cTB − cTBA
−1
B AB = 0. What it then means

for (3.3) to become satisfied is that cT − λTA 6 0, i.e., that λ is a feasible solution for
the dual. Optimality of x is thus actually a consequence of Theorem 2.4.

3.4 The Simplex Method in Tableau Form

Consider a tableau of the following form, where the basis can be identified by the
identity matrix embedded in (aij):

(aij) ai0

a0j a00

1The columns of the tableau have been permuted such that those corresponding to the basis appear
on the left. This has been done just for convenience: in practice we will always be able to identify the
columns corresponding to the basis by the embedded identity matrix.
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The simplex method then proceeds as follows:

1. Find an initial BFS with basis B.

2. Check whether a0j 6 0 for every j. If yes, the current solution is optimal, so stop.

3. Choose j such that a0j > 0, and choose i ∈ {i ′ : ai ′j > 0} to minimize ai0/aij.
If aij 6 0 for all i, then the problem is unbounded, so stop. If multiple rows
minimize ai0/aij, the problem has a degenerate BFS.

4. Update the tableau by multiplying row i by 1/aij and adding a −(akj/aij) mul-
tiple of row i to each row k 6= i. Then return to Step 2.

We will now describe the different steps of the simplex method in more detail and
illustrate them using the LP of Example 2.3.

Finding an initial BFS

Finding an initial BFS is very easy when the constraints are of the form Ax 6 b for
b > 0. We can then write the constraints as Ax+ z = b for a vector z of slack variables
with regional constraint z > 0, and obtain a BFS by setting x = 0 and z = b. This can
alternatively be thought of as extending x to (x, z) and setting (xB, xN) = (z, x) = (b, 0).
We then have A−1

B = I and cB = 0, and the entries in the tableau become AN and cTN
for the variables x1 and x2 that are not in the basis, and b and 0 in the last column.
For the LP of Example 2.3 we obtain the following tableau, where rows and columns
have been labeled with the names of the corresponding variables:

x1 x2 z1 z2 ai0

z1 1 2 1 0 6

z2 1 −1 0 1 3

a0j 1 1 0 0 0

If the constraints do not have this convenient form, finding an initial BFS requires
more work. We will discuss this case in the next lecture.

Choosing a pivot column

If a0j 6 0 for all j > 1, the current solution is optimal. Otherwise we can choose a
column j such that a0j > 0 as the pivot column and let the corresponding variable enter
the basis. If multiple candidate columns exist, choosing any one of them will lead to a
new basis, but we could for example break ties toward the column that maximizes a0j
or the one with the smallest index. The candidate variables in our example are x1 and
x2, so let us choose x1. The pivot operation will cause this variable to enter the basis.

Choosing the pivot row

If aij 6 0 for all i, then the problem is unbounded and the objective can be increased
by an arbitrary amount. Otherwise we choose a row i ∈ {i ′ : ai ′j > 0} that minimizes
ai0/aij. This row is called the pivot row, and aij is called the pivot. If multiple rows
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minimize ai0/aij, the problem has a degenerate BFS. In our example there is a unique
choice, corresponding to variable z2. The pivot operation will cause this variable to
leave the basis.

Pivoting

The purpose of the pivoting step is to get the tableau into the appropriate form for the
new BFS. For this, we multiply row i by 1/aij and add a −(akj/aij) multiple of row i
to each row k 6= i, including the last one. Our choice of the pivot row as a row that
minimizes ai0/aij turns out to be crucial, as it guarantees that the solution remains
feasible after pivoting. In our example, we need to subtract the second row from both
the first and the last row, after which the tableau looks as follows:

x1 x2 z1 z2 ai0

z1 0 3 1 −1 3

x1 1 −1 0 1 3

a0j 0 2 0 −1 −3

Note that the second row now corresponds to variable x1, which has replaced z2 in the
basis.

We are now ready to choose a new pivot column. In our example, one further
iteration yields the following tableau:

x1 x2 z1 z2 ai0

x2 0 1 1
3

−1
3

1

x1 1 0 1
3

2
3

4

a0j 0 0 −2
3

−1
3

−5

This corresponds to the BFS where x1 = 4, x2 = 1, and z1 = z2 = 0, with an objective
of −5. All entries in the last row are non-positive, so this solution is optimal.

3.5 Degeneracies and Cycling

In the absence of degeneracies, the value of the objective function increases in every
iteration of the simplex method, and an optimal solution or a certificate for unbound-
edness is found after a finite number of steps. When the simplex method encounters a
degenerate BFS, however, it may remain at the same BFS despite changing basis. This
would obviously cause the value of the objective function to remain the same as well,
and the simplex method may in fact cycle indefinitely through a number of bases that
all represent the same BFS.

Such cycling can be avoided by a more careful choice of pivot rows and columns,
and thus of the variables entering and leaving the basis. Bland’s rule achieves this by
fixing some ordering of the variables and then choosing, among all variables that could
enter and leave in a given iteration, those that are minimal according to the ordering.



4 Advanced Simplex Procedures

4.1 The Two-Phase Simplex Method

The LP we solved in the previous lecture allowed us to find an initial BFS very easily.
In cases where such an obvious candidate for an initial BFS does not exist, we use an
additional phase I to find a BFS. In phase II we then proceed as in the previous lecture.

Consider the LP to
maximize −6x1 − 3x2

subject to x1 + x2 > 1

2x1 − x2 > 1

3x2 6 2

x1, x2 > 0,

and introduce slack variables to obtain

maximize −6x1 − 3x2

subject to x1 + x2 − z1 = 1

2x1 − x2 − z2 = 1

3x2 + z3 = 2

x1, x2, z1, z2, z3 > 0.

Unfortunately, the basic solution with x1 = x2 = 0, z1 = z2 = −1, and z3 = 2 is
not feasible. We can, however, add an artificial variable to the left-hand side of each
constraint where the slack variable and the right-hand side have opposite signs, and
then minimize the sum of the artificial variables starting from the obvious BFS where
the artificial variables are non-zero instead of the corresponding slack variables. In the
example, we

minimize y1 + y2

subject to x1 + x2 − z1 + y1 = 1

2x1 − x2 − z2 + y2 = 1

3x2 + z3 = 2

x1, x2, z1, z2, z3, y1, y2 > 0,

and the goal of phase I is to solve this LP starting from the BFS where x1 = x2 = z1 =
z2 = 0, y1 = y2 = 1, and z3 = 2. If the original problem is feasible, we will be able
to find a BFS where y1 = y2 = 0. This automatically gives us an initial BFS for the
original problem.

In summary, the two-phase simplex method proceeds as follows:

19
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1. Bring the constraints into equality form. For each constraint in which the slack
variable and the right-hand side have opposite signs, or in which there is no slack
variable, add a new artificial variable that has the same sign as the right-hand
side.

2. Phase I: minimize the sum of the artificial variables, starting from the BFS where
the absolute value of the artificial variable for each constraint, or of the slack
variable in case there is no artificial variable, is equal to that of the right-hand
side.

3. If some artificial variable has a positive value in the optimal solution, the original
problem is infeasible; stop.

4. Phase II: solve the original problem, starting from the BFS found in phase I.

While the original objective is not needed for phase I, it is useful to carry it along
as an extra row in the tableau, because it will then be in the appropriate form at
the beginning of phase II. In the example, phase I therefore starts with the following
tableau:

x1 x2 z1 z2 z3 y1 y2

y1 1 1 −1 0 0 1 0 1

y2 2 −1 0 −1 0 0 1 1

z3 0 3 0 0 1 0 0 2

II −6 −3 0 0 0 0 0 0

I 3 0 −1 −1 0 0 0 2

Note that the objective for phase I is written in terms of the variables that are not in
the basis. This can be obtained by first writing it in terms of y1 and y2, such that
we have −1 in the columns for y1 and y2 and 0 in all other columns because we are
maximizing −y1 − y2, and then adding the first and second row to make the entries
for all variables in the basis equal to zero.

Phase I now proceeds by pivoting on a21 to get

x1 x2 z1 z2 z3 y1 y2

0 3
2

−1 1
2

0 1 −1
2

1
2

1 −1
2

0 −1
2

0 0 1
2

1
2

0 3 0 0 1 0 0 2

II 0 −6 0 −3 0 0 3 3

I 0 3
2

−1 1
2

0 0 −3
2

1
2
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and on a14 to get
x1 x2 z1 z2 z3 y1 y2

0 3 −2 1 0 2 −1 1

1 1 −1 0 0 1 0 1

0 3 0 0 1 0 0 2

II 0 3 −6 0 0 6 0 6

I 0 0 0 0 0 −1 −1 0

Note that we could have chosen a12 as the pivot element in the second step, and would
have obtained the same result.

This ends phase I as y1 = y2 = 0, and we have found a BFS for the original problem
with x1 = z2 = 1, z3 = 2, and x2 = z1 = 0. After dropping the columns for y1 and y2
and the row corresponding to the objective for phase I, the tableau is in the right form
for phase II:

x1 x2 z1 z2 z3

0 3 −2 1 0 1

1 1 −1 0 0 1

0 3 0 0 1 2

0 3 −6 0 0 6

By pivoting on a12 we obtain the following tableau, corresponding to an optimal solu-
tion of the original problem with x1 = 2/3, x2 = 1/3, and value −5:

x1 x2 z1 z2 z3

0 1 −2
3

1
3

0 1
3

1 0 −1
3

−1
3

0 2
3

0 0 2 −1 1 1

0 0 −4 −1 0 5

It is worth noting that the problem we have just solved is the dual of the LP in
Example 2.3, which we solved in the previous lecture, augmented by the constraint
3x2 6 2. Ignoring the column and row corresponding to z3, the slack variable for this
new constraint, the final tableau is essentially the negative of the transpose of the final
tableau we obtained in the previous lecture. This makes sense because the additional
constraint is not tight in the optimal solution, as we can see from the fact that z3 6= 0.

4.2 The Dual Simplex Method

The (primal) simplex method maintains feasibility of the primal solution along with
complementary slackness and seeks feasibility of the dual solution. Alternatively one
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could maintain feasibility of the dual solution and complementary slackness and seek
feasibility of the primal solution. This is known as the dual simplex method.

One situation where the dual simplex method can be useful is when an initial feasible
solution for the dual is easier to find than one for the primal. Consider the following
LP, to which we have already added slack variables z1 and z2:

minimize 2x1 + 3x2 + 4x3

subject to x1 + 2x2 + x3 − z1 = 3

2x1 − x2 − 3x3 − z2 = 4

x1, x2, x3, z1, z2 > 0.

The primal simplex algorithm would have to use two phases, since the solution where
z1 = −3 and z2 = −4 is not feasible. On the other hand, c > 0, so the dual solution
with λ1 = λ2 = 0 satisfies cT − λTA > 0 and is therefore feasible. We obtain the
following tableau:

−1 −2 −1 1 0 −3

−2 1 3 0 1 −4

2 3 4 0 0 0

In the dual simplex algorithm the pivot is selected by picking a row i such that ai0 < 0
and a column j ∈ {j ′ : aij ′ < 0} that minimizes −a0j/aij. Pivoting then works just like
in the primal algorithm. In the example we can pivot on a21 to obtain

0 −5
2

−5
2

1 −1
2

−1

1 −1
2

−3
2

0 −1
2

2

0 4 7 0 1 −4

and then on a12 to obtain

0 1 1 −2
5

1
5

2
5

1 0 −1 −1
5

−2
5

11
5

0 0 3 8
5

1
5

−28
5

We have reached the optimum of 28/5 with x1 = 11/5, x2 = 2/5, and x3 = 0.
It is worth pointing out that for problems in which all constraints are inequality

constraints, the optimal dual solution can also be read off from the final tableau. For
problems of this type, the last n − m columns of the extended constraint matrix A
correspond to the slack variables and therefore contain values 1 or −1 on the diagonal
and 0 everywhere else. For the same reason, the last n −m columns of the vector cT

are 0. The values of the dual variables, each of them with opposite sign of the slack
variable in the corresponding constraint, thus appear in the last n−m columns of the
vector (cT −λTA) in the last row of the final tableau. In our example, we have λ1 = 8/5
and λ2 = 1/5.
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4.3 Gomory’s Cutting Plane Method

Another situation where the dual simplex method can be useful is when we need to
add constraints to an already solved LP. While such constraints can make the primal
solution infeasible, they do not affect feasibility of the dual solution. We can therefore
simply add the constraint and continue running the dual LP algorithm from the current
solution until the primal solution again becomes feasible. The need to add constraints
to an LP for example arises naturally in Gomory’s cutting plane approach for solving
integer programs (IPs). An IP is a linear program with the additional requirement that
variables should be integral.

Assume that for a given IP we have already found an optimal (fractional) solution
x∗ with basis B, and let aij denote the entries of the final tableau, i.e., aij = (A−1

B Aj)i
and ai0 = (A−1

B b)i. If x∗ is not integral, there has to be a row i such that ai0 is not
integral, and for every feasible solution x,

xi +
∑
j∈N

baijcxj 6 xi +
∑
j∈N

aijxj = ai0.

The inequality holds because x is feasible, i.e., x > 0, the equality follows from the
properties of the final tableau. If x is integral, the left-hand side is integral as well, and
the inequality must still hold if the right-hand side is rounded down. Thus,

xi +
∑
j∈N

baijcxj 6 bai0c.

This inequality is satisfied by every (integral) feasible solution, but not by the current
solution x∗, for which x∗i = ai0. It corresponds to a so-called cutting plane, a hyper-
plane that separates the current solution x∗ from the feasible set. The idea behind the
cutting plane method is to iteratively add cutting planes and solve the resulting linear
programs using the dual simplex algorithm. As it turns out, this always leads to an
optimal integral solution after a finite number of steps.

Consider again the final tableau on Page 22, and assume that we are now looking
for an integral solution. By the first row, and assuming that all variables are integral
and non-negative,

x2 + x3 − 1z1 + 0z2 6 x2 + x3 −
2

5
z1 +

1

5
z2 =

2

5
,

and in fact
x2 + x3 − z1 6 0.

If we turn this into an equality constraint using a new slack variable, add it to the
tableau, and bring it into the right form by subtracting the first constraint from it, we
obtain

0 1 1 −2
5

1
5

0 2
5

1 0 −1 −1
5

−2
5

0 11
5

0 0 0 −3
5

−1
5

1 −2
5

0 0 3 8
5

1
5

0 −28
5
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After one more round of the dual simplex algorithm we reach the optimal integral
solution with x1 = 3 and x2 = x3 = 0:

0 1 1 −1 0 1 0

1 0 −1 1 0 −2 3

0 0 0 3 1 −5 2

0 0 3 1 0 1 −6

We will return to IPs, and learn about a different method for solving them that
often works better in practice, in a later lecture.



5 Complexity of Problems and Algorithms

We have seen that the simplex algorithm inspects basic feasible solutions and is guaran-
teed to find an optimal solution after a finite number of steps. We have also observed,
however, that the number of basic feasible solutions is generally exponential in n, and
going over all of them would take a long time. It is therefore an interesting question
whether there really are cases where the simplex algorithm has to look at a signifi-
cant fraction of the set of all basic feasible solutions. If this was the case, we could
then ask whether a similar property holds for every algorithm that solves the linear
programming problem.

5.1 Asymptotic Complexity

Formally, an instance of an optimization problem is given by its input. In the case of
linear programming, for example, this input consists of two vectors c ∈ Rn and b ∈ Rm

and a matrix A ∈ Rm×n. If each real value is represented using at most k bits, the
whole instance can be described by a string of (mn +m + n)k bits. We will refer to
this parameter as the input size.

A sensible way to define the complexity of a problem is via the complexity of the
fastest algorithm that solves it. The latter is typically measured in terms of the number
of arithmetic or bit-level operations as a function of the input size, ignoring lower-order
terms resulting from details of the implementation. The following notation is useful in
this context: given two functions f : N→ N and g : N→ N, write

� f(n) = O(g(n)) if there exist constants c and n0 such that for every n > n0,
f(n) 6 cg(n),

� f(n) = Ω(g(n)) if there exist constants c and n0 such that for every n > n0,
f(n) > cg(n), and

� f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

In other words, f(n) = O(g(n)) and f(n) = Ω(g(n)) mean that the asymptotic growth
of f(n) is respectively bounded from above or below by g(n), up to a constant factor.
Gaussian elimination for example shows that solving a linear system Ax = b with
A ∈ Rn×n has arithmetic complexity O(n3). The same bound can also be shown to
hold for bit complexity.

5.2 P, NP, and Polynomial-Time Reductions

In computational complexity theory, efficient computation is typically associated with
running times that are at most polynomial in the size of the input. In many situations

25
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of interest, and also in this course, it suffices to study complexity-theoretic questions for
decisions problems, i.e., problems where the answer is just a single bit. An example
of a decision problem in the context of linear programming would be the following:
given a linear program and a number k ∈ R, does the optimal solution of the linear
program have value less than k? Formally, a decision problem can be described by a
language L ⊆ {0, 1}∗, containing precisely the instances for which the answer is 1 in
some encoding as strings of bits.

One might expect the answer to the question whether a particular problem can be
solved efficiently to depend a lot on the details of the computational model one is using.
Quite surprisingly, this turns out not to be the case: all computational models that are
known to be physically realizable can simulate each other, and a particular model, the
Turing machine, can simulate all others with polynomial overhead. A Turing machine
has a finite number of states, finite control, and a readable and writable tape that can
store intermediary results as strings of bits. The Turing machine is started with the
input written on the tape. It then runs for a certain number of steps, and when it
halts the output is inferred from the state or the contents of some designated part of
the tape. In the context of decision problems, a Turing machine is said to accept input
x ∈ {0, 1}∗ if it halts with output 1.

The most important open problem in complexity theory is concerned with the rela-
tionship between the complexity classes P and NP. P is the class of decision problems
that can be solved in polynomial time. Formally, a function f : {0, 1}∗ → {0, 1}∗ is
computable in polynomial time if there exists a Turing machine M and k ∈ N with
the following property: for every x ∈ {0, 1}∗, if M is started with input x, then after
O(|x|k) steps it halts with output f(x). NP is the class of decision problems for which a
given solution can be verified in polynomial time. Formally, L ⊆ {0, 1}∗ is in NP if there
exists a Turing machineM and k ∈ N with the following property: for every x ∈ {0, 1}∗,
x ∈ L if and only if there exists a certificate y ∈ {0, 1}∗ with |y| = O(|x|k) such that
M accepts (x, y) after O(|x|k) steps. The name NP, for nondeterministic polynomial
time, derives from an alternative definition as the class of decision problems solvable
in polynomial time by a nondeterministic Turing machine. A nondeterministic Turing
machine is a Turing machine that can make a non-deterministic choice at each step of
its computation and is required to accept x ∈ L only for some sequence of these choices.
Finding a solution is obviously at least as hard as verifying a solution described by a
certificate. Most people believe that it must be strictly harder, i.e., that P 6= NP.

The relative complexity of different decision problems can be captured in terms
of reductions. Intuitively, a reduction from one problem to another transforms every
instance of the former into an equivalent instance of the latter, where equivalence
means that both of them yield the same decision. For this transformation to preserve
the complexity of the original problem, the reduction should of course have less power
than is required to actually solve the original problem. In our case it makes sense to use
reductions that can be computed in polynomial time. A decision problem L ⊆ {0, 1}∗ is
called polynomial-time reducible to a decision problem K ⊆ {0, 1}∗, denoted L 6p K,
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P

NP-complete

NP

NP-hard

Figure 5.1: Relationship between P, NP, and the sets of NP-hard and NP-complete
problems. It is not known whether the intersection between P and the set of NP-
complete problems is empty. If it is not, then P = NP.

if there exists a function f : {0, 1}∗ → {0, 1}∗ computable in polynomial time such that
for every x ∈ {0, 1}∗, x ∈ L if and only if f(x) ∈ K. A problem K is called NP-hard if
for every problem L in NP, L 6p K. A problem is called NP-complete if it is both in
NP and NP-hard. The relation 6p is transitive. NP-complete problems are thus the
hardest problems in NP, in the sense that membership of any NP-complete problem in
P would imply that P = NP. The existence of NP-complete problems is less obvious,
but holds nonetheless. Figure 5.1 illustrates the relationship between P and NP.

What is nice about the asymptotic worst-case notions of complexity considered
above is that they do not require any assumptions about low-level details of the imple-
mentation or about the type of instances we will encounter in practice. We do, however,
have to be a bit careful in interpreting results that use these notions. The fact that a
problem is in P does not automatically mean that it can always be solved efficiently
in practice, as the constant overhead hidden in the asymptotic notation might be pro-
hibitively large. In fact, it does not even have to be the case that an algorithm with
a polynomial worst-case running time is better in practice than an algorithm whose
worst-case running time is exponential. Experience has shown, however, that for prob-
lems in P one is usually able to find algorithms that are fast in practice. On the other
hand, NP-hardness of a problem does not mean that it can never be solved in prac-
tice, and we will consider approaches for solving NP-hard optimization problems in a
later lecture. NP-hardness is still a very useful concept because it can help to direct
efforts away from algorithms that are always efficient and toward algorithms with good
practical performance.

5.3 Some NP-Complete Problems

The first problem ever shown to be NP-complete is the Boolean satisfiability problem
(SAT), which asks whether a given Boolean formula is satisfiable. A Boolean formula
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consists of a set of clauses Ci ⊆ X for i = 1, . . . ,m, where X = {x1, . . . , xn, x̄1, . . . , x̄n} is
a set of literals. It is called satisfiable if there exists a set S ⊆ X such that |S∩{xj, x̄j}| 6 1
for all j = 1, . . . , n and |S ∩ Ci| > 1 for all i = 1, . . . ,m. Since the set S can serve as a
certificate, it is easy to see that SAT is in NP. NP-hardness can be shown by encoding
the operation of an arbitrary nondeterministic Turing machine as a Boolean formula.

Theorem 5.1 (Cook, 1971; Levin, 1973). Boolean satisfiability is NP-complete.

An instance of the 0−1 integer programming problem consists of a matrix A ∈
Zm×n and a vector b ∈ Zm, and asks whether there exists a vector x ∈ {0, 1}n such
that Ax > b. Note that this is the feasibility problem associated with a special case
of the integer programs we encountered in the previous lecture, in the context of the
cutting plane method.

Theorem 5.2 (Karp, 1972). 0−1 integer programming is NP complete.

Proof. Membership in NP is again easy to see. NP-hardness can be shown by a reduc-
tion from SAT. Consider a Boolean formula with literals X = {x1, . . . , xn, x̄1, . . . , x̄n}

and clauses Ci, i = 1, . . . ,m, and assume without loss of generality that |Ci∩{xj, x̄j}| 6 1
for all i = 1, . . . ,m and j = 1, . . . , n. Now let A ∈ Zm×n and b ∈ Zm be given by

aij =


1 if xj ∈ Ci

−1 if x̄j ∈ Ci
0 otherwise

for i = 1, . . . ,m and j = 1, . . . , n,

bi = 1− |{ j : x̄j ∈ Ci}| for i = 1, . . . ,m.

Intuitively, this integer program represents each Boolean variable by a binary variable,
and each clause by a constraint that requires its literals to sum up to at least 1. To
this end, the left hand side of the contraint contains xj if the corresponding Boolean
variable occurs as a positive literal in the clause, and (1− xj) if it occurs as a negative
literal. The above form is then obtained by moving all constants to the right hand side.
It is now easy to see that there exists x ∈ {0, 1}n such that Ax > b if and only if the
Boolean formula is satisfiable.

The last problem we consider is the traveling salesman problem (TSP). For a given
matrix A ∈ Nn×n and a number k ∈ N, it asks whether there exists a permutation
σ ∈ Sn such that aσ(n)σ(1) +

∑n−1
i=1 aσ(i)σ(i+1) 6 k. If the entries of the matrix A are

interpreted as pairwise distances among a set of locations, we are looking for a tour
with a given maximum length that visits every location exactly once and returns to
the starting point. The special case where A is a symmetric binary matrix and k = 0

is also known as the Hamiltonian cycle problem.

Theorem 5.3 (Karp, 1972). TSP is NP-complete, even if A ∈ {0, 1}n×n symmetric
and k = 0.



6 The Complexity of Linear Programming

6.1 A Lower Bound for the Simplex Method

The complexity of the simplex method depends on two factors, the number of steps in
each round and the number of iterations. It is not hard to see that the tableau form
requires O(mn) arithmetic operations in each round. We will now describe an instance
of the linear programming problem, and a specific pivot rule, such that the simplex
method requires an exponential number of iterations to find the optimal solution. For
this, we construct a polytope with an exponential number of vertices, and a so-called
spanning path that traverses all of the vertices, in such a way that consecutive vertices
are adjacent and a certain linear objective strictly increases along the path. This shows
that the simplex method requires an exponential number of iterations in the worst case,
for the specific pivoting rule that follows the spanning path.

Consider the unit cube in Rn, given by the constraints

0 6 xi 6 1 for i = 1, . . . , n.

The unit cube has 2n vertices, because either one of the two constraints 0 6 xi and
xi 6 1 can be active for each dimension i. Further consider a spanning path of the unit
cube constructed inductively as follows. In dimension 1, the path moves from x1 = 0

to x1 = 1. In dimension k, the path starts with xk = 0 and traverses the spanning path
for dimensions x1 to xk−1, which exists by the induction hypothesis. It then moves to
the adjacent vertex with x1 = 1, and traverses the spanning path for dimensions x1 to
xk−1 in the reverse direction. This construction is illustrated of the left of Figure 6.1.

Now assume that we are trying to minimize the objective −xn, and observe that so
far it decreases only once, namely in the middle of the path. This can easily be fixed.
Let ε ∈ (0, 1/2), and consider the perturbed unit cube with constraints

ε 6 x16 1,

εxi−1 6 xi 6 1− εxi−1 for i = 2, . . . , n
(6.1)

An example is shown on the right of Figure 6.1. It is easily verified that xn now
increases strictly along the path described above. We obtain the following result.

Theorem 6.1. Consider the linear programming problem of minimizing −xn sub-
ject to (6.1). Then there exists a pivoting rule and an initial basic feasible solution
such that the simplex method requires 2n − 1 iterations before it terminates.

Observe that each of the numbers in the description of the perturbed unit cube can
be represented using O(log ε−n) = O(n) bits, the number of iterations is therefore also
exponential in the input size.

29
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x1

x2

x3

x1

x2

(ε, ε2)

(1, ε)

(1, 1− ε)

(ε, 1− ε2)

Figure 6.1: Spanning paths of the three-dimensional unit cube (left) and of the per-
turbed two-dimensional unit cube with ε = 1/10 (right)

Interestingly, the first and last vertices of the spanning paths constructed above are
adjacent, which means that a different pivoting rule could reach the optimal solution
in a single step. However, similar worst-case instances have been constructed for many
other pivot rules, and no pivot rule is known to guarantee a polynomial worst-case run-
ning time. The diameter of a polytope, i.e., the maximum number of steps necessary
to get from any vertex to any other vertex, provides a lower bound of the number of
iterations of the simplex method that is independent of the pivoting rule. The Hirsch
conjecture, which states that the diameter of a polytope in dimension d with n facets
cannot be greater than n−d, was disproved in 2010. Whether the diameter is bounded
by a polynomial function of n and d remains open.

In practice, the performance of the simplex method is often much better, usually
linear in the number of constraints. However, it is not clear how the intuition of a good
average-case performance could be formalized, because this would require a natural
probability distribution over instances of the linear programing problem. This is a
problem that applies more generally to the average-case analysis of algorithms.

6.2 The Idea for a New Method

Again consider the linear program (2.2) and its corresponding dual:

min { cTx : Ax = b, x > 0 }

max {bTλ : ATλ 6 c }.

By strong duality, each of these problems has a bounded optimal solution if and only
if the following set of linear constraints is feasible:

cTx = bTλ, Ax = b, x > 0, ATλ 6 c.

We can thus concentrate on the following decision problem: given a matrix A ∈ Rm×n

and a vector b ∈ Rm, is the set {x ∈ Rn : Ax > b} non-empty? We will now consider a
method for solving this problem, known as the ellipsoid method.
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P

aTi x > bi

xt

Et

xt+1

Et+1

aTi x > a
T
i xt

Figure 6.2: A step of the ellipsoid method where xt /∈ P but xt+1 ∈ P. The polytope P
and the half-ellipsoid that contains it are shaded.

We need some definitions. A symmetric matrix D ∈ Rn×n is called positive definite
if xTDx > 0 for all non-zero x ∈ Rn. A set of vectors E ⊆ Rn given by

E = E(z,D) = { x ∈ Rn : (x− z)TD−1(x− z) 6 1 }

for a positive definite symmetric matrix D ∈ Rn×n and a vector z ∈ Rn is called an
ellipsoid with center z. If D ∈ Rn×n is non-singular and b ∈ Rn, then the mapping S :

Rn → Rn given by S(x) = Dx+b is called an affine transformation. We further write
S(L) for the image of L ⊆ Rn under S, i.e., S(L) = {y ∈ Rn : y = S(x) for some x ∈ Rn}.
The volume of a set L ⊆ Rn if finally defined as Vol(L) =

∫
x∈L dx.

Let P = {x ∈ Rn : Ax > b} for some A ∈ Rn×n and b ∈ Rm. To decide whether
P is non-empty, the ellipsoid method generates a sequence {Et} of ellipsoids Et with
centers xt. If xt ∈ P, then P is non-empty and the method stops. If xt /∈ P, then
one of the constraints is violated, i.e., there exists a row j of A such that aTj xt < bj.
Therefore, P is contained in the half-space {x ∈ Rn : aTj x > aTj xt}, and in particular in
the intersection of this half-space with Et, which we will call a half-ellipsoid.

The following is the key result underlying the ellipsoid method. It states that there
exists a new ellipsoid Et+1 that contains the half-ellipsoid and whose volume is only a
fraction of the volume of Et. This situation is illustrated in Figure 6.2.

Theorem 6.2. Let E = E(z,D) be an ellipsoid in Rn and a ∈ Rn non-zero. Consider
the half-space H = {x ∈ Rn : aTx > aTz}, and let

z ′ = z+
1

n+ 1

Da√
aTDa

,

D ′ =
n2

n2 − 1

(
D−

2

n+ 1

DaaTD

aTDa

)
.
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Then D ′ is symmetric and positive definite, and therefore E ′ = E(z ′, D ′) is an
ellipsoid. Moreover, E ∩H ⊆ E ′ and Vol(E ′) < e−1/(2(n+1))Vol(E).

If the procedure is repeated, it will either find a point in P or generate smaller and
smaller ellipsoids containing P. In the next lecture, this procedure will be turned into
an algorithm by observing that the volume of P must either be zero or larger than a
certain threshold that depends on the size of the description of P.

We now sketch the proof of Theorem 6.2. We use the following lemma about affine
transformations, which is not hard to prove.

Lemma 6.3. Let S : Rn → Rn be an affine transformation given by S(x) = Dx + b

and let L ⊆ Rn. Then, Vol(S(L)) = |det(D)|Vol(L).

Proof sketch of Theorem 6.2. We prove the theorem for E = {x ∈ Rn : xTx 6 1} and
H = {x ∈ Rn : x1 > 0}. Since every pair of an ellipsoid and a hyperplane as in the
statement of the theorem can be obtained from E and H via some affine transformation,
the general case then follows by observing that affine transformations preserve inclusion
and, by Lemma 6.3, relative volume of sets.

Let e1 = (1, 0, . . . , 0)T . Then,

E ′ = E

(
e1

n+ 1
,
n2

n2 − 1

(
I−

2

n+ 1
e1e

T
1

))
=

{
x ∈ Rn :

n2 − 1

n2

n∑
i=1

x2i +
1

n2
+
2(n+ 1)

n2
x1(x1 − 1) 6 1

}
.

Consider an arbitrary x ∈ E ∩ H, and observe that 0 6 x1 6 1 and
∑n
i=1 x

2
i 6 1. It is

easily verified that x ∈ E ′ and thus E ∩H ⊆ E ′.
Now consider the affine transformation F : Rn → Rn given by

F(x) =
e1

n+ 1
+

(
n2

n2 − 1

(
I−

2

n+ 1
e1e

T
1

)) 1
2

x.

It is not hard to show that E ′ = F(E). Therefore, by Lemma 6.3,

Vol(E ′)
Vol(E)

=

√
det
(

n2

n2 − 1

(
I−

2

n+ 1
e1e

T
1

))

=

(
n2

n2 − 1

)n
2
(
1−

2

n+ 1

) 1
2

=
n

n+ 1

(
n2

n2 − 1

)n−1
2

=

(
1−

1

n+ 1

)(
1+

1

n2 − 1

)n−1
2

< e−
1
n+1

(
e

1

n2−1

)n−1
2

= e−
1

2(n+1) ,

where the strict inequality follows by using twice that 1+ a < ea for all a 6= 0.

A more detailed description of the ellipsoid method and an overview of the proof of
correctness will be given in the next lecture.



7 The Ellipsoid Method

Consider a polytope P = {x ∈ Rn : Ax > b}, given by a matrix A ∈ Zm×n and a vector
b ∈ Zm. Assume for now that P is bounded and either empty or full-dimensional. Here,
P is called full-dimensional if Vol(P) > 0. The ellipsoid method takes the following
steps to decide whether P is non-empty:

1. Let U be the largest absolute value among the entries of A and b, and define

v0 = 0, D0 = n(nU)
2nI, E0 = E(v0, D0),

V = (2n)n(nU)n
2

, v = n−n(nU)−n
2(n+1),

t∗ = d2(n+ 1) log(V/v)e.
2. For t = 0, . . . , t∗, do the following:

(a) If t = t∗ then stop; P is empty.

(b) If xt ∈ P then stop; P is non-empty.

(c) Find a violated constraint, i.e., a row j such that aTj xt < bj.

(d) Let Et+1 = E(xt+1, Dt+1) with

xt+1 = xt +
1

n+ 1

Dtaj√
aTjDtaj

,

Dt+1 =
n2

n2 − 1

(
Dt −

2

n+ 1

Dtaja
T
jDt

aTjDtaj

)
.

The ellipsoid method is a so-called interior point method, because it traverses the
interior of the feasible set rather than following its boundary.

7.1 Proof of Correctness

Observe that E0 is a ball centered at the origin. Given Theorem 6.2, and assuming
that (i) P ⊆ E0 and Vol(E0) < V and that (ii) P is either empty or Vol(P) > v, correct-
ness of the ellipsoid method is easy to see: it either finds a point in P, thereby proving
that P is non-empty, or an ellipsoid Et∗ ⊇ P with Vol(Et∗) < e−t

∗/2(n+1)Vol(E0) <
(v/V)Vol(E0) < v, in which case P must be empty.

We now show that the above assumptions hold, starting with the inclusion of P in
E0 and the volume of E0. We use the following lemma.

Lemma 7.1. Let A ∈ Zm×n and b ∈ Rm. Let U be the largest absolute value among
the entries of A and b. Then every extreme point x of the polytope P = {x ′ ∈ Rn :

Ax ′ > b} satisfies −(nU)n 6 xi 6 (nU)n for all i = 1, . . . , n.

33



34 7 · The Ellipsoid Method

Proof. Any extreme point x can be written as x = Â−1b̂ for some invertible submatrix
Â ∈ Zn×n of A and subvector b̂ ∈ Rn of b, corresponding to n linearly independent
constraints that are active at x. By Cramer’s rule,

xi =
det Âi

det Â
,

where Âi is the matrix obtained by replacing the ith column of Â by b̂. Then, for
i = 1, . . . , n,

∣∣det Âi∣∣ = ∣∣∣∣∣∑
σ∈Sn

(−1)|σ|
n∏
j=1

âij,σ(j)

∣∣∣∣∣ 6 ∑
σ∈Sn

n∏
i=1

|âij,σ(j)| 6 n!U
n 6 (nU)n,

where |σ| is the number of inversions of permutation σ ∈ Sn, i.e., the number of pairs
i, j such that i < j and σ(i) > σ(j). Moreover, det(Â) 6= 0 since Â is invertible,
and |det(Â)| > 1 since all entries of A are integers. Therefore, |xi| 6 (nU)n for all
i = 1, . . . , n.

If P is bounded, it is therefore contained in a cube with side length 2(nU)n. The
ball E0 contains this cube and is itself contained in a cube of volume V = (2n)n(nU)n

2 ,
and thus P ⊆ E0 and Vol(E0) 6 V.

We now turn to the lower bound on the volume of P in the case when it is non-empty.

Lemma 7.2. Consider a full-dimensional and bounded polytope P = {x ∈ Rn : Ax >
b}, where A ∈ Zm×n and b ∈ Zm and all entries have absolute value at most U.
Then Vol(P) > n−n(nU)−n

2(n+1).

Proof sketch. If P is full-dimensional and bounded and has at least one extreme point,
it has n+ 1 extreme points v0, . . . , vn that do not lie on a common hyperplane. Let

Q =

{
x ∈ Rn : x =

n∑
k=0

λkv
k,

n∑
k=0

λk = 1, λk > 0

}
.

Clearly, Q ⊆ P and thus Vol(Q) 6 Vol(P). It can now be shown that

Vol(Q) =
1

n!

∣∣∣∣∣det
(
1 · · · 1

v0 · · · vn

)∣∣∣∣∣ .
The ith coordinate of vk is a rational number pki /q

k
i , and by the same argument as in

the proof of Lemma 7.1, |qki | 6 (nU)n and |pki | > 1. Therefore,

Vol(P) > Vol(Q) >
1

n!

∣∣∣∣ 1∏n
i=1

∏n
k=0 q

k
i

∣∣∣∣
>
1

nn
1∏n

i=1

∏n
k=0(nU)

n
= n−n(nU)−n

2(n+1).



7.2 · The Complexity of the Ellipsoid Method 35

So far we have assumed that the polytope P is bounded and full-dimensional. We
finally lift these assumptions. By Lemma 7.1, all extreme points of P lie in the set
PB = {x ∈ P : |xi| 6 (nU)n for all i = 1, . . . , n}. Moreover, P is non-empty if and only
if it has an extreme point. We can therefore test for non-emptiness of PB instead of P,
and PB is a bounded polytope.

For a polytope P that is not full-dimensional, it is not the case that Vol(P) < v im-
plies P = ∅, and the ellipsoid method can fail. The following result shows, however, that
we can slightly perturb P to obtain a polytope that is either empty or full-dimensional.

Lemma 7.3. Let P = {x ∈ Rn : Ax > b}, where A ∈ Zm×n and b ∈ Zm and all entries
have absolute value at most U. Let

Pε = { x ∈ Rn : Ax > b− εe}

where
ε =

1

2(n+ 1)
((n+ 1)U)

−(n+1)

and eT = (1, . . . , 1). Then, Pε = ∅ if and only if P = ∅, and either Pε = ∅ or
Vol(P) > 0.

Proof. We first show that emptiness of P implies emptiness of Pε. If P is empty, then the
linear program min{0Tx : Ax > b} is infeasible and its dual max{λTb : λTA = 0T , λ > 0}
is unbounded. There thus has to exist a basic feasible solution λ to the n+1 constraints
λTA = 0T , λTb = 1, and λ > 0, and, by Lemma 7.1, λi 6 ((n+ 1)U)

n+1 for all
i. Since λ is a BFS, at most n + 1 of its components are non-zero, and therefore∑m
i λi 6 (n + 1) ((n+ 1)U)

n+1 and λT (b − εe) = 1 − ε
∑m
i=1 λi >

1
2
> 0. This means

that the dual remains unbounded, and the primal infeasible, if we replace b by b− εe,
and thus Pε = ∅.

It remains to be shown that Pε is full-dimensional if P is non-empty. For this,
consider x ∈ P and let

Y =
{
y ∈ Rn : xi −

ε

nU
6 yi 6 xi +

ε

nU
for all i = 1, . . . , n

}
.

It is easy to see that Y has volume (2ε/(nU))n > 0 and that Y ⊆ Pε. Thus Pε must be
full-dimensional.

The general case of polytopes P that potentially are unbounded and not full-
dimensional can thus be handled by computing the bounded polytope PB, perturbing
it, and then running the ellipsoid method on the resulting polytope.

7.2 The Complexity of the Ellipsoid Method

For a bounded and full-dimensional polytope P given by a matrix A and vector b with
integer entries bounded by U, the ellipsoid method decides whether P is empty or not in
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O(n log(V/v)) = O(n4 log(nU)) iterations. It can further be shown that O(n6 log(nU))
iterations suffice even when P might be unbounded or not full-dimensional.

For the ellipsoid method to have a polynomial running time, however, the number
of operations in each iteration also has to be bounded by a polynomial function of n
and logU. A potential problem is that the computation of the new ellipsoid involves
taking a square root. This means that in general calculations cannot be done exactly,
and intermediate results have to be stored with sufficiently many bits to ensure that
errors don’t accumulate. It turns out that the algorithm can be made to work, with the
same asymptotic number of iterations as above, when only O(n3 logU) bits are used
for each intermediate value. The proof of this result is very technical.

The ellipsoid method has high theoretical significance, because it provided the first
polynomial-time algorithm for linear programming and can also be applied to larger
classes of convex optimization problems. In practice, however, both the simplex method
and a different interior point method, Karmarkar’s algorithm, tend to be much faster.
It turns out that the latter also has a better worst-case performance than the ellipsoid
method.



8 Graphs and Flows

Lectures 8 through 11 will be concerned with flow problems on graphs and networks.
A directed graph, or network, G = (V, E) consists of a set V of vertices and a set

E ⊆ V × V of edges. When the relation E is symmetric, G is called an undirected
graph, and we can write edges as unordered pairs {i, j} ∈ E for i, j ∈ V. The degree of
vertex i ∈ V in graph G is the number |{j ∈ V : (i, j) ∈ E or (j, i) ∈ E}| of other vertices
connected to it by an edge. A walk from u ∈ V to w ∈ V is a sequence of vertices
v1, . . . , vk ∈ V such that v1 = u, vk = w, and (vi, vi+1) ∈ E for i = 1, . . . , k − 1.
In a directed graph, we can also consider an undirected walk where (vi, vi+1) ∈ E or
(vi+1, vi) ∈ E for i = 1, . . . , k − 1. A walk is a path if v1, . . . , vk are pairwise distinct,
and a cycle if furthermore v1 = vk. A graph that does not contain any cycles is called
acyclic. A graph is called connected if for every pair of vertices u, v ∈ V there is an
undirected path from u to v. A tree is a graph that is connected and acyclic. A graph
G ′ = (V ′, E ′) is a subgraph of graph G = (V, E) if V ′ ⊆ V and E ′ ⊆ E. In the special
case where G ′ is a tree and V ′ = V, it is called a spanning tree of G.

8.1 Minimum Cost Flows

Consider a network G = (V, E) with |V | = n, and let b ∈ Rn. Here, bi denotes the
amount of flow that enters or leaves the network at vertex i ∈ V. If bi > 0, we say
that i is a source supplying bi units of flow. If bi < 0, we say that i is a sink with a
demand of |bi| units of flow. Further let C,M,M ∈ Rn×n, where cij denotes the cost
associated with one unit of flow on edge (i, j) ∈ E, and mij and mij respectively denote
lower and upper bounds on the flow across this edge. The minimum cost flow problem
then asks for flows xij that conserve the flow at each vertex, respect the upper and
lower bounds, and minimize the overall cost. Formally, x ∈ Rn×n is a minimum cost
flow of G if it is an optimal solution of the following optimization problem:

minimize
∑

(i,j)∈E

cijxij

subject to bi +
∑

j:(j,i)∈E

xji =
∑

j:(i,j)∈E

xij for all i ∈ V,

mij 6 xij 6 mij for all (i, j) ∈ E.

Note that
∑
i∈V bi = 0 is required for any feasible flows to exist, and we make this

assumption in the following. We further assume without loss of generality that the net-
work G is connected. Otherwise the problem can be decomposed into several smaller
problems that can be solved independently. An important special case is that of un-
capacitated flows, where mij = 0 and mij =∞ for all (i, j) ∈ E.
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Figure 8.1: A flow network with a spanning tree T indicated by hatched edges. Since
the network is uncapacitated, we have to set L = E \ T and U = ∅, and thus flows are
zero for edges not in T . Flows for the edges in T can be determined inductively starting
from the leafs. Note that the resulting spanning tree solution is feasible.

The minimum cost flow problem is a linear programming problem, with constraints
of the form Ax = b where

aik =


1 kth edge starts at vertex i,

−1 kth edge ends at vertex i,

0 otherwise.

Given this rather simple structure, we may hope that minimum cost flow problems are
easier to solve than general linear programs. Indeed, we will see that basic feasible
solutions of a minimum cost flow problem take a special form, and will obtain an
algorithm that exploits this form.

8.2 Spanning Tree Solutions

Consider a minimum cost flow problem for a connected network G = (V, E). A solution
x to this problem is called spanning tree solution if there exists a spanning tree (V, T)
of G and two sets L,U ⊆ E with L ∩ U = ∅ and L ∪ U = E \ T such that xij = mij
if (i, j) ∈ L and xij = mij if (i, j) ∈ U. For every choice of T , L and U, the flow
conservation constraints uniquely determine the values xij for (i, j) ∈ T . An example
is shown in Figure 8.1.

It is not hard to show that the basic solutions of a minimum cost flow problem are
precisely its spanning tree solutions.

Theorem 8.1. A flow vector is a basic solution of a minimum cost flow problem
if and only if it is a spanning tree solution.
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8.3 The Network Simplex Method

We will now derive a variant of the simplex method, the network simplex method, that
works directly with spanning tree solutions. The network simplex method maintains
a feasible solution for the primal and a corresponding dual solution, but unlike the
simplex method does not guarantee that these two solutions satisfy complementary
slackness. Rather, it uses a separate condition to either establish both dual feasibility
and complementary slackness, and thus optimality, or identify a new spanning tree
solution.

The Lagrangian of the minimum cost flow problem is

L(x, λ) =
∑

(i,j)∈E

cijxij −
∑
i∈V

λi

( ∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji − bi

)
=
∑

(i,j)∈E

(cij − λi + λj)xij +
∑
i∈V

λibi

(8.1)

Let c̄ij = cij − λi + λj be the reduced cost of edge (i, j) ∈ E. Dual feasibility requires
that c̄ij > 0 whenever mij = ∞, and holds trivially if all edges are subject to finite
capacities. Minimizing L(x, λ) subject to the regional constraints mij 6 xij 6 mij for
(i, j) ∈ E further yields the following complementary slackness conditions:

c̄ij > 0 implies xij = mij,

c̄ij < 0 implies xij = mij, and

mij < xij < mij implies c̄ij = 0.

Assume that x is a basic feasible solution associated with sets T , U, and L. Then
the system of equations

λ|V | = 0, λi − λj = cij for all (i, j) ∈ T

has a unique solution, which in turn allows us to compute c̄ij for all edges (i, j) ∈ E.
Note that c̄ij = 0 for all (i, j) ∈ T by construction, so the third complementary slackness
condition is always satisfied.

Pivoting

If c̄ij > 0 for all (i, j) ∈ L and c̄ij 6 0 for all (i, j) ∈ U, dual feasibility and the first two
complementary slackness are satisfied as well, meaning that the solution is optimal.
Otherwise, consider an edge (i, j) that violates these conditions, and observe that this
edge and the edges in T forms a unique cycle C. Since (i, j) is the only edge in C
with non-zero reduced cost, we can decrease the objective by pushing flow along C to
increase xij if c̄ij is negative and decrease xij if c̄ij is positive. Doing so will change the
flow on all edges in C by the same amount, with the direction of the change depending
on whether a specific edge is oriented in the same or the opposite direction as (i, j).
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Figure 8.2: Flow network before and after a pivoting step. Edge (i, j) is labeled with
the vector (cij,mij,mij) and the current flow xij, and spanning trees are indicated by
hatched edges. In the situation shown on the left, we have λ3 = 0, λ2 = c23 + λ3 = 2,
and λ1 = c12 + λ2 = 5, and thus c̄13 = c13 − λ1 + λ3 = −4. If we push one unit of
flow around the cycle 1, 3, 2, 1, the flow on (2, 3) reaches the lower bound of m23 = 0

and we obtain a new spanning tree with edges (1, 2) and (1, 3). The new situation is
shown on the right. Now, λ3 = 0, λ1 = c13 + λ3 = 1, and λ2 = λ1 − c12 = −2, and
thus c̄23 = c23 − λ2 + λ3 = 4. Since this is positive and x23 = m23, we have found an
optimal solution.

Let B,B ⊆ C respectively denote the sets of edges whose flow is to decrease or
increase, and let

δ = min
{

min
(k,`)∈B

{xk` −mk`}, min
(k,`)∈B

{mk` − xk`}

}
.

be the maximum amount of flow that can be pushed along C. If δ = ∞, the problem
is unbounded. If δ = 0 or if the minimum is attained for more than one edge, the
problem is degenerate. Otherwise, pushing δ units of flow along C yields a unique edge
(k, `) ∈ C whose flow is either mk` or mk`. If (k, `) ∈ T , we obtain a new BFS with
spanning tree (T \ {(k, `)})∪ {(i, j)}. If instead (k, `) = (i, j), we obtain a new BFS where
(i, j) has moved from U to L, or vice versa. An example of the pivoting step is given in
Figure 8.2.

In the absence of degeneracies the value of the objective function decreases in every
iteration of the network simplex method, and an optimal solution or a certificate of
unboundedness is found after a finite number of iterations. If a degenerate solution is
encountered it will still be possible to identify a new spanning tree or even a new BFS,
but extra care may be required to ensure convergence. This is beyond the scope of this
course.

Finding an initial feasible spanning tree solution

Consider a minimum cost flow problem for a network (V, E) and assume without loss
of generality that mij = 0 for all (i, j) ∈ E. If this is not the case, we can instead
consider the problem obtained by setting mij to zero, mij to mij −mij, and replacing
bi by bi −mij and bj by bj +mij. A solution with flows xij for the new problem then
corresponds to a solution with flows xij +mij for the original problem.



8.4 · Integrality of Optimal Solutions 41

We now modify the problem such that the set of optimal solutions remains the same,
assuming that the problem was feasible, but an initial feasible spanning tree solution is
easy to find. For this, we introduce a dummy vertex d /∈ V and uncapacitated dummy
edges E ′ = {(i, d) : i ∈ V, bi > 0} ∪ {(d, i) : i ∈ V, bi < 0} with cost equal to

∑
(i,j)∈E cij.

It is easy to see that a dummy edge has positive flow in some optimal solution of the
new problem if and only if the original problem is infeasible. Furthermore, a feasible
spanning tree solution is now easily obtained by letting T = E ′, xid = bi for all i ∈ V
with bi > 0, xdi = −bi for all i ∈ V with bi < 0, and xij = 0 otherwise.

8.4 Integrality of Optimal Solutions

Since the network simplex method does not require any divisions, any finite optimal
solution it obtains for a problem with integer constants is also integral.

Theorem 8.2. Consider a minimum cost flow problem that is feasible and bounded.
If bi is integral for all i ∈ V and mij and mij are integral for all (i, j) ∈ E, then
there exists an integral optimal solution. If cij is integral for all (i, j) ∈ E, then
there exists an integral optimal solution to the dual.





9 Transportation and Assignment Problems

We will now consider several special cases of the minimum cost flow problem: the
transportation problem, the assignment problems, the maximum flow problem, and
the shortest path problem.

9.1 The Transportation Problem

In the transportation problem we are given a set of suppliers i = 1, . . . , n producing
si units of a good and a set of consumers j = 1, . . . ,m with demands dj such that∑n
i=1 si =

∑m
j=1 dj. The cost of transporting one unit of the good from supplier i to

consumer j is cij, and the goal is to match supply and demand while minimizing overall
transportation cost. This can be formulated as an uncapacitated minimum cost flow
problem on a bipartite network, i.e., a network G = (S ] C, E) with S = {1, . . . , n},
C = {1, . . . ,m}, and E ⊆ S × C. As far as optimal solutions are concerned, edges not
contained in E are equivalent to edges with a very large cost. We can thus restrict
our attention to the case where E = S × C, known as the Hitchcock transportation
problem :

minimize
n∑
i=1

m∑
j=1

cijxij

subject to
n∑
i=1

xij = dj for all j = 1, . . . ,m

m∑
j=1

xij = si for all i = 1, . . . , n

xij > 0 for all i, j.

It turns out that transportation problems already capture the full expressiveness of
minimum cost flow problems.

Theorem 9.1. Every minimum cost flow problem with finite capacities or non-
negative costs has an equivalent transportation problem.

Proof. Consider a minimum cost flow problem on a network G = (V, E) with supplies
or demands bi, capacities mij and mij, and costs cij. When constructing an initial
feasible tree solution in the previous lecture, we saw that we can assume without loss
of generality that mij = 0 for all i, j. We can further assume that all capacities are
finite: if some edge has infinite capacity but costs are non-negative then setting the
capacity of this edge to a large enough number, for example

∑
i∈V |bi|, does not affect

the optimal solution of the problem.
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i, jmij

i
∑
k:(i,k)∈Emik − bi

j
∑
k:(j,k)∈Emjk − bj

0

cij

Figure 9.1: Representation of flow conservation constraints by a transportation problem

We now construct a transportation problem as follows. For every vertex i ∈ V, we
add a sink vertex with demand

∑
kmik−bi. For every edge (i, j) ∈ E, we add a source

vertex with supply mij, an edge to vertex i with cost cij,j = 0, and an edge to vertex j
with cost cij,j = cij. The situation is shown in Figure 9.1.

We now claim that there exists a direct correspondence between feasible flows of the
two problems, and that these flows have the same costs. To see this, let the flows on
edges (ij, i) and (ij, j) bemij−xij and xij, respectively. The total flow into vertex i then
is
∑
k:(i,k)∈E(mik − xik) +

∑
k:(k,i)∈E xki , which must be equal to

∑
k:(i,k)∈Emik − bi.

This is the case if and only if bi+
∑
k:(k,i)∈E xki−

∑
k:(i,k)∈E xik = 0, which is the flow

conservation constraint for vertex i in the original problem.

9.2 The Network Simplex Method in Tableau Form

When solving a transportation problem using the network simplex method, it is con-
venient to write it down in a tableau of the following form, where λi for i = 1, . . . , n

and µj for j = 1, . . . ,m are the dual variables corresponding to the flow conservation
constraints for suppliers and consumers, respectively:

µ1 · · · µm

λ1 x11 · · · x1m s1
c11 · · · c1m

...
...

. . .
...

......
. . .

...

λn xn1 · · · xnm sn
cn1 · · · cnm

d1 · · · dm

Consider the Hitchcock transportation problem given by the following tableau:

8
5 3 4 6

10
2 7 4 1

9
5 6 2 4

6 5 8 8
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Figure 9.2: Initial basic feasible solution of a transportation problem (left) and a cycle
along which the overall cost can be decreased (right)

An initial BFS can be found by iteratively considering pairs (i, j) of supplier i and
customer j, increasing xij until either the supply si or the demand dj is satisfied,
and moving to the next supplier in the former case or to the next customer in the
latter. Since

∑
i si =

∑
j dj, this process is guaranteed to find a feasible solution, and

the corresponding spanning tree consists of the pairs (i, j) that have been visited. If at
some point both the supply and the demand are satisfied at the same time, the resulting
solution is degenerate. In the example, we can start by setting x11 = min{s1, d1} = 6,
moving to customer 2 and setting x12 = 2, moving to supplier 2 and setting x22 = 3,
and so forth. The resulting spanning tree and flows are shown on the left of Figure 9.2.

To determine the values of the dual variables λi for i = 1, . . . , 3 and µj for j =
1, . . . , 4, observe that λi−µj = cij must be satisfied for all (i, j) ∈ T . By setting λ1 = 0,
we obtain a system of 6 linear equalities with 6 variables, which has a unique solution.
It will finally be convenient to write down λi − µj for (i, j) /∈ T , which we do in the
upper right corner of the respective cells. The tableau now looks as follows:

−5 −3 0 −2

0 6 2
0 2

8
5 3 4 6

4
9
3 7

6
10

2 7 4 1

2
7 5

1 8 9
5 6 2 4

6 5 8 8

If cij > λi − µj for all (i, j) /∈ T , the current flow would be optimal. In our example
this condition is violated, for example, for i = 2 and j = 1. Edge (2, 1) forms a unique
cycle with the spanning tree T , and we would like to increase x21 by pushing flow
along this cycle. Due to the special structure of the network, doing so will alternately
increase and decrease the flow for edges along the cycle. In particular, increasing x21
by θ will increase x12 and decrease x11 and x22 by the same amount. The situation
is shown on the right of Figure 9.2. Increasing x21 by the maximum amount of θ = 3

and re-computing the values of the dual variables λ1 and µj, we obtain the following
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tableau:
−5 −3 −7 −9

0 3 5
7 9

5 3 4 6

−3 3
0
7

6
2 7 4 1

−5
0 −2

1 8
5 6 2 4

Now, c24 < λ2 − µ4, and we can increase x24 by 7 to obtain the following tableau,
which satisfies cij > λi − µj for all (i, j) /∈ T and therefore yields an optimal solution:

−5 −3 −2 −4

0 3 5
2 4

5 3 4 6

−3 3
0 −1

7
2 7 4 1

0
5 3

8 1
5 6 2 4

9.3 The Assignment Problem

An instance of the assignment problem is given by n agents and n jobs, and costs cij
for assigning job j to agent i. The goal is to assign exactly one job to each agent at a
minimum overall cost, i.e., to

minimize
n∑
i=1

n∑
j=1

cijxij

subject to xij ∈ {0, 1} for all i, j = 1, . . . , n
n∑
j=1

xij = 1 for all i = 1, . . . , n

n∑
i=1

xij = 1 for all j = 1, . . . , n

(9.1)

Except for the integrality constraints, this problem is a special case of the Hitchcock
transportation problem. All basic solutions of the LP relaxation of this problem,
which is obtained by replacing the integrality constraint xij ∈ {0, 1} by 0 6 xij 6 1, are
spanning tree solutions and therefore integral. Thus, both the network simplex method
and the general simplex method yield an optimal solution of the original problem when
applied to the LP relaxation. This is not necessarily the case, for example, for the
ellipsoid method.



10 Maximum Flows and Perfect Matchings

10.1 The Maximum Flow Problem

Consider a flow network (V, E) with a single source 1, a single sink n, and finite capac-
ities mij = Cij for all (i, j) ∈ E. We will also assume for convenience that mij = 0 for
all (i, j) ∈ E. The maximum flow problem then asks for the maximum amount of flow
that can be sent from vertex 1 to vertex n, i.e., the goal is to

maximize δ

subject to
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =


δ if i = 1

−δ if i = n

0 otherwise

0 6 xij 6 Cij for all (i, j) ∈ E.

(10.1)

To see that this is again a special case of the minimum cost flow problem, set
cij = 0 for all (i, j) ∈ E, and add an additional edge (n, 1) with infinite capacity and
cost cn1 = −1. Since the new edge (n, 1) has infinite capacity, any feasible flow of
the original network is also feasible for the new network. Cost is clearly minimized by
maximizing the flow across the edge (n, 1), which by the flow conservation constraints
for vertices 1 and n maximizes flow through the original network. This kind of problem
is known as a circulation problem, because there are no sources or sinks but flow merely
circulates in the network.

10.2 The Max-Flow Min-Cut Theorem

Consider a flow network G = (V, E) with capacities Cij for all (i, j) ∈ E. A cut of G is a
partition of V into two sets, and the capacity of a cut is defined as the sum of capacities
of all edges across the partition. Formally, for S ⊆ V, the capacity of the cut (S, V \ S)

is given by

C(S) =
∑

(i,j)∈E∩(S×(V\S))

Cij.

Assume that x is a feasible flow vector that sends δ units of flow from vertex 1 to
vertex n. It is easy to see that δ is bounded from above by the capacity of any cut S
with 1 ∈ S and n ∈ V \ S. Indeed, for X, Y ⊆ V, let

f(X, Y) =
∑

(i,j)∈E∩(X×Y)

xij.
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Then, for any S ⊆ V with 1 ∈ S and n ∈ V \ S,

δ =
∑
i∈S

( ∑
j:(i,j)∈E

xij −
∑
j:(j,i)∈E

xji

)
= f(S, V) − f(V, S)

= f(S, S) + f(S, V \ S) − f(V \ S, S) − f(S, S)

= f(S, V \ S) − f(V \ S, S) 6 f(S, V \ S) 6 C(S).

(10.2)

The following result states that this upper bound in fact tight, i.e., that there exists
a flow of size equal to the minimum capacity of a cut that separates vertex 1 from
vertex n.

Theorem 10.1 (Max-flow min-cut theorem). Let δ be the optimal solution of (10.1)
for a network (V, E) with capacities Cij for all (i, j) ∈ E. Then,

δ = min {C(S) : S ⊆ V, 1 ∈ S, n ∈ V \ S } .

Proof. It remains to be shown that there exists a cut that separates vertex 1 from
vertex n and has capacity equal to δ. Consider a feasible flow vector x. A path
P = v0, v1, . . . , vk is called an augmenting path for x if xvi−1vi < Cvi−1vi or xvivi−1 > 0
for every i = 1, . . . , k. If there exists an augmenting path from vertex 1 to vertex n,
then we can push flow along the path, by increasing the flow on every forward edge
and decreasing the flow on every backward edge along the path by the same amount,
such that all constraints remain satisfied and the amount of flow from 1 to n increases.

Now assume that x is optimal, and let

S = {1} ∪ { i ∈ V : there exists an augmenting path for x from 1 to i }.

By optimality of x, n ∈ V \ S. Moreover,

δ = f(S, V \ S) − f(V \ S, S) = f(S, V \ S) = C(S).

The first equality holds by (10.2). The second equality holds because xij = 0 for
every (i, j) ∈ E ∩ ((V \ S) × S). The third equality holds because xij = Cij for every
(i, j) ∈ E ∩ (S× (N \ S)).

10.3 The Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm attempts to find a maximum flow by repeatedly push-
ing flow along an augmenting path, until such a path can no longer be found:

1. Start with a feasible flow vector x.

2. If there is no augmenting path from 1 to n, then stop.

3. Otherwise pick some augmenting path from 1 to n, and push a maximum amount
of flow along this path without violating any constraints. Then go to Step 2.
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Assume that all capacities are integral and that we start with an integral flow vector,
e.g., the flow vector x such that xij = 0 for all (i, j) ∈ E. It is then not hard to see
that the flow vector always remains integral and overall flow increases by at least one
unit in each iteration. The algorithm is therefore guaranteed to find a maximum flow
after a finite number of iterations. It can in fact be shown that O(|E| · |V |) iterations
suffice if only augmenting paths with a minimum number of edges are used. Such an
augmenting path can for example be found using breadth-first search, which requires
O(|E|) steps and leads to an overall running time of O(|E|2 · |V |).

10.4 Max-Flow Min-Cut from Strong Duality

Consider the following formulation of the maximum flow problem as a minimum cost
flow problem, which we have already discussed above:

minimize −xn1

subject to
∑

j:(i,j)∈E ′
xij −

∑
j:(j,i)∈E ′

xji = 0 for all i ∈ V

0 6 xij 6 Cij for all (i, j) ∈ E
xn1 > 0,

where E ′ = E ∪ {(n, 1)}. The Lagrangian (8.1) becomes

L(x, λ) = (−1− λn + λ1)xn1 −
∑

(i,j)∈E

(λi − λj)xij,

which has a bounded minimum where xn1 > 0 only if λ1 − λn = 1. We know from
the general case that one of the dual variables can be set arbitrarily, so we let λ1 = 1

and obtain λn = 0. For a fixed λ, L(x, λ) is minimized by setting xij = 0 whenever
λi − λj < 0 and xij = Cij whenever λi − λj > 0, and thus

g(λ) = inf
x
L(x, λ) = −

∑
(i,j)∈E

max(λi − λj, 0)Cij.

By introducing new variables dij > max(λi − λj, 0) for (i, j) ∈ E, we obtain

g(λ) > −
∑

(i,j)∈E

dijCij,

with equality if dij = max(λi − λj, 0). We can thus maximize g(λ) by minimizing∑
(i,j)∈E dijCij subject to dij > λi − λj and dij > 0 for all (i, j) ∈ E, and obtain the

following dual of (10.1):

minimize
∑

(i,j)∈E

dijCij

subject to dij − λi + λj > 0 for all (i, j) ∈ E
dij > 0 for all (i, j) ∈ E
λ1 = 1, λn = 0.
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It can be shown that this dual has an optimal solution in which λi ∈ {0, 1} for all
i ∈ V. By the complementary slackness conditions, the set S = {i ∈ V : λi = 1} must
then be a minimum cut, and the max-flow min-cut theorem follows from strong duality.

10.5 The Bipartite Matching Problem

A matching of a graph (V, E) is a set of edges that do not share any vertices, i.e., a set
M ⊆ E such for all (s, t), (u, v) ∈ M, u 6= s 6= v and u 6= t 6= v. Matching M is called
perfect if it covers every vertex, i.e., if |M| = |V |/2.

A graph is k-regular if every vertex has degree k. Using maximum flows it is easy to
show that every k-regular bipartite graph, for k > 1, has a perfect matching. For this,
consider a k-regular bipartite graph (L]R, E), orient all edges from L to R, and add two
new vertices s and t and new edges (s, i) and (j, t) for every i ∈ L and j ∈ R. Finally set
the capacity of every new edge to 1, and that of every original edge to infinity. We can
now send |L| units of flow from s to t by setting the flow to 1 for every new edge and
to 1/k for every original edge. By Theorem 8.2, there must exist an integral solution
with the same value, and it is easy to see that such a solution corresponds to a perfect
matching.

This result is a special case of a well-known characterization of the bipartite graphs
that have a perfect matching. It should not come as a surprise that this characterization
can be obtained from the max-flow min-cut theorem as well.

Theorem 10.2 (Hall’s Theorem). A bipartite graph G = (L ] R, E) with |L| = |R| has
a perfect matching if and only if |N(X)| > |X| for every X ⊆ L, where N(X) = {j ∈
R : i ∈ X, (i, j) ∈ E}.

Proof. The direction from left to right is obvious: in a perfect matching, every vertex
in X is matched to a different vertex in N(X).

For the direction from right to left, assume that G does not have a perfect matching
and again consider the graph with additional vertices s and t described above. The
maximum flow from s to t is this graph must be smaller than |L|, so by the max-flow
min-cut theorem there has to exist a cut S ⊆ L]R∪ {s} with s ∈ S and C(S) < |L|. Let
LS = L ∩ S, RS = R ∩ S, and LT = L \ S. Since C(S) is finite, i ∈ S implies that j ∈ S
for every (i, j) ∈ E. On the one hand, this means that N(LS) ⊆ RS. On the other, the
capacity of the cut must thus come precisely from the edges in {s} × LT and RS × {t}.
Each of these edges has capacity 1, so C(S) = |LT |+ |RS|, and we obtain

|N(LS)| 6 |RS| = C(S) − |LT | < |L|− |LT | = |LS|.



11 Shortest Paths and Minimum Spanning Trees

Consider a network (V, E) with associated costs cij for each edge (i, j) ∈ E, corre-
sponding for example to the physical distance between vertices i and j or the cost of
establishing a link between them. The single-pair shortest path problem then asks
for a (directed) path from a given source s ∈ V to a given destination t ∈ V that has
minimum cost, where the cost of a path is the sum of costs of its edges. The shortest
path problem has numerous applications in transportation and communications, and
also occurs frequently as a subproblem of more complex problems. It is a special case
of the minimum cost flow problem, but can be solved more efficiently using specialized
algorithms.

11.1 The Bellman Equations

It will be instructive to consider a destination t ∈ V and simultaneously look for
shortest paths from any vertex i ∈ V \ {t} to t. This problems is sometimes called the
single-destination shortest path problem, and is equivalent to the minimum cost flow
problem on the same network where one unit of flow is to be routed from each vertex
i ∈ V \ {t} to t, i.e., the one with supply bi = 1 at every vertex i ∈ V \ {t} and demand
bt = −(|V |− 1) at vertex t.

Let λi for i ∈ V be the dual solution corresponding to an optimal spanning tree
solution of this flow problem, and recall that for every edge (i, j) ∈ E with xij > 0,

λi = cij + λj.

By setting λt = 0 and adding these equalities along a path from i to t, we see that λi
is equal to the length of a shortest path from i to t. Moreover, since bi = 1 for all
i ∈ V \ {t}, and given λt = 0, the dual problem is to

maximize
∑

i∈V\{t}

λi subject to λi 6 cij + λj for all (i, j) ∈ E.

In an optimal solution, λi will thus be as large as possible subject to the constraints,
i.e., it will satisfy the so-called Bellman equations

λi = min
j:(i,j)∈E

(cij + λj) for all i ∈ V \ {t},

with λt = 0. The intuition behind these equalities is that in order to find a shortest
path from i to t, one should choose the first edge (i, j) on the path in order to minimize
the sum of the length of this edge and that of a shortest path from j to t. This situation
is illustrated in Figure 11.1.
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i j t
cij λk

Figure 11.1: Illustration of the Bellman equations for the shortest path problem

11.2 The Bellman-Ford Algorithm

Let λi(k) be the length of a shortest path from i to t that uses at most k edges. Then,
λt(k) = 0 for all k > 0, and

λi(0) =∞ and

λi(k) = min
j:(i,j)∈E

(cij + λj(k− 1))

for all i ∈ V \ {t} and k > 1.
The algorithm that successively computes λi(k) for all i and larger and larger values

of k is known as the Bellman-Ford algorithm. It is an example of a method called
dynamic programming, which can be applied to problems that are decomposable into
overlapping subproblems and have what is called optimal substructure, such that an
overall solution can be constructed efficiently from solutions to the subproblems.

Note that λi(|V |) < λi(|V | − 1) for some i ∈ V if and only if there exists a cycle
of negative length, and that otherwise λi = λi(|V | − 1). In any case, O(|V |) iterations
of the Bellman-Ford algorithm suffice to determine λi. Each iteration requires O(|E|)
steps, for an overall running time of O(|E| · |V |). Given the values λi for all i ∈ V, a
shortest path from i to t then leads along an edge (i, j) ∈ E such that λi = cij + λj.
Alternatively, one could store such a successor vertex for every vertex i while running
the algorithm, and update it whenever λi(k) < λi(k− 1).

11.3 Dijkstra’s Algorithm

The Bellman-Ford algorithm does not make any assumptions about edge lengths, and
works in particular if some or all of them are negative. In the special case where all
edges are known to have non-negative lengths, the running time can sometimes be
decreased. The idea is to collect vertices in the order of increasing shortest path length
to t. We assume from now on that E = V × V, and set cij = ∞ if necessary. The
following lemma will be useful.

Lemma 11.1. Consider a graph with vertices V and edge lengths cij > 0 for all
i, j ∈ V. Fix t ∈ V and let λi denote the length of a shortest path from i ∈ V to t.
Let j ∈ V \ {t} such that cjt = mini∈V\{t} cit. Then, λj = cjt and λj = mini∈V\{t} λi.
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Figure 11.2: An iteration of Dijkstra’s algorithm with t = 4. In the graph on the left,
c2t = mini∈V\{t} cit and therefore, by Lemma 11.1, λ2 = c2t = 1. The graph on the
right is then obtained by removing vertex 2 and updating c14 to min{c14, c12 + c24} =
min{∞, 5+ 1} = 6 and c34 to min{c34, c32 + c24} = min{6, 4+ 1} = 5.

Proof. Let i ∈ V \ {t}, consider a shortest path from i to t, and let (`, t) be the last
edge on this path. Then, λi > λ` > c`t > cjt. This holds in particular for i = j, and on
the other hand λj 6 cjt. Thus λj = cjt 6 λi.

Dijkstra’s algorithm uses this lemma to determine λj for a particular vertex j,
removes j from the graph, and repeats the process for the new graph:

1. Find a vertex j ∈ V \ {t} with cjt = mini∈V\{t} cit. Set λj = cjt.

2. For every vertex i ∈ V \ {j}, set cit = min{cit, cij + cjt}.

3. Remove vertex j from V. If |V | > 1, return to Step 1.

An example is shown in Figure 11.2.
The algorithm performs |V |− 1 iterations, each of which determines the new length

of one edge for each of the remaining O(|V |) vertices. The overall running time is thus
O(|V |2). This improves on the Bellman-Ford algorithm in graphs with many edges,
and is optimal in the sense that any algorithm for the single-destination shortest path
problem has to inspect all of the edges, of which there are Ω(|V |2) in the worst case.

One might wonder whether there exists a way to transform the edge lengths to
make them non-negative without affecting the structure of the shortest paths, so that
Dijkstra’s algorithm could be used in the presence of negative lengths as well. Let λi
be the length of a shortest path from vertex i to vertex t, and recall that λi 6 cij + λj
for all (i, j) ∈ E. Let c̄ij = cij + λj − λi. Then, c̄ij > 0 for every edge (i, j) ∈ E, and for
an arbitrary path v1, v2, . . . , vk,

k−1∑
i=1

c̄vivi+1 =

k−1∑
i=1

(cvivi+1 + λvi+1 − λvi) = λvk − λv1 +

k−1∑
i=1

cvivi+1 .

So indeed, changing edge lengths from cij to c̄ij allows Dijkstra’s algorithm to work
correctly, and it does not affect the structure of the shortest paths.

This observation is not very useful in the context of single-pair or single-destination
shortest path problems: we do not know the values λi, and computing them is at least
as hard as the problem we are trying to solve. For the all-pairs shortest path problem,
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however, which requires us to find a shortest path between every pair of vertices i, j ∈ V,
the situation is different. The straightforward solution to this problem is to run the
Bellman-Ford algorithm |V | times, once for every possible destination vertex. In a
graph withΩ(|V |2) edges, this leads to an overall running time of |V |·O(|V |3) = O(|V |4).
Using the above observation, we can instead invoke the Bellman-Ford algorithm for one
destination vertex t to obtain the shortest path lengths λi for all i ∈ V, and compute
shortest paths for the remaining destination vertices by running Dijkstra’s algorithm
on the graph with edge lengths c̄ij. This improves the asymptotic running time to
O(|V |3) + |V − 1| ·O(|V |2) = O(|V |3).

11.4 Minimum Spanning Trees and Prim’s Algorithm

The minimum spanning tree problem for a network (V, E) with associated costs cij
for each edge (i, j) ∈ E asks for a spanning tree of minimum cost, where the cost of
a tree is the sum of costs of all its edges. This problem arises, for example, if one
wishes to design a communication network that connects a given set of locations. The
following property of minimum spanning trees will be useful.

Theorem 11.2. Let (V, E) be a graph with edge costs cij for all (i, j) ∈ E. Let U ⊆ V
and (u, v) ∈ U × (V \ U) such that cuv = min(i,j)∈U×(V\U) cij. Then there exists a
spanning tree of minimum cost that contains (u, v).

Proof. Let T ⊆ E be a spanning tree of minimum cost. If (u, v) ∈ T we are done.
Otherwise, T ∪ {(u, v)} contains a cycle, and there must be another edge (u ′, v ′) ∈ T
such that (u ′, v ′) ∈ U× (V \U). Then, (T ∪ {(u, v)}) \ {(u ′, v ′)} is a spanning tree, and
since (u, v) has minimum cost among the edges in U × (V \ U) its cost is no greater
than that of T , and therefore minimum.

Prim’s algorithm uses this property to inductively construct a minimum spanning
tree. It proceeds as follows:

1. Set U = {1} and T = ∅.
2. If U = V, return T . Otherwise find an edge (u, v) ∈ U × (V \ U) such that
cuv = min(i,j)∈U×(V\U) cij.

3. Add v to U and (u, v) to T , and return to Step 2.

Prim’s algorithm is called a greedy algorithm, because it always chooses an edge of
minimum cost.

Suppose that after each iteration, we compute and store for every vertex j ∈ V \U

a minimum cost edge to any vertex in U, i.e., an edge (i, j) ∈ U × (V \ U) such that
cij = min(i ′,j)∈U×(V\U) ci ′j. This only requires a comparison between the previously
stored edge and the edge to the vertex added to U in the current iteration, and can be
done in time O(|V |) per iteration. It then suffices in Step 2 to minimize cost among
vertices in V \ U, of which there are O(|V |). Since the algorithm performs |V | − 1

iterations, it thus has an overall running time of O(|V |2).



12 Semidefinite Programming

Again consider the standard form (2.2) of a linear program,

min { cTx : Ax = b, x > 0 }.

The goal in linear programming is to optimize a linear objective over the intersection of
the non-negative orthant Rn+ = {x ∈ Rn : x > 0} with an affine space, described by the
linear equation Ax = b. The non-negative orthant is a convex cone, i.e., a set C ⊆ Rn

for which αx+ βy ∈ C for all α,β ∈ R with α,β > 0 and all x, y ∈ C.
Semidefinite programming replaces the non-negative orthant with a different con-

vex cone. Let Sn = {X ∈ Rn×n : XT = X} be the set of all symmetric n × n matrices,
and call A ∈ Sn positive semidefinite, denoted A � 0, if zTAz > 0 for all z ∈ Rn. Let
Sn+ = {A ∈ Sn : A � 0}. It is easy to see that Sn+ is a convex cone, henceforth called the
convex cone of positive semidefinite matrices, or simply the positive semidefinite cone.

A linear function of X ∈ Sn can be expressed in terms of the inner product

〈C,X〉 = tr(CX) =
n∑
i=1

n∑
j=1

cijxij

for some C ∈ Sn. A semidefinite program (SDP) therefore has the form

minimize 〈C,X〉
subject to 〈Ai, X〉 = bi for all i = 1, . . . ,m

X � 0,
(12.1)

where C,A1, . . . , Am ∈ Sn and b ∈ Rm.
An equivalent formulation, which is sometimes more convenient, is to

minimize cTx

subject to B0 + x1B1 + · · ·+ xkBk � 0,

where B0, B1, . . . , Bk ∈ Sn and c ∈ Rk. A problem of this type can be brought into the
form of (12.1) by setting X = B0 + x1B1 + · · · + xkBk. The entries of X then depend
in a linear way on the variables x1, . . . , xk, which leads to linear relationships between
the former when the latter are eliminated.

To see that linear programming is a special case of semidefinite programming, ob-
serve that v > 0 for a vector v ∈ Rn if and only if

diag(v) =


v1 0 . . . 0

0 v2
. . .

...
...
. . .

. . . 0

0 . . . 0 vn


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is positive semidefinite. The linear program (2.2) can thus be written as

minimize 〈diag(c),diag(x)〉
subject to 〈diag(ai),diag(x)〉 = bi for all i = 1, . . . ,m

diag(x) � 0,

where ai = (ai1, . . . , ain)
T , for i = 1, . . . ,m, is a vector consisting of the elements of

the ith row of A. This problem can be brought into the form of (12.1) by replacing the
diagonal matrix diag(x) by a general symmetric matrix X, and adding linear constraints
to ensure that the off-diagonal entries of X are zero.

SDPs can be viewed as having an infinite number of linear constraints on X, namely,
zTXz > 0 for all z ∈ Rn. As a consequence, there are optimization problems that can
be written as an SDP, but not as an LP.

There are good reasons to study semidefinite programming. It includes important
classes of convex optimization problems as special cases, for example linear program-
ming and quadratically constrained quadratic programming. In a later lecture we will
see that it can be used to obtain approximate solutions to hard combinatorial and non-
convex optimization problems. Moreover, SDPs can often be solved very efficiently,
both in theory and in practice.

12.1 SDP Duality

The Lagrangian of (12.1) can be written as

L(X, λ, Z) = 〈C,X〉−
m∑
i=1

λi(〈Ai, X〉− bi) − 〈Z,X〉,

where the last term takes account of the constraint X � 0. This works because for any
Y ∈ Sn, maxZ�0−〈Z, Y〉 is finite if and only if Y � 0, so (12.1) is equivalent to the
unconstrained problem minX∈Sn maxλ∈Rm,Z�0 L(X, λ, Z). Then,

g(λ, Z) = inf
X∈Sn

L(X, λ, Z) =

{
λTb if C−

∑m
i=1 λiAi − Z = 0,

−∞ otherwise.

By eliminating Z, we obtain the following dual of (12.1), which is itself an SDP:

maximize λTb

subject to C−
∑m
i=1 λiAi � 0.

Primal and dual SDP satisfy weak duality, because

〈C,X〉− λTb = 〈C,X〉−
m∑
i=1

λibi = 〈C,X〉−
m∑
i=1

λi〈Ai, X〉 = 〈C−

m∑
i=1

λiAi, X〉 > 0,
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where the last inequality holds because both C−
∑m
i=1 λiAi and X are positive semidef-

inite. If the duality gap 〈C,X〉 − λTb is zero, then X and λ are optimal solutions of
the primal and dual, respectively. Unlike in the case of LPs, strong duality might not
hold. Consider for example the SDP to

minimize x1

subject to

(
x1 1

1 x2

)
� 0.

The positive semidefiniteness condition is equivalent to the constraints x1 > 0, x2 > 0,
and x1x2 > 1, which in turn are satisfied if and only if x1 > 0 and x2 > 1/x1. The
SDP thus has an optimum of 0, but the optimum is not attained. There exist SDPs
whose minimum duality gap is strictly positive or even infinite. Strong duality does
hold, on the other hand, if both primal and dual have a feasible solution that is positive
definite, i.e., lies in the interior of the positive semidefinite cone.

While no algorithm is known for solving SDPs in a finite number of steps, they can
be solved approximately in polynomial time, for example by a variant of the ellipsoid
method. We will now briefly discuss a different class of methods that run in polynomial
time in the worst case and are also very efficient in practice.

12.2 Primal-Dual Interior-Point Methods

We discuss the method for the primal and dual linear programs

min { cTx : Ax = b, x > 0 } and max {bTλ : ATλ+ z = c, z > 0 }.

The reason why these optimization problems cannot be solved using Newton’s method
are the inequality constraints x > 0 and z > 0. The idea behind barrier methods is to
drop the inequality constraints and instead augment the objective by a so-called barrier
function that penalizes solutions close to the boundary of, or outside, the feasible set.
Primal-dual interior-point methods apply this idea to both the primal and the dual
and try to solve them simultaneously. In the case of the above linear programs we add
a logarithmic barrier and obtain the modified primal and dual problems

min { cTx− µ
n∑
i=1

log xi : Ax = b } and max {bTλ+ µ
m∑
j=1

log zj : ATλ+ z = c },

for a parameter µ > 0. The constraint X � 0 in an SDP can be handled analogously
using the barrier

−µ

n∑
i=1

log(κi(X)) = −µ log

(
n∏
i=1

κi(X)

)
= −µ log(det(X)),

where κi is the ith eigenvalue of X. This works because X � 0 if and only if κi > 0 for
all i = 1, . . . , n.
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By considering the Lagrangian, it can be shown that (x, λ, z) is optimal for the
modified primal and dual problems if

Ax = b, x > 0,

ATλ+ z = c, z > 0,

xizi = µ for all i = 1, . . . , n.

(12.2)

Note that for µ = 0, the last constraint is identical to the usual complementary slackness
condition, which ensures optimality for the original problem.

A solution to the modified problems can be found using Newton’s method, and
provides a better and better approximation to a solution of the original problems as µ
tends to zero. When µ is small, however, the modified objective is hard to optimize
using Newton’s method because its second-order partial derivatives vary rapidly near
the boundary of the feasible set. Primal-dual interior-point methods circumvent this
problem by solving a sequence of problems, decreasing µ in each iteration and start-
ing each Newton minimization at the solution obtained in the previous round. The
procedure terminates when µ < ε for some desired accuracy ε > 0. Suppose that we
have found a solution (x, λ, z) that satisfies (12.2) for a given value of µ. If µ < ε, we
stop. Otherwise we update µ, for example to (xTz)/(2n), and use Newton’s method
to compute a solution (x, λ, z)k + (δx, δλ, δz) that satisfied (12.2) for the new value of
µ. Then we proceed with the next round. It can be shown that for an appropriate
choice of the parameters, the method decreases the duality gap from ε0 to ε in time
O(
√
n log(ε0/ε)).



13 Branch and Bound

Lectures 13 through 15 will be concerned with three conceptually different approaches
for optimization problems that are computationally hard: an exact method, which finds
optimal solutions but has an exponential worst-case running time; heuristic methods,
which need not offer guarantees regarding running time or solution quality, but often
provide a good tradeoff between the two in practice; and approximation algorithms,
which run in polynomial time and return solutions with a guaranteed bound on the
degree of suboptimality.

Branch and bound is a general method for solving optimization problems, especially
in the context of non-convex and combinatorial optimization. Suppose for concreteness
that we want to

minimize f(x)

subject to x ∈ X
for some feasible region X. Branch and bound uses an algorithmic technique known
as divide and conquer, which splits a problem into smaller and smaller subproblems
until they become easy to solve. For the above minimization problem, it works by
splitting X into k > 2 sets X1, . . . , Xk such that

⋃
i=1,...,k Xi = X. This step is called

branching, since its recursive application defines a tree structure, the so-called search
tree, whose vertices are the subsets of X. Once optimal solutions have been found for
the subsets X1, . . . , Xk, it is easy to obtain a solution for X, because minx∈X f(x) =

mini=1,...,kminx∈Xi f(x).
Of course, branching as such doesn’t make the problem any easier to solve, and for

an NP-hard problem there might be no way around exploring an exponential number
of vertices of the search tree. In practice we might hope, however, that we will be
able to prune large parts of the tree that cannot contain an optimal solution. The
procedure that allows us to do this is known as bounding. It tries to find lower and
upper bounds on the optimal solution, i.e., functions ` and u such that for all X ′ ⊆ X,
`(X ′) 6 minx∈X ′ f(x) 6 u(X ′). Then, if `(Y) > u(Z) for two sets Y, Z ⊆ X, Y can be
discarded. A particular situations where this happens is when Y does not contain any
feasible solutions, and we assume that `(Y) =∞ by convention in this case.

For the upper bound, it suffices to store the value U = f(x) of the best feasible
solution x ∈ X found so far. A good way to obtain a lower bound for a set Y ⊆ X

is by letting `(Y) = minx∈Y ′ f(x) for some set Y ′ ⊇ Y for which minimization of f is
computationally tractable. It is easy to see that this indeed provides a lower bound.
Moreover, if minimization over Y ′ yields a solution x ∈ Y, then this solution is optimal
for Y. The branch and bound method stores U and a list L of active sets Y ⊆ X for
which no optimal solution has been found so far, corresponding to vertices in the search
tree that still need to be explored, along with their associated lower bounds. It then
proceeds as follows:
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1. Initialize: set U =∞, L = {X}.

2. Branch: pick a set Y ∈ L, remove it from L, and split it into k > 2 sets Y1, . . . , Yk.

3. Bound: for i = 1, . . . , k, compute `(Yi). If this yields x ∈ X such that `(Yi) =

f(x) < U, then set U to f(x). If `(Yi) < U, but no x ∈ X as above is found, then
add Yi to L.

4. If L = ∅, then stop. The optimum objective value is U. Otherwise go to Step 2.

To apply the method in a concrete setting, we need to specify how a set Y to branch
on is chosen and how it is split into smaller sets, and how lower bounds are computed.
These decisions are of course critical for the practical performance of the procedure.

13.1 Dakin’s Method

Dakin’s method applies the branch and bound idea to integer programs. An obvious
way to obtain lower bounds in this case is by solving the LP relaxation, i.e., the linear
program obtained by dropping the integrality constraints.

Assume that we are branching on a set Y ∈ L, and that the LP relaxation cor-
responding to Y has optimal solution y. If y ∈ Y, then y is optimal for Y. Oth-
erwise, there is some i such that yi is not integral, and we can split Y into two sets
Y1 = {x ∈ Y : xi 6 byic} and Y2 = {x ∈ Y : xi > dyie}. Note that Y1∪Y2 = Y, as desired.
Moreover, this branching rule forces the solution away from its current value y /∈ Y.
While this does not guarantee that yi becomes integral in the next step, and may even
force another variable away from its integral value, it works remarkably well in practice.
It is worth noting that we do not have to start from scratch when solving the LP re-
laxation for Yi: it was obtained by adding a constraint to an LP that is already solved,
and the dual simplex method often finds a solution satisfying the additional constraint
very quickly. In order to minimize the number of solved LPs that have to be stored to
implement this approach, it makes sense to branch on a set obtained in the previous
step whenever possible, i.e., to traverse the search tree in a depth-first manner.

Example 13.1. Assume that we want to

minimize x1 − 2x2

subject to −4x1 + 6x2 6 9

x1 + x2 6 4

x1 > 0, x2 > 0

x1, x2 ∈ Z.

An illustration is shown in Figure 13.1. Let f(x) = x1 − 2x2, and X = Z2 ∩ X̃ where

X̃ = { x ∈ R2 : −4x1 + 6x2 6 9, x1 + x2 6 4, x1 > 0, x2 > 0 }.

We start with U = ∞ and L = {X}. By solving the LP relaxation for X, we find that
`(X) = minx∈X̃ f(x) = f(x

0) = −7/2 for x0 = (3/2, 5/2). Set X is the only candidate for
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Figure 13.1: Illustration of Dakin’s method, applied to the IP of Example 13.1

branching and can for example be split into X1 = Z2 ∩ X̃1 and X2 = Z2 ∩ X̃2, where

X̃1 = {x ∈ X̃ : x2 6 2} and X̃2 = {x ∈ X̃ : x2 > 3}.

We then bound X1 and X2 by solving the corresponding LP relaxations, and obtain
`(X1) = minx∈X̃1 f(x) = f(x1) = −13/4 for x1 = (3/4, 2), and X̃2 = ∅. We thus set
L = {X1}. We now branch by splitting X1 into X3 = Z2 ∩ X̃3 and X4 = Z2 ∩ X̃4, where

X̃3 = {x ∈ X̃1 : x1 6 0} and X̃4 = {x ∈ X̃1 : x1 > 1},

and bounding X3 and X4 to obtain `(X3) = minx∈X̃3 f(x) = f(x
3) = −3 for x3 = (0, 3/2)

and `(X4) = minx∈X̃4 f(x) = f(x4) = −3 for x4 = (1, 2). Since x4 ∈ X, we can set
U = f(x4) = −3. Then, `(X3) > U, so we can discard X3 and are done.

13.2 The Traveling Salesman Problem

Recall that in the traveling salesman problem (TSP) we are given a matrix A ∈ Nn×n

and are looking for a permutation σ ∈ Sn that minimizes aσ(n)σ(1) +
∑n−1
i=1 aσ(i)σ(i+1).

Matrix entry aij can be interpreted as a cost associated with edge (i, j) ∈ E of a graph
G = (V, E), and we are then trying to find a tour, i.e., a cycle in G that visits every
vertex exactly once, of minimum overall cost. We have seen that the TSP is NP-hard,
but we could try to encode it as an integer program and solve it using branch and
bound. Consider variables

xij ∈ {0, 1} for i, j = 1, . . . , n, (13.1)

encoding whether the tour traverses edge (i, j). There are various ways to ensure that
these variables indeed encode a tour, i.e., that xij = 1 if and only if σ(n) = i and
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σ(1) = j, or σ(k) = i and σ(k+ 1) = j for some k ∈ {1, . . . , n− 1}. Of course, there has
to be exactly one edge entering and one edge leaving every vertex, i.e.,

n∑
i=1

xij = 1 for j = 1, . . . , n,

n∑
j=1

xij = 1 for i = 1, . . . , n.
(13.2)

The so-called cut-set formulation additionally requires that there are at least two edges
across every cut S ⊆ V, whereas the subtour elimination formulation makes sure that no
set S ( V contains more than |S|−1 edges. The problem with both of these formulations
is of course that they require an exponential number of constraints, one for each set
S ⊆ V.

A polynomial formulation can be obtained by introducing, for i = 1, . . . , n, an
auxiliary variable ti ∈ {0, . . . , n − 1} indicating the position of vertex i in the tour. If
xij = 1, it holds that tj = ti + 1. If xij = 0, on the other hand, then tj > ti − (n− 1).
This can be written more succinctly as

tj > ti + 1− n(1− xij) for all i > 1, j > 2, i 6= j. (13.3)

Since values satisfying (13.3) exist for every valid tour, adding this constraint does not
affect solutions corresponding to valid tours. On the other hand, it suffices to rule
out subtours, i.e., cycles of length less than |V |. To see this, consider a solution that
satisfies (13.3), and assume for contradiction that it consists of two or more subtours.
Summing the constraints over the edges in a subtour that does not contain vertex 1
leads to the condition that 0 > k, where k is the number of edges in the subtour, a
contradiction.

A minimum cost tour can thus be found by minimizing
∑
i,j xijaij subject to (13.1),

(13.2), and (13.3). This integer program has a polynomial number of variables and
constraints and can be solved using Dakin’s method, which bounds the optimum by
relaxing the integrality constraints (13.1). There are, however, other relaxations that
are specific to the TSP and can provide better bounds.

Observe, for example, that the integer program obtained by relaxing the subtour
elimination constraints (13.3) is an instance of the assignment problem (9.1). It can be
solved efficiently in practice using the network simplex method, which yields a solution
consisting of one or more subtours. If there is more than one subtour, then taking the
set {e1, . . . , ek} ⊆ E of edges of one or more of the subtours and disallowing each of them
in turn splits the feasible set Y into Y1, . . . , Yk, where Yi = {x ∈ Y : xuv = 0, ei = (u, v)}.
Clearly, the optimal TSP tour cannot contain all edges of a subtour, so it must be
contained in one of the sets Yi. Moreover, adding a constraint of the form xij = 0 is
equivalent to setting the corresponding cost aij to a large enough value, so the new
problem will still be an instance of the assignment problem. Note that none of the sets
Yi contains the optimal solution of the current relaxation, so `(Yi) > `(Y) for all i, and
`(Yi) > `(Y) if the optimal solution of the current relaxation was unique.
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For all we know, a complete exploration of the search tree, either explicitly or implic-
itly, might be required to guarantee that an optimal solution is found. When this is
impractical, heuristic methods can be used to find a satisfactory, but possibly sub-
optimal, solution. Heuristics sacrifice solution quality in order to gain computational
performance or conceptual simplicity.

14.1 Basic Heuristics for the TSP

A straightforward way of constructing a TSP tour is by starting from an arbitrary
vertex, traversing a minimum cost edge to an unvisited vertex until all vertices have
been visited, and returning to the initial vertex to complete the tour. This greedy al-
gorithm is known as the nearest neighbor heuristic and has an asymptotic complexity
of O(n2), where n is the number of vertices. Intuitively it will work well most of the
time, but will sometimes have to add an edge with very high cost because all vertices
connected to the current one by an edge with low cost have already been visited.

Instead of adding a minimum cost edge among those adjacent to the current vertex,
we could add an edge that has minimum cost overall, while ensuring that the resulting
set of edges will form a tour. This corresponds to ordering the edges by increasing cost
and adding them to the tour in that order, skipping edges that would lead to a vertex
with degree more than two or a cycle of length less than n. This so-called savings
heuristic has complexity O(n2 logn), which is the complexity of sorting a set with n2

elements.
Another intuitive approach is to start with a subtour, i.e., a tour on a subset of

the set of vertices, and extending it with additional vertices. Heuristics following this
general approach are known as insertion heuristics. A particular heuristics of this type
has to specify a way of choosing (i) the initial subtour, (ii) the vertex to be inserted,
and (iii) the way the new vertex is inserted into the subtour. Obvious choices for the
initial subtour are cycles of length two or three. The cheapest insertion heuristic then
chooses a vertex, and a place to insert the vertex into the subtour, in order to minimize
the overall length of the resulting subtour. The farthest insertion heuristic, on the
other hand, inserts a vertex whose minimum distance to any vertex in the current
subtour is maximal. The idea behind the latter strategy is to fix the overall layout of
the tour as soon as possible.

Of course, optimization does not need to end once we have constructed a tour.
Rather, we could try to make a small modification to the tour in order to reduce its
cost, and repeat this procedure as long as we can find such an improving modification.
An algorithm that follows this general procedure is known as local search algorithm,

63



64 14 · Heuristic Algorithms

because it makes local modifications to a solution to obtain a new solution with a better
objective value. A tour created using the nearest neighbor heuristic, for example, will
usually contain a few edges with very high cost, so we would be interested in local
modifications that eliminate these edges from the tour.

14.2 Local Search

Assume that we want to
minimize c(x)

subject to x ∈ X,

and that for any feasible solution x ∈ X, the cost c(x) and a neighborhood N(x) ⊆ X
can be computed efficiently. Local search then proceeds as follows:

1. Find an initial feasible solution x ∈ X.
2. Find a solution y ∈ N(x) such that c(y) < c(x).

3. If there is no such solution, then stop and return x; otherwise set the current
solution x to y and return to Step 2.

The solution returned by this procedure is a local optimum, in the sense that its cost
is no larger than that of any solution in its neighborhood. It need not be globally
optimal, as there might be a solution outside the neighborhood with strictly smaller
cost.

Any of the basic tour construction heuristics can be used to find an initial feasible
solution in Step 1, and the whole procedure can also be run several times with different
initial solutions. Step 2 requires a choice if more than one neighboring solution provides
a decrease in cost. Natural options include the first such solution to be found, or the
solution providing the largest decrease.

Most importantly, however, any implementation of a local search method must
specify the neighborhood function N. A natural neighborhood for the TSP is the k-
OPT neighborhood. Here, the neighbors of a given tour are obtained by removing any
set of k edges, for some k > 2, and reconnecting the k paths thus obtained to a tour
by adding k edges. Viewing tours as permutations, k-OPT cuts a permutation into k
segments and reverses and swaps these segments in a arbitrary way. An illustration for
k = 2 and k = 3 is shown in Figure 14.1.

The choice of k provides a tradeoff between solution quality and speed: the k-OPT
neighborhood of a solution contains its `-OPT neighborhood if k > `, so the quality of
the solution increases with k; the same is also true for the complexity of the method,
because the k-OPT neighborhood of a tour of length n has size O(nk) and computing
the change in cost between two neighboring tours requires O(k) operations. Empirical
evidence suggests that 3-OPT often performs better than 2-OPT, while there is little
gain in taking k > 3.
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Figure 14.1: A TSP tour (left) and neighboring tours under the 2-OPT (middle) and
3-OPT neighborhoods (right). The tours respectively correspond to the permutations
123456, 143256, and 126534.

Note that the simplex method for linear programming can also be viewed as a local
search algorithm, where two basic feasible solutions are neighbors if their bases differ
by exactly one element. We have seen that in this case every local optimum is also a
global optimum, so that the simplex method yields a globally optimal solution.

In general, however, local search might get stuck in a local optimum and fail to find
a global one. Consider for example the TSP instance given by the cost matrix

A =



0 1 0 4 4

4 0 1 0 4

4 4 0 1 0

0 4 4 0 1

1 0 4 4 0


.

There are 4! = 24 TSP tours, and

c(12345) = 5, c(13245) = 6, c(14235) = 10, c(15234) = 6,

c(12354) = 6, c(13254) = 12, c(14253) = 20, c(15243) = 12,

c(12435) = 6, c(13425) = 10, c(14325) = 17, c(15324) = 12,

c(12453) = 10, c(13452) = 6, c(14352) = 9, c(15342) = 17,

c(12534) = 10, c(13524) = 0, c(14523) = 10, c(15423) = 17,

c(12543) = 17, c(13542) = 12, c(14532) = 17, c(15432) = 20.

It is easily verified that the tour 12345 is a local optimum under the 2-OPT neighbor-
hood, while the global optimum is the tour 13524.

14.3 Simulated Annealing

To prevent local search methods from getting stuck in a local optimum, one could allow
transitions to a neighbor even if it has higher cost, with the hope that solutions with
lower cost will be reachable from there. Simulated annealing implements this idea
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using an analogy to the process of annealing in metallurgy, in which a metal is heated
and then cooled gradually in order to bring it to a low-energy state that comes with
better physical properties.

In each iteration, simulated annealing considers a neighbor y of the current solution
x and moves to the new solution with probability

pxy = min
(
1, exp

(
−
c(y) − c(x)

T

))
,

where T > 0 is a parameter, the temperature, that can vary over time. With the
remaining probability the solution stays the same. When T is large, the method allows
transitions even when c(y) exceeds c(x) by a certain amount. As T approaches zero, so
does the probability of moving to a solution with larger cost.

It can further be shown that with a suitable cooling schedule that decreases T
sufficiently slowly from iteration to iteration, the probability of reaching an optimal
solution after t iterations tends to 1 as t tends to infinity. To motivate this claim,
consider the special case where every solution has k neighbors and a neighbor of the
current solution is chosen uniformly at random. The behavior of the algorithm can
then be modeled as a Markov chain with transition probabilities

Pxy =


pxy/k if y ∈ N(x),

1−
∑
z∈N(x) pxz/k if y = x,

0 otherwise.

This Markov chain has a unique stationary distribution π, i.e., a distribution over X
such that for all x ∈ X, πx =

∑
y∈X πyPyx. In addition it can be shown that π must

satisfy the detailed balance condition that πxPxy = πyPyx for every pair of solutions
x, y ∈ X. In fact, detailed balance is not only necessary but also sufficient for stationary,
because it implies that

∑
x∈X πxPxy =

∑
x∈X πyPyx = πy

∑
x∈X Pyx = πy. It is not hard

to show that π with

πx =
e−c(x)/T∑
z∈X e

−c(z)/T

for every x ∈ X is a distribution and satisfies detailed balance, and must therefore be
the stationary distribution. Letting Y ⊆ X be the set of solutions with minimum cost
and πY =

∑
x∈Y πx, we conclude that πY/(1− πY)→∞ as T → 0.

The idea now is to decrease T slowly enough for the Markov chain to be able to
reach its stationary distribution. A common cooling schedule is to set T = c/ log t in
iteration t, for some constant c.
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An optimization problem can be represented by a function o : {0, 1}∗×{0, 1}∗ → R, where
o(x, y) is the objective value of output y ∈ {0, 1}∗ for input x ∈ {0, 1}∗. Restricting
our attention to minimization problems, a function f : {0, 1}∗ → {0, 1}∗ provides an
optimal solution to optimization problem o if for every input x ∈ {0, 1}∗, o(x, f(x)) =
min{o(x, y) : y ∈ {0, 1}∗}. When f is hard to compute, one might instead try to find a
solution that is as good as possible. The most common notion of quality in this context
is a worst-case multiplicative one: a function g : {0, 1}∗ → {0, 1}∗ will be called an α-
approximation for o, for some α > 1, if for all x ∈ P, o(x, g(x)) 6 αo(x, f(x)). In what
follows we will be interested in algorithms that compute function g in polynomial time,
and will refer to such an algorithm as a (polynomial-time) α-approximation algorithm
for optimization problem o.

While in principle α could depend on the size of the input, we will only consider
problems in the complexity class APX, which have an α-approximation algorithm for
some constant α. The class PTAS ⊆ APX, for polynomial-time approximation scheme,
contains problems that possess an (1+ε)-approximation algorithm for any ε > 0, where
the (polynomial) running time can depend on ε in an arbitrary way. APX-hardness is
established by a reduction corresponding to the smaller class PTAS, and implies that a
problem can be approximated in polynomial time up to some, but not every, constant
factor.

15.1 The Max-Cut Problem

Given an undirected graph G = (V, E), the max-cut problem asks for a cut of G that
maximizes the number of edges crossing from one side to the other, i.e., a set S ⊆ V
such that |E∩(S×(V \S))| is as large as possible. The max-cut problem is NP-complete
and thus cannot be solved exactly in polynomial time unless P = NP.

On the other hand, a simple greedy algorithm provides a 1/2-approximation. First
of all, observe that every graph has a cut of size at least |E|/2. For this, consider a
random cut S ⊆ V such that for each v ∈ V, v ∈ S independently with probability 1/2.
Then, the number of edges across the cut is a random variable Q =

∑
{i,j}∈E I[Qi 6= Qj],

where I denotes the indicator function on binary events and for each i ∈ V, Qi is a
Bernoulli random variable with parameter 1/2. Thus,

E [Q] = E
[∑
{i,j}∈E

I[Qi 6= Qj]
]
=
∑

{i,j}∈E

E
[
I[Qi 6= Qj]

]
=
∑

{i,j}∈E

P[Qi 6= Qj]
]
= |E|/2,

where the second equality holds by linearity of expectation, so there must exist a cut of
size at least |E|/2. This probabilistic argument can be de-randomized efficiently using
themethod of conditional probabilities. To this end, each vertex is considered in turn,
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replacing the random decision whether the vertex is included in S by a deterministic
one. The goal is to ensure that the conditional probability of obtaining a cut of size at
least |E|/2, assuming that the remaining decisions are taken randomly, remains positive.
While the conditional probability itself may not be easy to determine, it suffices in each
step to maximize the conditional expectation of the random variable Q, because the
maximum is guaranteed to be at least |E|/2. Let U ⊆ V be the set of vertices for which
a decision has already been made, and let S ⊆ U be the resulting cut. The conditional
expectation of Q given this choice is∣∣∣E ∩ (S× (U \ S)

)∣∣∣+ 1

2

∣∣∣E ∩ (V × (V \U)
)∣∣∣,

and it can be maximized by maximizing the first term. Since the size of a cut can be
at most |E|, a greedy algorithm that considers each vertex in turn and adds it to either
S or U \ S in order to maximize the first term provides a 1/2-approximation.

A better approximation can be obtained using semidefinite programming.

Theorem 15.1 (Goemans and Williamson, 1995). There exists a 0.87856-approxi-
mation algorithm for the max-cut problem.

Proof sketch. The max-cut problem can be written as the following integer quadratic
program:

maximize
∑

{i,j}∈E

1− xixj
2

subject to xi ∈ {−1, 1} for all i ∈ V.
(15.1)

The intuition behind the objective is that xi = 1 if i ∈ S, and edge {i, j} ∈ E contributes
1 to the sum if and only if |{i, j} ∩ S| = 1.

Since the max-cut problem is NP-complete, an optimal solution of (15.1) cannot be
found in polynomial time unless P = NP. Note, however, that∑

{i,j}∈E

1− xixj
2

=
|E|

2
−
1

4
xTCx =

|E|

2
−
1

4
〈C, xxT 〉,

where C ∈ {0, 1}|V |×|V | with Cij = 1 if {i, j} ∈ E and Cij = 0 otherwise. Moreover, xxT

is a positive semidefinite matrix. We can thus relax the constraints, and obtain an
upper bound on the optimal solution of (15.1), by replacing xxT by a general positive
semidefinite matrix X with Xii = 1 for all i ∈ V. We arrive at the following optimization
problem, which is an SDP:

maximize
|E|

2
−
1

4
〈C,X〉

subject to Xii = 1 for all i ∈ V
X � 0.

Since the constraints have been relaxed, an optimal solution of this SDP need not be
feasible for (15.1). Intuitively, a feasible solution of (15.1) corresponds to a set of |V |
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unit vectors in R1, while a feasible solution of the relaxed problem corresponds to a
set of |V | unit vectors in Rn. The latter can be “rounded” to the former, however, by
randomly picking a hyperplane in Rn that passes through the origin and mapping each
unit vector in Rn to −1 or 1 depending on its relative position to this hyperplane.
Surprisingly, this changes the objective value by a factor of at most 0.87856, and thus
yields a feasible solution of (15.1) that is within the same factor of an optimal one. All
the necessary steps can be carried out in polynomial time, and the method can also be
de-randomized without affecting the approximation factor.

15.2 Hardness of Approximation

An obvious question is whether the bound of Theorem 15.1 is optimal, or whether
it can be improved further. NP-hardness of a problem establishes that it is hard to
distinguish instances with a certain optimum, like the size of a maximum cut in the case
of the max-cut problem, from instances whose optimum is smaller or larger. A possible
approach for showing that a problem does not admit an α-approximation algorithm
for some α < 1 would be to create a gap between positive and negative instances, and
show that it is hard to distinguish instances with a large optimum from instances with
a small optimum. The problem with this approach is that our characterization of the
class NP is very fragile. Cook’s proof of Theorem 5.1 uses a class of Boolean formulae
to encode the computations of a Turing machine, which in turn are very sensitive to
small changes. And indeed, if one were to inspect the formulae more closely, one would
see that it is very easy for each of them to find an assignment that satisfies every clause
except one. What is needed to show hardness of approximation is a more robust model
of NP. Such a model is provided by probabilistically checkable proofs (PCPs).

PCPs can be obtained using a probabilistic modification of the definition of NP. As
before, we are given access to an input x and to a certificate y which acts as proof that
x satisfies a certain property. Instead of a deterministic Turing machine as in the case
of NP, however, we want to use a probabilistic verifier V to check the proof. The fact
that V is probabilistic can be modeled by assuming that besides x and y it takes an
additional input r, which is a string of random bits, and then performs a deterministic
computation based on x, y, and r. For fixed x and y, we say that V accepts x and y
with probability p if it accepts with this probability for a uniformly distributed random
string r. Note that so far we have only made the verifier more powerful, by giving it
access to a random string. To be able to say something interesting about its relationship
to the class NP, we therefore have to restrict what it can do with its inputs. We call
a verifier V (r(n), q(n))-restricted, for two functions r : Z → Z and q : Z → Z, if for
every input of length n and every certificate y, it queries at most q(n) bits of y and
uses at most r(n) random bits. A problem L then is in the class PCP[r(n), q(n)] if
there exists an (r(n), q(n))-restricted verifier with the following properties: if x ∈ L,
then there exists a certificate y such that V accepts x and y with probability 1; if x /∈ L,
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then for every certificate y, V accepts x and y with probability at most 1/2.
It is easy to see, for example, that PCP[O(logn), O(logn)] ⊆ NP: a verifier that

uses a logarithmic number of random bits can easily be de-randomized by considering
all possible random strings of logarithmic length. The PCP theorem states a surprising
converse: every problem in NP has a probabilistic verifier that uses a logarithmic
number of random bits and examines a constant number of bits of the certificate.

Theorem 15.2 (Arora et al., 1998). NP = PCP[O(logn), O(1)]

The PCP theorem can be used to show that max-3SAT, the problem of computing
the maximum number of simultaneously satisfiable clauses of an instance of SAT with
three literals per clause, is APX-hard.

Theorem 15.3 (Arora et al., 1998). There exists ε > 0 such that there is no (1−ε)-
approximation algorithm for max-3SAT unless P = NP.

Proof sketch. By the PCP Theorem, any NP-complete problem has a (c logn, q)-
restricted verifier V for some constants c and q. For a particular random string r,
V chooses q positions ir1, . . . , i

r
q of the certificate y and a function frx : {0, 1}q → {0, 1},

and accepts if and only if frx(yir1 , . . . , yirq) = 1.
The proof works by constructing, for each x ∈ L, a Boolean formula φx with variables

v1, . . . , v|y| and clauses representing the constraint frx(vir1 , . . . , virq) = 1 for every possible
random string r. Formula φx has a number m of clauses that is polynomial in |x|, and
the following can be shown to hold for ε = 1

2
1
q2q

:

if x ∈ L, then φx is satisfiable;

if x /∈ L, then no assignment satisfies more than (1− ε)m clauses of φx.

By distinguishing between the case where the number of satisfiable clauses is m and
the case where the number of satisfiable clauses is (1 − ε)m, we can thus distinguish
between the cases x ∈ L and x /∈ L, thereby solving an NP-complete problem. The
existence of a polynomial-time algorithm for the former problem would thus imply
that P = NP.

Since there is a PTAS reduction from max-3SAT to max-cut, the latter is APX-
hard as well. Improved PCP characterizations of NP have lead to better bounds for
various problems, which in some cases are tight: max-3SAT, for example, is NP-hard
to approximate to a factor of 7/8+ε for any ε > 0, and a factor of 7/8 can be achieved
easily by choosing a value for each variable uniformly at random. For max-cut the
same techniques yield an upper bound of 16/17 + ε, which does not match the lower
bound of Theorem 15.1. The apparent difficulty in improving the upper bound seems
to be related to the fact that constraints in the max-cut problem involve two variables,
compared to three in the case of max-3SAT, and that the known PCP characterizations
corresponding to the two-variable case are weaker. The unique games conjecture
postulates the existence of a PCP construction for the two-variable case that would
imply an upper bound for max-cut that matches the bound of Theorem 15.1.



16 Non-Cooperative Games

The second part of the course will be concerned with situations in which multiple self-
interested entities, or agents, operate in the same environment. Game theory provides
mathematical models, so-called games, for studying these types of situations. We focus
for now on non-cooperative games, where agents independently optimize different
objectives and outcomes must be self-enforcing. In a later lecture we also consider
cooperative games, which focus on conditions under which cooperation among subsets
of the agents can be sustained.

16.1 Games and Solutions

The central object of study in non-cooperative game theory are normal-form games.
A normal-form game is a tuple Γ = (N, (Ai)i∈N, (pi)i∈N) where N is a finite set
of players, and for each player i ∈ N, Ai is a non-empty and finite set of actions
available to i and pi : ("i∈NAi) → R is a function mapping each action profile, i.e.,
each combination of actions, to a real-valued payoff for i. Unless noted otherwise, the
results we consider are invariant under positive affine transformations, and payoffs and
their relative intensities will not be comparable across players.

More complicated games where players move sequentially and base their decisions
on their and others’ earlier moves can also be represented as normal-form games, by
encoding every possible course of action in the former by an action of the latter. It
should be noted, however, that this generally leads to a large increase in the number
of actions.

We henceforth restrict our attention to two-player games, but note that most con-
cepts and results extend in a straightforward way to games with more than two players.
A two-player game with m actions for player 1 and n actions for player 2 can be repre-
sented by a pair of matrices P,Q ∈ Rm×n, where pij and qij are the payoffs of players 1
and 2 when player 1 plays action i and player 2 plays action j. Two-player games are
therefore sometimes referred to as bimatrix games, and players 1 and 2 as the row and
column player, respectively.

Assume that players can choose their actions randomly and denote the set of possible
strategies of the two players by X and Y, respectively, i.e., X = {x ∈ Rm>0 :

∑m
i=1 xi = 1}

and Y = {y ∈ Rn>0 :
∑n
i=1 yi = 1}. A pure strategy is a strategy that chooses some

action with probability one, and we make no distinction between pure strategies and
the corresponding actions. A profile (x, y) ∈ X× Y of strategies induces a lottery over
outcomes, and we write p(x, y) = xTPy and q(x, y) = xTQy for the expected payoff of
the two players in this lottery.

Consider for example the well-known prisoner’s dilemma, involving two suspects
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S T

S (2, 2) (0, 3)

T (3, 0) (1, 1)

Figure 16.1: Representation of the prisoner’s dilemma as a normal-form game. The
matrices P and Q are displayed as a single matrix with entries (pij, qij), and players 1
and 2 respectively choose a row and a column of this matrix. Action S corresponds to
remaining silent, action T to testifying.

C D

C (2, 2) (1, 3)

D (3, 1) (0, 0)

Figure 16.2: The game of chicken, where players can chicken out or dare

accused of a crime who are being interrogated separately. If both remain silent, they
walk free after spending a few weeks in pretrial detention. If one of them testifies against
the other and the other remains silent, the former is released immediately while the
latter is sentenced to ten years in jail. If both suspects testify, each of them receives a
five-year sentence. A representation of this situation as a two-player normal-form game
is shown in Figure 16.1.

It is easy to see what the players in this game should do, because action T yields a
strictly larger payoff than action S for every action of the respective other player. More
generally, for two strategies x, x ′ ∈ X of the row player, x is said to (strictly) dominate
x ′ if for every strategy y ∈ Y of the column player, p(x, y) > p(x ′, y). Dominance
for the column player is defined analogously. Strategy profile (T, T) in the prisoner’s
dilemma is what is called a dominant strategy equilibrium, a profile of strategies that
dominate every other strategy of the respective player. The source of the dilemma is
that outcome resulting from (T, T) is strictly worse for both players than the outcome
resulting from (S, S). More generally, an outcome that is weakly preferred to another
outcome by all players, and strictly preferred by at least one player is said to Pareto
dominate that outcome. An outcome that is Pareto dominated is clearly undesirable.

In the absence of dominant strategies, it is less obvious how players should proceed.
Consider for example the game of chicken illustrated in Figure 16.2. This game has
its origins in a situation where two cars drive towards each other on a collision course.
Unless one of the drivers yields, both may die in a crash. If one of them yields while
the other goes straight, however, the former will be called a “chicken,” or coward. It is
easily verified that this game does not have any dominant strategies.

The most cautious choice in a situation like this would be to ignore that the other
player is self-interested and choose a strategy that maximizes the payoff in the worst
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case, taken over all of the other player’s strategies. A strategy of this type is known
as a maximin strategy, and the payoff thus obtained as the player’s security level. It
is easy to see that it suffices to maximize the minimum payoff over all pure strategies
of the other player, i.e., to choose x such that minj∈{1,...,n}

∑m
i=1 xipij is as large as

possible. Maximization of this minimum can be achieved by maximizing a lower bound
that holds for all j = 1, . . . , n, so a maximin strategy and the security level for the row
player can be found as a solution of the following linear program with variables v ∈ R
and x ∈ Rm:

maximize v

subject to
m∑
i=1

xipij > v for j = 1, . . . , n

m∑
i=1

xi = 1

x > 0.

(16.1)

The unique maximin strategy in the game of chicken is to yield, for a security level
of 1. This also illustrates that a maximin strategy need not be optimal: assuming that
the other player yields, the best response is in fact to go straight. Formally, strategy
x ∈ X of the row player is a best response to strategy y ∈ Y of the column player if for
all x ′ ∈ X, p(x, y) > p(x ′, y). The concept of a best response for the column player is
defined analogously.

16.2 The Minimax Theorem

In the special case when the interests of the two players are diametrically opposed,
maximin strategies turn out to be optimal in a very strong sense. A two-player game
is called zero-sum game if qij = −pij for all i = 1, . . . ,m and j = 1, . . . , n. A game
of this type is sometimes called a matrix game, because it can be represented just by
the matrix P containing the payoffs of the row player. Assuming invariance of utilities
under positive affine transformations, results for zero-sum games in fact apply to the
larger class of constant-sum games, in which the payoffs of the two players always sum
up to the same constant. For games with more than two players, these properties are
far less interesting, as one can always add an extra player who “absorbs” the payoffs of
the others.

Theorem 16.1 (von Neumann, 1928). Let P ∈ Rm×n, X = {x ∈ Rm>0 :
∑m
i=1 xi = 1},

Y = {y ∈ Rn>0 :
∑n
i=1 yi = 1}. Then,

max
x∈X

min
y∈Y

p(x, y) = min
y∈Y

max
x∈X

p(x, y).

Proof. Again consider the linear program (16.1), and recall that the optimal solution
of this linear program is equal to maxx∈Xminy∈Y p(x, y). By adding a slack variable
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z ∈ Rn with z > 0 we obtain the Lagrangian

L(v, x, z,w, y) = v+

n∑
j=1

yj

( m∑
i=1

xipij − zj − v
)
−w

( m∑
i=1

xi − 1
)

=
(
1−

n∑
j=1

yj

)
v+

m∑
i=1

( n∑
j=1

pijyj −w
)
xi −

n∑
j=1

yjzj +w,

where w ∈ R and y ∈ Rn. The Lagrangian has a finite maximum for v ∈ R and x ∈ Rm

with x > 0 if and only if
∑n
j=1 yj = 1,

∑n
j=1 pijyj 6 w for i = 1, . . . ,m, and y > 0.

The dual of (16.1) is therefore

minimize w

subject to
n∑
j=1

pijyj 6 w for i = 1, . . . ,m

n∑
j=1

yj = 1

y > 0.

It is easy to see that the optimal solution of the dual is miny∈Ymaxx∈X p(x, y), and the
theorem follows from strong duality.

The number maxx∈Xminy∈Y p(x, y) = miny∈Ymaxx∈X p(x, y) is also called the
value of the matrix game with payoff matrix P.
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A pair of strategies (x, y) ∈ X × Y such that x is a best response to y and y is a
best response to x is called an equilibrium. It is easily verified that both (C,D) and
(D,C) are equilibria of the game of chicken, and we will see later that there is one more
equilibrium, in which both players randomize between their two actions.

17.1 Equilibria of Matrix Games

The minimax theorem implies that every matrix game has an equilibrium, and in fact
characterizes the set of equilibria of these games.

Theorem 17.1. A pair of strategies (x, y) ∈ X × Y is an equilibrium of the matrix
game with payoff matrix P if and only if

min
y ′∈Y

p(x, y ′) = max
x ′∈X

min
y ′∈Y

p(x ′, y ′) and

max
x ′∈X

p(x ′, y) = min
y ′∈Y

max
x ′∈X

p(x ′, y ′).
(17.1)

Proof. For all (x, y) ∈ X× Y,

min
y ′∈Y

max
x ′∈X

p(x ′, y ′) 6 max
x ′∈X

p(x ′, y) > p(x, y) > min
y ′∈Y

p(x, y ′) 6 max
x ′∈X

min
y ′∈Y

p(x ′, y ′),

and the first and last term are equal by Theorem 16.1.
If (x, y) is an equilibrium, the second and third inequality hold with equality. This

means that the first and last inequality have to hold with equality as well, and (17.1)
follows.

On the other hand, if (17.1) is satisfied, then the first and last inequality hold with
equality. This means that the second and third inequality have to hold with equality
as well, so (x, y) is an equilibrium.

Other properties specific to matrix games are that all equilibria yield the same
payoffs and that any pair of strategies of the two players, such that each of them is
played in some equilibrium, is itself an equilibrium.

Theorem 17.2. Let (x, y), (x ′, y ′) ∈ X × Y be equilibria of the matrix game with
payoff matrix P. Then p(x, y) = p(x ′, y ′), and (x, y ′) and (x ′, y) are equilibria as
well.

Proof. Since equilibrium strategies are best responses to each other, we have that

p(x, y) 6 p(x, y ′) 6 p(x ′, y ′) 6 p(x ′, y) 6 p(x, y).
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Since the first and last term are the same, the inequalities have to hold with equality
and the first claim follows. Then,

p(x, y ′) = p(x ′, y ′) > p(z, y ′) for all z ∈ X,
p(x, y ′) = p(x, y) 6 p(x, z) for all z ∈ Y,
p(x ′, y) = p(x, y) > p(z, y) for all z ∈ X, and
p(x ′, y) = p(x ′, y ′) > p(x ′, z) for all z ∈ X,

where the inequalities hold because (x, y) and (x ′, y ′) are equilibria. Thus (x, y ′) and
(x ′, y) are pairs of strategies that are best responses to each other, and the second claim
follows as well.

Theorems 16.1, 17.1, and 17.2 together also imply that the set of equilibria of a
matrix game is convex.

17.2 Nash’s Theorem

Many of the results concerning equilibria of matrix games do not carry over to bimatrix
games, with the exception of existence.

Theorem 17.3 (Nash, 1951). Every bimatrix game has an equilibrium.

We use the following result.

Theorem 17.4 (Brouwer Fixed Point Theorem). Let f : S → S be a continuous
function, where S ⊆ Rn is closed, bounded, and convex. Then f has a fixed point.

Proof of Theorem 17.3. Define X and Y as before, and observe that X × Y is closed,
bounded, and convex. For x ∈ X and y ∈ Y define si(x, y) and tj(x, y) as the additional
payoff the two players could obtain by playing their ith or jth pure strategy instead of
x or y, i.e.,

si(x, y) = max {0, p(emi , y) − p(x, y)} for i = 1, . . . ,m and

tj(x, y) = max {0, q(x, enj ) − q(x, y)} for j = 1, . . . , n,

where ek` denotes the `th unit vector in Rk. Further define f : (X × Y) → (X × Y) by
letting f(x, y) = (x ′, y ′) with

x ′i =
xi + si(x, y)

1+
∑m
k=1 sk(x, y)

and y ′j =
yj + tj(x, y)

1+
∑n
k=1 tk(x, y)

for i = 1, . . . ,m and j = 1, . . . , n. Function f is continuous, so by Theorem 17.4 is must
have a fixed point, i.e., a pair of strategies (x, y) ∈ X× Y such that f(x, y) = (x, y).
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Further observe that there has to exist i ∈ {1, . . . ,m} such that xi > 0 and si(x, y) =
0, since otherwise

p(x, y) =

m∑
k=1

xkp(e
m
k , y) >

m∑
k=1

xkp(x, y) = p(x, y).

Therefore, and since (x, y) is a fixed point,

xi =
xi + si(x, y)

1+
∑m
k=1 sk(x, y)

and thus
m∑
k=1

sk(x, y) = 0.

This means that for k = 1, . . . ,m, sk(x, y) = 0, and therefore

p(x, y) > p(emk , y).

It follows that
p(x, y) > p(x ′, y) for all x ′ ∈ X.

An analogous argument shows that q(x, y) > q(x, y ′) for all y ′ ∈ Y, so (x, y) must be
an equilibrium.

Our requirement that a bimatrix game has a finite number of actions is crucial for
this result. This can be seen very easily by considering a game where the set of actions
of each player is the set of natural numbers, and players get a payoff of 1 if they choose
a number that is greater than the one chosen by the other player, and zero otherwise.

17.3 The Complexity of Finding an Equilibrium

The proof of Theorem 17.3 relies on fixed points of a continuous function and does not
give rise to a finite method for finding an equilibrium. Quite surprisingly, equilibrium
computation turns out to be more or less a combinatorial problem.

Define the support of strategy x ∈ X as S(x) = {i ∈ {1, . . . ,m} : xi > 0}, and that of
strategy y ∈ Y as S(y) = {j ∈ {1, . . . ,m} : yj > 0}. It is easy to see that a mixed strategy
is a best response if and only if all pure strategies in its support are best responses: if
one of them was not a best response, then the payoff could be increased by reducing
the probability of that strategy, and increasing the probabilities of the other strategies
in the support appropriately. In other words, randomization over the support of an
equilibrium does not happen for the player’s own sake, but to allow the other player to
respond in a way that sustains the equilibrium.

It also follows from these considerations that finding an equilibrium boils down
to finding its supports. Once the supports are known, the precise strategies can be
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computed by solving a set of equations, which in the two-player case are linear. For
supports of sizes k and `, there is one equation for each player stating that the prob-
abilities sum up to one, and k − 1 or ` − 1 equations, respectively, stating that the
expected payoff is the same for every pure strategy in the support. Solving these k+ `
equations in k+ ` variables yields k values for player 1 and ` values for player 2. If the
solution corresponds to a strategy profile and expected payoffs are maximized by the
pure strategies in the support, then an equilibrium has been found. An equilibrium
with supports of size two in the game of chicken would have to satisfy x1 + x2 = 1,
y1 + y2 = 1, 2x1 + 1x2 = 3x1 + 0x2, and 2y1 + 1y2 = 3y1 + 0y2. The unique solution,
x1 = x2 = y1 = y2 = 1/2, also satisfies the additional requirements and therefore is
an equilibrium. No equilibrium with full supports exists in the prisoner’s dilemma,
because the corresponding system of equalities does not have a solution.

A basic procedure for finding an equilibrium, and in fact all equilibria, is to iterate
over all possible supports and check for each of them whether there is an equilibrium
with that support. The running time of this method is finite, but clearly exponential
in general. It is natural to ask whether there is a hardness result that stands in the
way of a polynomial-time algorithm. While the equilibrium condition can easily be
verified for a given pair of strategies, which implies membership in NP, the notion of
NP-hardness seems inappropriate: equilibria always exist and the decision problem is
therefore trivial. On the other hand, NP-hardness follows immediately if the problem
is modified slightly to obtain a non-trivial decision problem.

Theorem 17.5. Given a bimatrix game, it is NP-complete to decide whether it
has at least two equilibria; an equilibrium in which the expected payoff of the row
player is at least a given amount; an equilibrium in which the expected sum of
payoff of the two players is a least a given amount; an equilibrium with supports
of a given minimum size; an equilibrium whose support includes a given pure
strategy; or an equilibrium whose support does not include a given pure strategy.

In the next lecture we will consider an algorithm that searches the possible supports
in a more organized way. This algorithm also provides an alternative, combinatorial,
proof of existence, and will lead us to the appropriate complexity class for the problem
of finding an equilibrium.
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Consider a bimatrix game with payoff matrices P,Q ∈ Rm×n, and assume without loss
of generality that P,Q > 0. It will be convenient to index the actions of the row and
column player by M = {1, . . . ,m} and N = {m+ 1, . . . ,m+n}, respectively, and define
the sets X and Y of strategies accordingly.

A pair (x, y) ∈ X× Y is an equilibrium if and only if all pure strategies in S(x) are
best responses to y and all pure strategies in S(y) are best responses to x, i.e., if

for all i ∈M, xi > 0 implies (Py)i = max
k∈M

(Py)k and

for all j ∈ N, yj > 0 implies (QTx)j = max
k∈N

(QTx)k.
(18.1)

18.1 Labeled Polytopes

Not every subset of actions can be the support of an equilibrium, and it makes sense to
search for equilibrium supports in a more organized way. In the following we restrict
our attention to non-degenerate games, but note that degeneracies can be handled by
a slight perturbation of the payoff matrices. A bimatrix game is non-degenerate if for
every (x, y) ∈ X × Y, |S(x)| > |S(y)| if y is a best response to x and |S(y)| > |S(x)| if x
is a best response to y.

Let

X̂ = {(x, u) ∈ Rm × R : x > 0, xT1 = 1,QTx 6 u1} and

Ŷ = {(y, v) ∈ Rn × R : y > 0, yT1 = 1, Py 6 v1},

where 1 denotes an all-ones vector of appropriate dimension. The first two inequalities
for X̂ ensure that x is indeed a strategy of the row player, while the third inequality
ensures that u is an upper bound on the expected payoff for every pure strategy of the
column player. We will be interested in the extreme points of X̂ and Ŷ, because they
satisfy some of the constraints with equality and therefore correspond to strategies with
specific properties: if xi = 0, then the pure strategy i ∈M is not played in strategy x; if
(QTx)j = u, then the pure strategy j ∈ N is a best response to x. In the case of X̂ there
arem+1 variables, so in addition to the equality constraint at leastm of the inequality
constraints have to hold with equality at every extreme point. An extreme point (x, u)
of X̂ thus corresponds to a situation where |S(x)| = k, for some k 6 m, and at least
k pure strategies of the column player are a best response to x. By non-degeneracy,
there in fact have to be exactly k such strategies. Analogously, at every extreme point
(y, v) of Ŷ, |S(y)| = k for some k 6 n and k pure strategies of the row player are a best
response to y. It is easy to see an equilibrium (x, y) of a non-degenerate game must
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satisfy |S(x)| = |S(y)|, so that every equilibrium of such a game can be described as a
pair of extreme points of X̂ and Ŷ.

Since P,Q > 0 implies that u, v > 0, we can simplify notation and consider

X = {x ∈ Rm : x > 0,QTx 6 1} and

Y = {y ∈ Rn : y > 0, Py 6 1}.

The vectors in X are no longer normalized, but there is a direct correspondence between
the extreme points of X̂ and X, except for the zero vector: for each extreme point (x, u)
of X̂, x/u is an extreme point of X, and for each extreme point x of X, apart from the
zero vector, (x/

∑m
i=1 xi, 1/

∑m
i=1 xi) is an extreme point of X̂. Analogous conditions

hold for Ŷ and Y.
We will now give a characterization of those extreme points of X and Y that corre-

spond to an equilibrium of the underlying game. For given extreme points x and y of X
and Y, let L(x) and L(y) be the index sets of those constraints that hold with equality,
i.e.,

L(x) = {i ∈M : xi = 0} ∪ {j ∈ N : (QTx)j = 1} and

L(y) = {j ∈ N : yj = 0} ∪ {i ∈M : (Py)i = 1}.

We refer to the sets L(x) and L(y) as the labels of x and y and call a pair (x, y) fully
labeled if L(x) ∪ L(y) =M ∪N.

Theorem 18.1. A pair of extreme points (x, y) ∈ X × Y with (x, y) 6= (0, 0) corre-
sponds to an equilibrium if and only if it is fully labeled.

Proof. Suppose that L(x) ∪ L(y) =M ∪N, and let

M1 = {i ∈M : xi = 0}, N1 = {j ∈ N : yj = 0},

M2 = {i ∈M : (Py)i = 1}, N2 = {j ∈ N : (QTx)j = 1}.

Then, M1 ∪M2 =M and N1 ∪N2 = N, and it is easy to see that (18.1) is satisfied.
Conversely assume that (x, y) corresponds to an equilibrium. Then, by (18.1),

(M\S(x))∪S(y) ⊆ L(x) and (N\S(y))∪S(x) ⊆ L(y), and thus L(x)∪L(y) =M∪N.

18.2 The Lemke-Howson Algorithm

The relationship between completely labeled pairs of extreme points and equilibria of
the underlying game can be used to obtain a combinatorial algorithm for finding an
equilibrium. The idea is to start from (0, 0) and pivot alternatingly in X and Y until a
completely labeled pair is found. To make this idea precise, let VX and VY be the sets
of extreme points of X and Y, and let EX and EY be the set of edges between adjacent
extreme points, i.e.,

EX = {(x, x ′) ∈ VX × VX : |L(x) ∩ L(x ′)| = m− 1}

EY = {(y, y ′) ∈ VY × VY : |L(y) ∩ L(y ′)| = n− 1}.
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Further let V = VX×VY and E = {((x, y), (x ′, y ′)) ∈ V×V : (x, x ′) ∈ EX or (y, y ′) ∈ EY}.
The key observation is that if we restrict our attention to extreme points that are

almost fully labeled, with the possible exception of a particular label `, then there is
always a unique way in which we can proceed. For ` ∈ M ∪N, let V` = {(x, y) ∈ V :

L(x) ∪ L(y) ⊇M ∪N \ {`}} and E` = E ∩ (V` × V`).

Theorem 18.2. Let ` ∈M∪N. Then, V` contains (0, 0) as well as every pair (x, y) ∈
V that corresponds to an equilibrium of the underlying game. If the underlying
game is non-degenerate, then (0, 0) and the elements of V` corresponding to an
equilibrium have degree one in the graph (V`, E`), and all other elements of V`
have degree two.

Proof. Both (0, 0) and all pairs corresponding to equilibria are fully labeled, so the
first property is obvious.

For the second property, consider (x, y) ∈ V` and let x̄ and ȳ be the strategies in the
underlying game corresponding to x and y. Since the game is non-degenerate, at most
|S(x̄)| pure strategies can be a best response to x̄, and at most |S(ȳ)| pure strategies can
be a best response to ȳ, so L(x) 6 |M\S(x)|+S(x) = m and L(y) 6 |N\S(y)|+S(y) = n.
Since x and y are extreme points of X and Y, respectively, we have that |L(x)| > m and
|L(y)| > n, and thus L|(x)| = m and |L(y)| = n.

If (x, y) = (0, 0), or if (x̄, ȳ) is an equilibrium, then (x, y) is fully labeled and
therefore L(x)∩ L(y) = ∅. The neighbors of (x, y) are those elements of V` that replace
` with some other label, i.e., those where some other constraint holds with equality
instead of the one corresponding to `. Since the constraints are linear, and by non-
degeneracy, there is exactly one such element.

Otherwise L(x)∩ L(y) = {k} for some k ∈M∪N. The neighbors of (x, y) can again
be obtained by replacing k with another label. This replacement can be done either
in X or in Y, and for each of the two there is one neighbor by the same reasoning as
before.

This means that the graph (V`, E`) for each ` ∈M ∪N consists of paths and cycles
that are pairwise disjoint, and the ends of the paths correspond to the pair (0, 0) and
to the equilibria of the underlying game. The Lemke-Howson algorithm now takes the
obvious steps: it starts from (0, 0) and follows the path until it reaches the pair of
extreme points at the other end, which must correspond to an equilibrium. Moving
from a vertex (x, y) ∈ V` to a neighboring vertex (x ′, y ′) ∈ V` corresponds to dropping
a label from either x or y and picking up another label with the same element. In the
first round the label that is dropped is `. In subsequent rounds it is the duplicate label
that has been picked up in the previous round, but it is dropped from the respective
other element. Eventually ` will be picked up, leading to a fully labeled pair. Formally
the algorithm proceeds as follows:

1. Pick ` ∈M ∪N. Let (x, y) be the pair obtained from (0, 0) by dropping label `.
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2. Let k ∈ L(x ′)∩ L(y ′) be the label that was just picked up. If it was picked up by
x, then drop it from y; otherwise drop it from x. Let (x, y) be the resulting pair.

3. If (x, y) is fully labeled, then stop. Otherwise go to Step 2.

Theorem 18.2 also shows that every non-degenerate game has at least one equilib-
rium, and in fact that the number of equilibria in such games is odd.

Corollary 18.3. Every non-degenerate bimatrix game has an odd number of equi-
libria.

18.3 Complementary Pivoting

Adding slack variables r ∈ Rm and s ∈ Rn turns the best response conditions into
QTx + s = 1 and Py + r = 1, where x, y, r, s > 0. The pair (x, y) then is completely
labeled if and only if xTr = 0 and yTs = 0. Dropping a label corresponds to increasing or
decreasing one of the variables such that one of the constraints, the one corresponding to
the label being dropped, no longer holds with equality. When the variable is increased
or decreased as much as possible, a different constraint starts to hold with equality, and
the label corresponding to this constraint is picked up. This procedure can be carried
out through pivoting in a tableau, in a very similar way to pivoting in the simplex
method.

Consider for example the bimatrix game given by

P =


3 3

2 5

0 6

 and Q =


3 2

2 6

3 1

 ,
Indexing r and s by M = {1, . . . ,m} and N = {m + 1, . . . ,m + n}, respectively, the
constraint QTx+ s = 1 can be written in tableau form as follows:

x1 x2 x3 s4 s5

3 2 3 1 0 1

2 6 1 0 1 1

Assume that label ` = 2 is dropped. In that case, want to add variable x2 to the
basis, by pivoting on the column that corresponds to this variable. The corresponding
pivot row is the one that minimizes the ratio between the entry in the last column and
the entry in the pivot column among those that have a positive entry in the latter.
Pivoting then works by dividing the pivot row by the entry in the pivot column in
order to make that entry equal to one, and adding a multiple of the pivot row to the
other rows in order to make all other entries in the pivot column equal to zero. We
obtain the following tableau:

7
3

0 8
3

1 −1
3

2
3

1
3

1 1
6

0 1
6

1
6
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The second row now corresponds to variable x2 that has entered the basis. On the
other hand, variable s5 has left the basis, and 5 ∈ L(x) ∩ L(y). We thus want to turn
to the constraint Py+ r = 1 and drop the duplicate label 5. The initial tableau for this
constraint looks as follows:

y4 y5 r1 r2 r3

3 3 1 0 0 1

2 5 0 1 0 1

0 6 0 0 1 1

By pivoting on the second column, corresponding to y5, and on the third row, we pick
up label 3 and obtain the following tableau:

3 0 1 0 −1
2

1
2

2 0 0 1 −5
6

1
6

0 1 0 0 1
6

1
6

Pivoting one more time in each of the two polytopes, we drop label 3 to pick up label 4,
and drop label 4 to pick up label ` = 2 and obtain a fully labeled pair. The final tableaus
look as follows:

7
8

0 1 3
8

−1
8

1
4

3
16

1 0 − 3
48

3
16

1
8

0 0 1 −3
2

3
4

1
4

1 0 0 1
2

− 5
12

1
12

0 1 0 0 1
6

1
6

Reading off the values of x and y from the last column of each tableau and scaling them
appropriately yields the equilibrium ((0, 1/3, 2/3), (1/3, 2/3)).

18.4 The Complexity of Finding an Equilibrium Revisited

The Lemke-Howson algorithm creates a graph consisting of disjoint paths and cycles,
such that one endpoint of a path can be found very easily and any other endpoint
corresponds to an equilibrium. Clearly, there must be at least one other endpoint, and
this endpoint can be found by following the path from the initial one. The problem is
that the size of the graph, and thus potentially the length of the path in question, is
exponential. Indeed, there exist games for which the Lemke-Howson algorithm takes
an exponential number of steps until it terminates.

It turns out that there is a variety of other computational problems for which the
existence of a solution is guaranteed by the same type of argument. One of them is
the problem of finding a fixed point of a function satisfying the conditions of Brouwer’s
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theorem. These problems comprise the complexity class PPAD (for polynomial parity
argument, directed case), and the equilibrium problem is complete for this class under
an appropriate type of reduction.

Theorem 18.4 (Chen and Deng, 2006). Finding an equilibrium of a bimatrix game
is PPAD-complete.

The question whether equilibria can be found in polynomial time is thus equivalent
to the question whether PPAD = P, or whether there exists a general method that
avoids following paths in the graph and instead takes a shortcut to a solution. While
it could in principle be the case that PPAD = P even when P 6= NP, this is still
considered rather unlikely, one of the reasons being that many of the problems in
PPAD are notoriously hard.



19 Cooperative Games

So far we have considered non-cooperative games, in which each players acts on its own.
The theory of cooperative games, on the other hand, studies which coalitions of players
are likely to form in a given situation. It takes the payoff achievable by any coalition
as given, but requires that coalitions can distribute these payoffs among their members
in such a way that the members are satisfied. We consider games with transferable
payoff, where the payoff obtained by a coalition can be distributed in an arbitrary way
among its members, and restrict our attention to the grand coalition N consisting of
all players.

Formally, a coalitional game is given by a set N = {1, . . . , n} of players, and a
characteristic function v : 2N → R that maps each coalition of players to its value,
the joint payoff the coalition can obtain by working together. For a given game (N, v),
a vector x ∈ Rn of payoffs is said to satisfy (economic) efficiency if

∑
i∈N xi = v(N)

and individual rationality if xi > v({i}) for i = 1, . . . , n. The first condition intuitively
ensures that no payoff is wasted, while the second condition ensures that each player
obtains at least the same payoff it would be able to obtain on its own. A payoff vector
that is both efficient and individually rational is also called an imputation.

19.1 The Core

Efficiency and individual rationality may not be enough to guarantee a stable outcome.
For any two imputations x and y,

∑
i∈N xi =

∑
i∈N yi = v(N), so yi > xi for some

i ∈ N implies that yj < xj for some other j ∈ N. However, there could be some coalition
S ⊆ N such that yi > xi for all i ∈ S. If in addition

∑
i∈S yi 6 v(S), the members of S

could increase their respective payoffs by deviating from the grand coalition, forming
the coalition S, and distributing the payoff thus obtained according to y. The core is the
set of imputations that are stable against this kind of deviation. Formally, imputation
x is in the core of game (N, v) if

∑
i∈S xi > v(S) for all S ⊆ N.

Consider a situation where n > 2 members of an expedition have discovered a
treasure, and any pair of them can carry one piece of the treasure back home. This
situation can be modeled by a coalitional game (N, v) where N = {1, . . . , n} and v(S) =
|S|/2 if |S| is even and v(S) = (|S| − 1)/2 if |S| is odd. The core then contains all
imputations if n = 2, the single imputation (1/2, . . . , 1/2) if n > 4 is even, and is
empty if n is odd. The latter can for example be shown using a characterization of
games with a non-empty core, which we discuss next.

Call a function λ : 2N → [0, 1] balanced if for every player the weights of all coalitions
containing that player sum to 1, i.e., if for all i ∈ N,

∑
S⊆N\{i} λ(S ∪ {i}) = 1. A game

(N, v) is called balanced if for every balanced function λ,
∑
S⊆N λ(S)v(S) 6 v(N). The

85
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intuition behind this definition is that each player allocates one unit of time among the
coalitions it is a member of, and each coalition earns a fraction of its value proportional
to the minimum amount of time devoted to it by any of its members. Balancedness of
a collection of weights imposes a feasibility condition on players’ allocations of time,
and a game is balanced if there is no feasible allocation that yields more than v(N).

Theorem 19.1 (Bondareva 1963, Shapley 1967). A game has a non-empty core if
and only if it is balanced.

Proof. The core of a game (N, v) is non-empty if and only if the linear program to

minimize
∑
i∈N

xi

subject to
∑
i∈S

xi > v(S) for all S ⊆ N

has an optimal solution with value v(N). This linear program has the following dual:

maximize
∑
S⊆N

λ(S)v(S)

subject to
∑

S⊆N,i∈S

λ(S) = 1 for all i ∈ N

λ(S) > 0 for all S ⊆ N,

where λ : 2N → [0, 1]. Note that λ is feasible for the dual if and only if it is a
balanced function. Both primal and dual are feasible, so by strong duality their optimal
objective values are the same. This means that the core is non-empty if and only if∑
S⊆N λ(S)v(S) 6 v(N) for every balanced function λ.

To see that the core of our example game is empty if n is odd, define λ : 2N → [0, 1]

such that λ(S) = 1/(n − 1) if |S| = 2 and λ(S) = 0 otherwise. Then, for all i ∈ N,∑
S⊆N\{i} λ(S∪{i}) = 1, because each player is contained in exactly (n−1) sets of size 2.

Moreover,
∑
S⊆N λ(S)v(S) = n(n− 1)/2 · 1/(n− 1) = n/2, which is greater than v(N)

if n is odd.

19.2 The Nucleolus

In cases where the core is empty, one might consider weakening the requirement that
no coalition should be able to gain, and instead look for an efficient payoff vector that
minimizes the possible gain over all coalitions. This can intuitively be interpreted as
minimizing players’ incentive to deviate from the solution by forming another coalition,
or as a natural notion of fairness when distributing the joint payoff v(N) among the
players.

To this end, define the excess e(S, x) of coalition S ⊆ N for payoff vector x as its
gain from leaving the grand coalition, i.e., e(S, x) = v(S) −

∑
i∈S xi. For a given vector
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x, let Sx1, . . . , S
x
2n−1 be an ordering of the coalitions such that e(Sxk, x) > e(Sxk+1, x) for

k = 1, . . . , 2n − 2, and let E(x) ∈ R2n−1 be the vector given by Ek(x) = e(Sxk, x). We
say that E(x) is lexicographically smaller than E(y) if there exists i ∈ {1, . . . , 2n − 1}

such that Ek(x) = Ek(y) for k = 1, . . . , i − 1 and Ei(x) < Ei(y). The nucleolus is
then defined as the set of efficient payoff vectors x for which E(x) is lexicographically
minimal.

Observe that for each k = 1, . . . , 2n − 1, Ek is a continuous function because

Ek(x) = min
T⊆2N

|T|=k−1

max
S∈2N\T

e(S, x).

Since E1 is continuous, X1 = argminx∈X0 E1(x), where X0 is the set of efficient pay-
off vectors, is non-empty and compact. By induction, the same holds for Xk =

argminx∈Xk−1 Ek(x), k > 2. Since X2n−1 is the nucleolus, the nucleolus is non-empty.
It can in fact be shown that the nucleolus always contains exactly one element.

Theorem 19.2. The nucleolus of any coalitional game is a singleton.

Proof. Consider two vectors x and y in the nucleolus, and assume for contradiction
that x 6= y. Observe that E(x) = E(y), and let S1, . . . , S2n−1 be an ordering of the
coalitions such that e(Sk, x) > e(Sk+1, x) for k = 1, . . . , 2n − 2. Since x 6= y, there
has to exist ` ∈ {1, . . . , 2n − 1} such that e(Sk, x) = e(Sk, y) for k = 1, . . . , ` − 1 and
e(S`, x) 6= e(S`, y). In fact e(S`, x) > e(S`, y), because e(S`, x) < e(S`, y) would imply
that E(x) is lexicographically smaller than E(y). Moreover, for k = ` + 1, . . . , 2n − 1,
Ek(x) 6 E`(x) and e(Sk, y) 6 E`(x). The latter inequality holds because e(Sk, y) =

Ek(y) for k = 1, . . . , ` − 1, so it must be the case that e(Sk, y) 6 E`(y) = E`(x) for
k = `+ 1, . . . , 2n − 1.

Now consider the vector z = (x + y)/2, and observe that e(Sk, z) = (e(Sk, x) +

e(Sk, y))/2 for k = 1, . . . , 2n−1. Thus Ek(z) = Ek(x) for k = 1, . . . , `−1, E`(z) < E`(x),
and Ek(z) < E`(x) for k = ` + 1, . . . , 2n − 1. This means that E(z) is lexicographically
smaller than E(x), contradicting the assumption that x is in the nucleolus.

The set of efficient payoff vectors that minimize maximum excess is the set of optimal
solutions of the following linear program:

minimize ε

subject to
∑
i∈S xi > v(S) − ε for all S ⊂ N∑
i∈N xi = v(N).

(P1)

The set of feasible solutions of (P1) for a fixed value of ε is also called the ε-core, and
the set of optimal solutions of (P1) the least core. The core is non-empty if and only
if the optimal objective value of (P1) is non-positive.

Now let S1 ⊆ 2N\{N} be the set of coalitions whose constraint holds with equality in
every optimal solution of (P1). Clearly, if x is in the nucleolus, then e(S, x) = E1(x) for
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all S ∈ S1. Given that S1 is non-empty, we can thus write down a new linear program
that fixes the excess of the coalitions in S1 to E1(x) and minimizes the next smaller
excess. By repeating this procedure we obtain a sequence of linear programs P2, P3, . . .
defined recursively as follows:

minimize ε

subject to
∑
i∈S xi = v(S) − ε1 for all S ∈ S1

...∑
i∈S xi = v(S) − εi−1 for all S ∈ Si−1∑
i∈S xi > v(S) − ε for all S ∈ S̄i−1∑
i∈N xi = v(N),

(Pi)

where for j = 1, . . . , i − 1, εj is the optimal objective value of (Pj), Sj ⊆ S̄j−1 is the
set of coalitions with an inequality constraint in (Pj) that holds with equality in every
optimal solution, and S̄j = (2N \ {N}) \ ∪j`=1S`.

The following result establishes that there always exists an inequality constraint
that can be tightened to an equality, which guarantees that we obtain the nucleolus
after a finite number of iterations. In fact, n iterations can be shown to suffice if in
addition to the constraints that are tight in every optimal solution we also fix those
that are linearly dependent on constraints that have already been fixed.

Lemma 19.3. If S̄i−1 6= ∅, then Si 6= ∅.

Proof. Let S̄i−1 = {S1, . . . , Sm}. If m = 0 or if the constraint for some S ∈ S̄i−1 holds
with equality in every optimal solution of (Pi) we are done. Otherwise, for j = 1, . . . ,m,
there exists an optimal solution xj of (Pi) such that e(S, xj) < εi. By convexity of the
set of optimal solutions, x̃ = 1/m

∑m
i=1 x

j is optimal for (Pi), which means that there
has to be a coalition S̃ ∈ S̄i−1 such that e(S̃, x̃) = εi. Thus,

e(S̃, x̃) =
1

m

m∑
j=1

e(S̃, xj) 6 εi,

where the equality holds by convexity of e and the inequality because for j = 1, . . . ,m,
xj is optimal for (Pi) and thus e(S̃, xj) 6 εi. If the constraint for S̃ had slack for some
optimal solution of (Pi), i.e., if S̃ = Sj for some j = 1, . . . ,m, then this inequality would
be strict. Since it is not, the constraint for S̃ must hold with equality in every optimal
solution of (Pi).

Consider for example a game with N = {1, 2, 3} and characteristic function v given
by

v({1}) = 1 v({2}) = 2 v({3}) = 1

v({1, 2}) = 2 v({1, 3}) = 3 v({2, 3}) = 5 v({1, 2, 3}) = 4.
(19.1)
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To find the nucleolus of this game, we first

minimize ε

subject to x1 > 1− ε, x2 > 2− ε, x3 > 1− ε

x1 + x2 > 2− ε, x1 + x3 > 3− ε

x2 + x3 > 5− ε, x1 + x2 + x3 = 4.

It is easily verified that ε = 1 and x = (0, 1, 3) is a feasible solution. By adding the
constraints for {1} and {2, 3} and subtracting the constraint for {1, 2, 3} we see that
ε > 1, so the solution must be optimal. For ε = 1, the constraints for {1} and {2, 3}

have to hold with equality in every optimal solution, and the constraints for {3}, {1, 2},
and {1, 2, 3} become redundant. Thus x1 = 0, x2 > 1, x3 > 2, and x2 + x3 = 4, and the
least core is {(0, x2, 4− x2) : x2 ∈ [1, 2]}. We now

minimize ε

subject to x1 = 0, x2 > 2− ε

x3 > 3− ε, x2 + x3 = 4

and obtain a unique optimal solution where ε = 1/2 and x = (0, 3/2, 5/2), which gives
us the unique element in the nucleolus.

19.3 The Shapley Value

A different notion of fairness in distributing the joint payoff of a coalition among its
members was proposed by Shapley, starting from a set of axioms. Call player i ∈ N
a dummy if its contribution to every coalition is exactly its value, i.e., if v(S ∪ {i}) =

v(S) + v({i}) for all S ⊆ N \ {i}. Call two players i, j ∈ N interchangeable if they
contribute the same to every coalition, i.e., if v(S∪ {i}) = v(S∪ {j}) for all S ⊆ N \ {i, j}.
Let a solution be a function φ : R2n → Rn that maps every characteristic function v
to an efficient payoff vector φ(v). Solution φ is said to satisfy

� dummies if φi(v) = v({i}) whenever i is a dummy;

� symmetry if φi(v) = φj(v) whenever i and j are interchangeable; and

� additivity if φ(v+w) = φ(v) + φ(w).

It turns out that there is a unique solution satisfying these axioms.

Theorem 19.4. The Shapley value, given by

φi(v) =
∑

S⊆N\{i}

|S|!(|N|− |S|− 1)!
|N|!

(
v(S ∪ {i}) − v(S)

)
,

is the unique solution that satisfies dummies, symmetry, and additivity.
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The Shapley value of player i can be interpreted as its average contribution over
all possible sequences in which the players can join the grand coalition. For the three-
player game with characteristic function given in (19.1), we for example have

φ1(v) =
0!2!
3!

(v({1}) − v(∅)) + 1!1!
3!

(v({1, 2}) − v({2})) +

1!1!
3!

(v({1, 3}) − v({3})) +
2!0!
3!

(v({1, 2, 3}) − v({2, 3}))

=
1

3
1+

1

6
0+

1

6
2+

1

3
(−1) =

1

3
.



20 Bargaining

20.1 Bargaining Problems

Bargaining theory investigates how agents should cooperate when non-cooperation may
result in outcomes that are Pareto dominated. Formally, a (two-player) bargaining
problem is a pair (F, d) where F ⊆ R2 is a convex set of feasible outcomes and d ∈ F is
a disagreement point that results if players fail to agree on an outcome. Here, convexity
corresponds to the assumption that any lottery over feasible outcomes is again feasible.
A bargaining solution then is a function that assigns to every bargaining problem
(F, d) a unique element of F.

The most basic example of a bargaining problem is the so-called ultimatum game
given by F = {(v1, v2) ∈ R2 : v1 + v2 6 1} and d = (0, 0), in which two players
receive a fixed amount of payoff if they can agree on a way to divide this amount
among themselves. This game has many equilibria when viewed as a normal-form
game, since disagreement results in a payoff of zero to both players. Players’ preferences
regarding these equilibria differ, and bargaining theory tries to answer the question
which equilibrium should be chosen. More generally, a two-player normal-form game
with payoff matrices P,Q ∈ Rm×n can be interpreted as a bargaining problem where
F = conv({(pij, qij) : i = 1, . . . ,m, j = 1, . . . , n}), d1 = maxx∈Xminy∈Y p(x, y), and
d2 = maxy∈Yminx∈X q(x, y), given that (d1, d2) ∈ F. Here, conv(S) denotes the convex
hull of set S.

Two kinds of approaches to bargaining exist in the literature: a strategic one that
considers iterative procedures resulting in an outcome in F, and an axiomatic one that
tries to identify bargaining solutions that possess certain desirable properties. We will
focus on the axiomatic approach in this lecture.

20.2 Nash’s Bargaining Solution

For a given bargaining problem (F, d), Nash proposed to

maximize (v1 − d1)(v2 − d2)

subject to v ∈ F
v > d.

(20.1)

The objective function of this optimization problem is strictly quasi-concave and there-
fore has a unique maximum. Formally, a function f : S→ R defined on a convex set S
is strictly quasi-concave if for all x, y ∈ S with x 6= y and every δ ∈ (0, 1), f(x) > f(y)
implies f((1 − δ)x + δy) > f(y). In other words, strict quasi-concavity means that
the interior of any line segment joining points on two level sets of f lies strictly above
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Figure 20.1: Illustration of the Nash bargaining solution

the level set corresponding to the lower value of the function. The objective func-
tion of (20.1) satisfies this criterion because its level sets are rectangular hyperbolae
with horizontal and vertical asymptotes. Optimization problem (20.1) thus defines a
bargaining solution, the so-called Nash bargaining solution.

Consider for example the two-player game with payoff matrices

P =

(
0 5

3 1

)
and Q =

(
2 2

4 0

)
.

In this game, the row player can guarantee a payoff of 15/7 by playing the two rows
with probabilities 2/7 and 5/7, respectively. The column player can guarantee a payoff
of 2 by playing the left column. The bargaining problem corresponding to this game is
shown in Figure 20.1. The set F is the convex hull of the four payoff vectors (0, 2), (5, 2),
(3, 4), and (1, 0), and it contains the feasible set B = {v ∈ F : v > d} of (20.1). The
disagreement point is d = (15/7, 2). Level sets of the objective function corresponding
to values 0 and 1 and to the optimal value are drawn as dashed curves. The Nash
bargaining solution v∗ is the unique point in the intersection of F with the optimal
level set.

To compute v∗, we first observe that v∗ ∈ {(v1, v2) : v2 = 7 − v1, 3 6 v1 6 5}. The
objective function becomes

(v1 − d1)(v2 − d2) = (v1 −
15

7
)(5− v1) =

50

7
v1 − v

2
1 −

75

7
,

and has a stationary point if 50/7 − 2v1 = 0. We obtain v∗ = (25/7, 24/7), which is
indeed a maximum.
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While it is not obvious that maximizing the product of the excess of the two players
is a good idea, it turns out that the Nash bargaining solution can be characterized
using a set of simple axioms. Bargaining solution f is

� Pareto efficient if f(F, d) is not Pareto dominated in F for any bargaining problem
(F, d);

� symmetric if (f(F, d))1 = (f(F, d))2 for every bargaining problem (F, d) such that
(y, x) ∈ F whenever (x, y) ∈ F and d1 = d2;

� invariant under positive affine transformations if f(F ′, d ′) = α ◦ f(F, d) +β for
any α,β ∈ R2 with α > 0 and any two bargaining problems (F, d) and (F ′, d ′)

such that F ′ = {α ◦ x+ β : x ∈ F} and d ′ = α ◦ d+ β; and

� independent of irrelevant alternatives if f(F, d) = f(F ′, d) for any two bargaining
problems (F, d) and (F ′, d) such that F ′ ⊆ F with d ∈ F ′ and f(F, d) ∈ F ′.

Here, ◦ denotes component-wise multiplication of vectors, i.e., (s ◦ t)T = (s1t1, s2t2)

for all s, t ∈ R2.
In the context of bargaining, Pareto efficiency means that no payoff is wasted, and

symmetry is an obvious fairness property. Invariance under positive affine transforma-
tions should hold because payoffs are just a representation of the underlying ordinal
preferences. The intuition behind independence of irrelevant alternatives is that an
outcome only becomes easier to justify as a solution when other outcomes are removed
from the set of feasible outcomes.

Theorem 20.1. Nash’s bargaining solution is the unique bargaining solution that
is Pareto efficient, symmetric, invariant under positive affine transformations,
and independent of irrelevant alternatives.

Proof. We denote the Nash bargaining solution by fN and begin by showing that it
satisfies the axioms. For Pareto efficiency, this follows directly from the fact that the
objective function is increasing in v1 and v2. For symmetry, assume that d1 = d2 and
let v∗ = (v∗1, v

∗
2) = fN(F, d). Clearly (v∗2, v

∗
1) maximizes the objective function, and by

uniqueness of the optimal solution (v∗2, v
∗
1) = (v∗1, v

∗
2) and thus fN1 (F, d) = f

N
2 (F, d). For

invariance under positive affine transformations, define F ′ and d ′ as above, and observe
that fN(F ′, d ′) is an optimal solution of the problem to maximize (v1−α1d1−β1)(v2−
α2d2 − β2) subject to v ∈ F ′, v1 > d1, and v2 > d2. By setting v ′ = α ◦ v + β, it
follows that fN(F ′, d ′) = α ◦ fN(F, d) + β. For independence of irrelevant alternatives,
let v∗ = fN(F, d) and F ′ ⊆ F. If v∗ ∈ F ′, it remains optimal and thus v∗ = fN(F ′, d).

Now consider a bargaining solution f that satisfies the axioms, and fix F and d. Let
z = fN(F, d), and let F ′ be the image of F under an affine transformation that maps z
to (1/2, 1/2) and d to the origin, i.e.,

F ′ = {α ◦ v+ β : v ∈ F, α ◦ z+ β = (1/2, 1/2)T , α ◦ d+ β = 0}.

Since both f and fN are invariant under positive affine transformations, f(F, d) =

fN(F, d) if and only if f(F ′, 0) = fN(F ′, 0). It thus suffices to show that f(F ′, 0) =

(1/2, 1/2).
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We begin by showing that for all v ∈ F ′, v1 + v2 6 1. Assume for contradiction
that there exists v ∈ F with v1 + v2 > 1, and let tδ = (1 − δ)(1/2, 1/2)T + δv. By
convexity of F ′, tδ ∈ F ′ for δ ∈ (0, 1). Moreover, since the objective function has a
unique maximum, we can choose δ sufficiently small such that tδ1t

δ
2 > 1/4 = f

N(F ′, 0),
contradicting optimality of fN(F ′, 0).

Now let F ′′ be the closure of F ′ under symmetry, and observe that for all v ∈ F ′′,
v1+v2 6 1. Therefore, by Pareto optimality and symmetry of f, f(F ′′, 0) = (1/2, 1/2)T .
Since f is independent of irrelevant alternatives, f(F ′, 0) = (1/2, 1/2)T as required.



21 Stable Matchings

Assume that there are two disjoint sets of agents, each having preferences over agents
in the other set, and the goal is to find an assignment between agents in one set and
agents in the other. Real-world examples for a setting like this include the assignment
of students to schools or of medical residents to hospitals. We restrict our attention to
the special case in which each agent is assigned to at most one agent in the other set.
This case has originally been described in terms of marriages and is therefore sometimes
referred to as the stable marriage problem.

We describe the problem in terms of a set S of students and a set A of potential
advisors. Each student i ∈ S has a strict linear order �i⊆ A × A, each advisor j ∈ A
a strict linear order �j⊆ S × S. A matching is a function µ : (S ∪ A) → (S ∪ A) such
that µ(µ(i)) = i for all i ∈ S ∪ A, µ(i) ∈ A for all i ∈ S, and µ(j) ∈ S for all j ∈ A.
We henceforth assume that |S| = |A|, but note that the results can be extended to the
case where some agents remain unmatched or prefer remaining unmatched to being
matched to certain other agents.

A pair (i, j) ∈ S × A is a blocking pair for matching µ if i and j would rather
be matched to each other than to their respective partners in µ, i.e., if j �i µ(i) and
i �j µ(j). A matching is called stable if it does not have any blocking pairs. Stability
is desirable in practice because matchings that are not stable tend to unravel: if two
agents find out that they form a blocking pair, they have an incentive to leave the
matching; this can introduce additional blocking pairs and eventually cause the whole
matching to break down.

It is not obvious, but nevertheless true, that there always exists a stable match-
ing. This can be shown by the so-called deferred acceptance procedure. There are
two symmetric variants of this procedure, one in which students propose and one in
which advisors propose. We concentrate on the former, but note that all results hold
symmetrically for the latter. Deferred acceptance proceeds as follows:

1. Let each student i ∈ S propose to the advisor it ranks highest.

2. Match advisor j ∈ A tentatively to the highest-ranked among the students that
have proposed to it, if any, and let it reject the others for good.

3. Let each student that has just been rejected but has not been rejected by all
advisors propose to its next preferred advisor. If there are no such students, then
stop and return the tentatively matched pairs. Otherwise go to Step 2.

Theorem 21.1 (Gale and Shapley, 1962). There always exists a stable matching.

Proof. The deferred acceptance procedure clearly terminates after a finite number of
rounds, and yields a matching when it does. Let µ be this matching, and assume for
contradiction that it is not stable. Then there must exist a blocking pair (i, j) ∈ S×A,

95



96 21 · Stable Matchings

s1

a2 � a1 � a3

s2

a1 � a3 � a2

s3

a1 � a2 � a3
a3

s1 � s3 � s2

a2

s3 � s1 � s2

a1

s1 � s3 � s2

Figure 21.1: Matching problem and two matchings. In the first round of students-
propose deferred acceptance, s1 proposes to a2 and both s2 and s3 propose to a1, who
in turn rejects s2. Since s2 was rejected it proposes to a3 in the second round, and
the procedure termines in the stable matching indicated by solid lines. The matching
indicated by dotted lines is not stable, because (s1, a2) is a blocking pair.

and in particular j �i µ(i). In the deferred acceptance procedure i must therefore have
proposed to j before proposing to µ(i), and since the two were not matched, j must
have rejected i. This means that j must have received a proposal from a student it
ranks higher than i but not higher than the student µ(j) it was eventually matched
with. Thus µ(j) �j i, contradicting the fact that (i, j) is a blocking pair.

21.1 Optimality

There generally exist multiple stable matchings, so one might ask how they compare to
each other in quality. Call j ∈ A achievable for i ∈ S if there exists a stable matching µ
such that µ(i) = j. A stable matching µ is then called student-optimal if for all i ∈ S,
µ(i) is most preferred among the advisors achievable for i. It is not clear that there
should be a stable matching that is student-optimal, i.e., simultaneously gives every
student the most preferred advisor it is assigned to in any stable matching. Intriguingly,
students-propose deferred acceptance yields such a matching.

Theorem 21.2. Students-propose deferred acceptance yields a student-optimal sta-
ble matching.

Proof. Assume for contradiction that the statement of the theorem is false. Then
there has to exist a student i ∈ S and an advisor j ∈ A such that j is achievable for
i but rejects i in students-propose deferred acceptance. Let k be the round in which
this happens, and assume without loss of generality that no student is rejected by an
achievable advisor in any earlier round. Let i ′ ∈ S be the student tentatively matched
to j at the end of round k, so that i ′ �j i. Since j is achievable for i, there must exist
a stable matching µ with µ(i) = j. Observe that also µ(j) = i, and thus i ′ �j µ(j).

Now let j ′ = µ(i ′), which means in particular that j ′ is achievable for i ′. We claim
that j �i ′ j ′. If this was not the case, i.e., if instead j ′ �i ′ j, then i ′ would have had
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to propose to, and be rejected by, j ′ before being tentatively matched to j. This is
impossible because the latter happened in round k, and we assumed that no student
was rejected by an achievable advisor before round k. Therefore, j �i ′ µ(i ′).

We conclude that (i ′, j) is a blocking pair for µ, contradicting its stability.

Curiously, any student-optimal stable matching µ is necessarily advisor-pessimal,
meaning that for all j ∈ A, µ(j) is least preferred among the students achievable for j.

Theorem 21.3. Every student-optimal stable matching is advisor-pessimal.

Proof. Consider a student-optimal stable matching µ and a stable matching ν, and
assume that µ(j) �j ν(j) for some j ∈ A. Let i = µ(j) and observe that ν(j) 6= i. Since µ
is student-optimal, µ(i) �i ν(i). Thus (i, j) is a blocking pair for ν, a contradiction.

21.2 The Stable Matching Polytope

The deferred acceptance procedure necessarily leads to a stable matching that is as good
for one side and bad for the other. One might wonder whether it is possible to find a
stable matching that is fair for both sides, e.g., one that minimizes

∑
i∈S
∑
j∈A r(i, j)+

r(j, i) or max(i,j)∈(S×A)∪(A×S) r(i, j), where r(i, j) denotes the rank of agent j in the
preference order of agent i. It turns out that this can be done for any linear objective,
using a characterization of stable matchings as the extreme points of a convex polytope.
Fix a stable matching µ and let xij = 1 for i ∈ S and j ∈ A if µ(i) = j, and xij = 0

otherwise. Then, ∑
j∈A

xij = 1 for all i ∈ S,∑
i∈S

xij = 1 for all j ∈ A,

xij +
∑
k:j�ik

xik +
∑
k:i�jk

xkj 6 1 for all i ∈ S, j ∈ A,

xij > 0 for all i ∈ S, j ∈ A.

The first two constraints are satisfied since every agent is matched with exactly one
agent of the respective other type. If the third constraint was not satisfied, then∑
k:j�ik xik = 1 and

∑
k:i�jk xkj = 1, which would mean that (i, j) is a blocking pair.

The last constraint obviously holds as well.
Let P be the polytope described by the above constraints, and observe that by

Theorem 21.1, P 6= ∅. We moreover have the following.

Theorem 21.4. A vector is an extreme point of P if and only if it is a stable
matching.





22 Social Choice

Social choice theory asks how the possibly conflicting preferences of a set of agents can
be aggregated into a collective decision, and in particular which properties the aggregate
choice should satisfy and which properties can be satisfied simultaneously. Examples
of settings that can be studied in the framework of social choice theory include voting,
resource allocation, coalition formation, and matching.

22.1 Social Welfare Functions

Let N = {1, . . . , n} be a set of agents, or voters, and A = {1, . . . ,m} a set of alternatives.
Assume that n,m > 2 and finite. Assume that each voter i ∈ N has a strict linear
order �i ∈ L(A) over A, and the goal is to map the profile (�i)i∈N of individual
preference orders to a social preference order. This is achieved by means of a social
welfare function (SWF) f : L(A)n → L(A).

When m = 2, selecting the social preference order that is preferred by a majority
of the voters is optimal in a rather strong sense. An SWF f : L(A)n → L(A) is

� anonymous if for every permutation π ∈ Sn of the voters and all preference
profiles �,� ′∈ L(A)n such that a �i b if and only if a � ′π(i) b for all a, b ∈ A, it
holds that f(�) = f(� ′);

� neutral if for every permutation π ∈ Sm of the alternatives and all preference
profiles �,� ′∈ L(A)n such that a �i b if and only if π(a) � ′i π(b) for all a, b ∈ A,
it holds that a f(�) b if and only if π(a) f(� ′) π(b) for all a, b ∈ A; and

� monotone if for all �,� ′∈ L(A)n and a, b ∈ A, a f(�) b and {i ∈ N : a �i b} ⊆
{i ∈ N : a � ′i b} imply that a f(� ′) b.

Anonymity requires that voters are treated equally, symmetry that alternatives are
treated equally, and monotonicity that an alternative cannot become less preferred
socially when it becomes more preferred by individuals. When the number of voters is
odd, these intuitive fairness and welfare properties precisely characterize the majority
rule.

Theorem 22.1. Consider an SWF f : L(A)n → L(A), where |A| = 2 and n is odd.
Then f is the majority rule if and only if it is anonymous, neutral, and monotone.

Proof sketch. Let A = {a, b}. By anonymity, the social preference only depends on
the number of voters that prefer a to b. By neutrality, the social preference has to
change between a preference profile where bn/2c voters prefer a to b and one where
dn/2e voters prefer a to b. By monotonicity, the socially preferred alternative can
never change from a to b when the number of voters who prefer a to b increases, so
this is actually the unique change, and it follows that f is the majority rule.
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a b c

b c a

c a b

Figure 22.1: An instance of the Condorcet paradox. Each column lists the preferences
of a particular voter.

The result also holds for weak preference orders if monotonicity is replaced by pos-
itive responsiveness, which requires that a weak social preference for b over a changes
to a strict preference for a when some voter changes from a strict preference for b to a
weak preference for a or from a weak preference for b to a strict preference for a.

In light of this result, it seems promising to base the decision on pairwise com-
parisons of alternatives even when m > 2. As the Marquis de Condorcet pointed out
already in 1785, this is somewhat problematic, since the pairwise majority relation may
contain cycles. To see this, consider a situation with three alternatives a, b, and c,
and three voters with preferences as shown in Figure 22.1. It is easily verified that a
majority of the voters prefers a over b, a majority prefers b over c, and a majority
prefers c over a.

Unfortunately, this kind problem is not specific to the majority rule, but applies to
every SWF satisfying a set of desirable criteria. An SWF f : L(A)|N| → L(A) is

� Pareto optimal if for all a, b ∈ A and every � ∈ L(A)n such that a �i b for all
i ∈ N, it holds that a � ′ b, where � ′= f(�);

� independent of irrelevant alternatives (IIA) if for all a, b ∈ A and all �,� ′ ∈
L(A)n such that �i∩ ({a, b}× {a, b}) = � ′i∩ ({a, b}× {a, b}) for all i ∈ N, it holds
that f(�) ∩ ({a, b}× {a, b}) = f(� ′) ∩ ({a, b}× {a, b}); and

� dictatorial if there exists i ∈ N such that for all � ∈ L(A)n, f(�) = �i.
Pareto optimality requires that alternative a is socially preferred over alternative b
when every voter prefers a over b. Independence of irrelevant alternatives requires that
the social preference with respect to a and b only depends on individual preferences
with respect to a and b, but not on those with respect to other alternatives. Finally,
an SWF is dictatorial if the social preference order is determined by a single voter. It
turns out that dictatorships are the only SWFs for three or more alternatives that are
Pareto optimal and IIA.

Theorem 22.2 (Arrow, 1951). Consider an SWF f : L(A)n → L(A), where |A| > 3.
If f is Pareto optimal and IIA, then f is dictatorial.

Requiring non-dictatorship and Pareto optimality is rather uncontroversial. Relax-
ing IIA for example enables Kemeny’s rule, which chooses a social preference order � ′
that maximizes the number of agreements with the individual preferences, such that∑

i∈N

|� ′ ∩ �i| = max
� ′′∈L(A)

∑
i∈N

|� ′′ ∩ �i|. (22.1)
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4 3 2

a c b

b b c

c a a

b

ca

Figure 22.2: Preferences of three types of voters over a set of three alternatives (left),
and the graph of the corresponding majority relation (right). Each column of the table
on the left lists the preferences of a particular type of voter, the number of voters of
that type is given in the top row. In the graph on the right, a directed edge from
alternative x to alternative y indicates that a majority of the voters prefer x to y.

This maximization problem is NP-hard, but can be written as an integer program.
An interesting alternative characterization of Kemeny’s rule is as the maximum like-
lihood estimator for a simple probabilistic model in which votes are generated by an
underlying “true” preference order. Fix a preference profile � ∈ L(A)n and define a
vector w ∈ Nm×m by letting wxy be the number of voters who prefer x to y, i.e.,
wxy = {i ∈ N : x �i y}. Now assume that this vector was instead generated by picking
a single preference order � ′ ∈ L(A) and a probability p ∈ (1/2, 1], and for each voter
i ∈ N and each pair of alternatives x, y ∈ A, letting i choose between x and y according
to � ′ with probability p and opposite to � ′ with probability 1− p. The probability of
obtaining vector w from preference order � ′ would then be

P(w | � ′) = p
∑
i∈N |�i∩� ′|(1− p)nm(m−1)/2−

∑
i∈N |�i∩� ′|,

and it is easy to see that this probability is maximized by a preference order � ′ that
satisfies (22.1).

22.2 Social Choice Functions

Instead of the explicit assumptions of Theorem 22.2, one could also relax an implicit
one. In particular, it might often suffice to identify a single best alternative rather
than giving a complete ranking. This is achieved by a social choice function (SCF) f :
L(A)n → A. Two of the most familiar SCFs are plurality, which chooses an alternatives
ranked first by the largest number of voters, and single transferable vote (STV), which
successively eliminates alternatives ranked first by the fewest voters until only one
alternative remains.

Consider for example a situation with three alternatives a, b, and c, and nine
voters with preferences as shown on the left of Figure 22.2. In this situation, plurality
selects alternative a because it is ranked first by 4 voters, compared to 3 for c and
2 for b. STV first eliminates alternative b, which is ranked first by only 2 voters.
Restricting attention to the remaining alternatives, a is ranked first by 4 voters and
c by 5 voters. Alternative a is thus eliminated next, while alternative c remains and
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is selected. The graph of the majority relation shown on the right of Figure 22.2
illustrates that alternative b is a so-called Condorcet winner, i.e., it is preferred to any
other alternative by a majority of the voters, while alternative a is a Condorcet loser,
i.e., a majority of voters prefer any other alternative to a. The example of Figure 22.1
shows that a Condorcet winner or loser need not exist, but it is certainly reasonable
to require that a Condorcet winner is selected when it exists, and that a Condorcet
loser is never selected. An SCF satisfying the former property is called Condorcet
consistent, and the example of Figure 22.2 shows that that neither plurality nor STV
are Condorcet consistent.



23 Mechanism Design

Our discussion of social choice has so far ignored strategic considerations. Mechanism
design augments social choice with game-theoretic reasoning, and effectively tries to
construct games which yield a certain desirable outcome in equilibrium.

23.1 Strategic Manipulation

Again consider the situation of Figure 22.2, where we predicted that the use of plurality
would result in the selection of alternative a. This prediction ignores, however, that
voters of the third type have an incentive to misrepresent their preferences and claim
that they prefer c over b: assuming that ties are broken in favor of c, only a single voter
of the third type would have to change its reported preferences in this way to ensure
that c is selected instead of a, an outcome this voter prefers. A similar problem exists
with STV, where voters of the first type could benefit by pretending that their most
preferred alternative is b, with the goal of having this alternative selected instead of
their least preferred alternative, c. More generally, we say that SCF f is manipulable if
there exist i ∈ N, �∈ L(A)n, and � ′i∈ L(A) such that f((�−i,� ′i)) �i f(�), where (�−i

,� ′i) = (�1, . . . ,�i−1,� ′i,�i+1,�n) is the preference profile obtained by replacing voter
i’s preference order in � by � ′i. SCF f is called strategyproof if it is not manipulable.

There are two obvious way to achieve strategyproofness: choosing an alternative
based on the preferences of a single voter, or ignoring all but two alternatives and using
majority rule to choose between these two. The first case corresponds to a dictatorship,
the second to an SCF that is not surjective in the sense that some alternatives never
get chosen. It turns out that these trivial cases are in fact the only SCFs that are
strategyproof. Formally, SCF f is dictatorial if there exists i ∈ N such that for all
� ∈ L(A)n and a ∈ A \ {f(�)}, f(�) �i a. SCF f is surjective if for all a ∈ A, there
exists � ∈ L(A)n such that f(�) = a.

Theorem 23.1 (Gibbard, 1973; Satterthwaite, 1975). Consider an SCF f : L(A)n →
A, where |A| > 3. If f is surjective and strategyproof, then it is dictatorial.

We need two lemmas. The first lemma states that a strategyproof SCF is monotone
in the sense that the selected alternative does not change as long as all alternatives
ranked below it are still ranked below it for all voters.

Lemma 23.2. Let f be a strategyproof SCF, � ∈ L(A)n with f(�) = a. Then,
f(� ′) = a for every � ′ ∈ L(A)n such that for all i ∈ N and b ∈ A \ {a}, a � ′i b if
a �i b.

Proof. We start from � and change the preferences of one voter at a time until we
get to � ′, showing that the chosen alternative remains the same in every step. Let

103



104 23 · Mechanism Design

b = f(� ′1,�−1). By strategyproofness, a �1 b, and thus a � ′1 b by assumption. Also
by strategyproofness, b � ′1 a, and thus a = b. The claim now follows by repeating the
same argument for the remaining voters.

The second lemma states that the alternative selected by a surjective and strate-
gyproof SCF must be Pareto optimal.

Lemma 23.3. Let f be a surjective and strategyproof SCF, a, b ∈ A, and � ∈ L(A)n
such that a �i b for all i ∈ N. Then, f(�) 6= b.

Proof. Assume for contradiction that f(�) = b. By surjectivity, there exists � ′∈ L(A)n
such that f(� ′) = a. Let � ′′∈ L(A)n be a preference profile such that for all i ∈ N

a � ′′i b � ′′i x

for all x ∈ A \ {a, b}. Then, x �i b whenever x � ′′i b for some i ∈ N and x ∈ A \ {b},
and x � ′i a whenever x � ′′i a for some i ∈ N and x ∈ A \ {a}. Thus, by Lemma 23.2,
f(� ′′) = f(�) = b and f(� ′′) = f(� ′) = a, a contradiction.

Proof of Theorem 23.1. We first prove the theorem for n = 2 and then perform an
induction on n.

Let a, b ∈ A with a 6= b and consider � ∈ L(A)2 such that

a �1 b �1 x and b �2 a �2 x

for all x ∈ A \ {a, b}. Then, by Lemma 23.3, f(�) ∈ {a, b}.
Suppose that f(�) = a, and let � ′ ∈ L(A)2 such that

a � ′1 b � ′1 x and b � ′2 x � ′2 a

for all x ∈ A \ {a, b}. Then, f(� ′) = a, since f(� ′) ∈ {a, b} by Lemma 23.3 and
f(� ′) 6= b by strategyproofness. Lemma 23.2 now implies that f selects alternative a
for any preference profile in which voter 1 ranks alternative a first.

By repeating the above analysis for every pair of distinct alternatives in A, we obtain
two sets A1, A2 ⊆ A such that Ai is the set of alternatives that are selected for every
preference profile in which voter i ∈ {1, 2} ranks them first. Let A3 = A \ (A1 ∪ A2),
and observe that |A3| 6 1: otherwise we would have performed the above analysis for
two elements in A3, which would place one of these elements in A1 or A2 and thus not
in A3.

Now observe that |A| > 3 and |A3| 6 1, so |A1 ∪ A2| > 2. Moreover, for x, y ∈ A
with x 6= y, it cannot be the case that x ∈ A1 and y ∈ A2, because this would lead to
a contradiction when voter 1 ranks x first and voter 2 ranks y first. Since a ∈ A1, it
follows that A1∩A2 = ∅ and thus that A2 = ∅. It finally follows that A3 = ∅: otherwise
we could repeat the above analysis for c ∈ A3 and � ′′∈ L(A)2 with

c � ′′1 a � ′′1 x and a � ′′2 c � ′′2 x



23.2 · Implementation of Social Choice Functions 105

for all x ∈ A \ {a, c}, and conclude that c ∈ A1 or a ∈ A2, a contradiction. It follows
that A1 = A, so voter 1 is a dictator.

Now we assume that the statement of the theorem holds for n voters and prove
that it also holds for n + 1 voters. Consider a surjective and strategyproof SCF f :

L(A)n+1 → A, and define g : L(A)2 → A by letting

g(�1,�2) = f(�1,�2, . . . ,�2)

for all �1,�2∈ L(A).
Since f is surjective and strategyproof, and by Lemma 23.3, g is surjective as well.

Assume for contradiction that g is not strategyproof. By strategyproofness of f, the
manipulator must be voter 2, so there must exist �1,�2,� ′2 ∈ L(A) and a, b ∈ A
such that g(�1,�2) = a, g(�1,� ′2) = b, and b �2 a. For k = 0, . . . , n, let �k =

(�1,� ′2, . . . ,� ′2,�2, . . . ,�2) ∈ L(A)n+1 be the preference profile where k voters have
preference order � ′2 and n − k voters have preference order �2, and let ak = f(�k).
Since an = b �2 a = a0, it must be the case that ak+1 �2 ak for some k with
0 6 k < n, which means that f is manipulable, a contradiction. It follows that g is
strategyproof, and therefore dictatorial.

If the dictator for g is voter 1, then by Lemma 23.2 voter 1 must also be a dictator
for f. Assume instead that the dictator for g is voter 2, and let h : L(A)n → A be given
by

h(�2, . . . ,�n+1) = f(�∗1,�2, . . . ,�n+1)

for an arbitrary �∗1 ∈ L(A). Then, h is strategyproof by strategyproofness of f, and
surjective because voter 2 is a dictator for g. Therefore, by the induction hypothesis,
h is dictatorial.

Assume without loss of generality that the dictator for h is voter 2, and let e :

L(A)2 → A be given by

e(�1,�2) = f(�1,�2,�∗3, . . . ,�∗n+1)

for arbitrary �∗3, . . . ,�∗n+1 ∈ L(A). Then e is strategyproof and surjective, and hence
dictatorial. In fact, the dictator for e must be voter 2, because voter 1 is not a dictator
for g and thus cannot be a dictator for e. Since �∗i for i = 1, 3, . . . , n + 1 was chosen
arbitrarily, it follows that voter 2 is a dictator for f.

23.2 Implementation of Social Choice Functions

A mechanism design problem, or game form, is given by a set A of alternatives
and a set N = {1, . . . , n} of agents, each with a set Θi of possible types and a utility
function ui : A×Θi → R. Note that a game form and a type profile θ ∈ Θ = "i∈NΘi
together induce a normal-form game. A mechanism is given by a message space Σi for
agent i and an outcome function g : "i∈NΣi → A. A mechanism is called direct if the
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agents directly report their type to the mechanism, i.e., if Σi = Θi for all i ∈ N. The
idea is that the agents send messages to the mechanism, providing information about
their types, and depending on these messages the mechanism selects an alternative that
optimizes some objective. The objective can be encoded by a social choice function.

MechanismM = ((Σi)i∈N, g) is said to implement SCF f : "i∈NΘi → A (in weakly
dominant strategies) if there exist functions si : Θi → Σi for i ∈ N such that for
every θ ∈ Θ, g(s1(θ1), . . . , sn(θn)) = f(θ), and for all i ∈ N, θi ∈ Θi and σ ∈ Σ,
ui(g(si(θi), σ−i), θi) > ui(g(σ), θi). An SCF is called implementable if it is imple-
mented by some mechanism. A direct mechanismM = ((Θi)i∈N, g) is called dominant
strategy incentive compatible, or strategyproof, if for all i ∈ N, θ ∈ Θ, and θ ′i ∈ Θi,
ui(g(θ), θi) > ui(g(θ

′
i, θ−i), θi). The profile θ of true types is then also referred to as

the truthful equilibrium of the mechanism.
It seems that in principle arbitrarily complicated mechanisms might be required to

implement certain social choice functions. The following result implies that we can
restrict our attention to strategyproof direct mechanisms.

Theorem 23.4 (Revelation Principle). A social choice function is implementable if
and only if it is implemented in the truthful equilibrium of a strategyproof direct
mechanism.

Proof. The theorem follows by observing that the direct mechanism can simulate the
equilibrium strategies of the agents. Let f be an implementable SCF. Then there
exists a mechanism ((Σi)i∈N, g) and functions si : Σi → Θi for i ∈ N such that
for every θ ∈ Θ, g(s1(θ1), . . . , sn(θn)) = f(θ), and for every i ∈ N, θi ∈ Θi and
σ ∈ Σ, ui(g(si(θi), σ−i), θi) > ui(g(σ), θi). Define h : Θ → A by letting h(θ) =

g(s1(θ1), . . . , sn(θn)) for all θ ∈ Θ. Then, for every θ ∈ Θ, h(θ) = f(θ), and for all
i ∈ N, θ ∈ Θ, and θ ′i ∈ Θi,

ui(h(θ), θi) = ui(g(s1(θ1), . . . , sn(θn)), θi)

> ui(g(s1(θ1), . . . , si−1(θi−1), si(θ
′
i), si+1(θi+1), . . . , sn(θn)), θi)

= ui(h(θ
′
i, θ−i), θi).

This means that (Θ,h) is a strategyproof direct mechanism that implements f, and the
claim follows.

It should be noted that indirect mechanisms can still be useful in certain settings,
for example to reduce the amount of information agents have to send to the mechanism,
or the amount of computation the mechanism has to carry out.

Theorems 23.1 and 23.4 imply that only dictatorial social choice function are im-
plementable when there are more than two alternatives and utility functions ui can
be arbitrary. In the next lecture we will look at an interesting special case where this
impossibility result can be circumvented.
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The Gibbard-Satterthwaite Theorem assumes that agents can have arbitrary prefer-
ences over the set of alternatives, and in particular does not apply in settings where
the outcome selected by the mechanism includes monetary payments and the utility of
each agent is quasilinear, i.e., a linear combination of a valuation for the alternative
selected by the social choice function and the amount of money transfered to or from
the agent. It is worth noting that this assumption makes utilities comparable across
agents.

In cases where the outcome includes monetary payments, it will be instructive to
separate these payments from the social choice and write a mechanism as a pair (f, p)
of a social choice function f : Θ→ A and a payment function p : Θ→ Rn. The utility
of agent i can then be written as ui(θ ′, θi) = vi(f(θ ′), θi)−pi(θ ′), where θ ′ is a profile
of types revealed to the mechanism, θi is the true type of agent i, vi : A × Θi → R
is a valuation function over alternatives, and pi(θ ′) = (p(θ ′))i. The main result for
the quasilinear setting is positive and provides a way to optimize the most natural
social choice function, the one that maximizes social welfare. The social welfare of
an alternative a ∈ A is

∑
i∈N vi(a, θi), i.e., the sum of all agents’ valuations for this

alternative.

24.1 Vickrey-Clark-Groves Mechanisms

The mechanisms implementing this social choice function are the so-called Vickrey-
Clark-Groves (VCG) mechanisms. A mechanisms (f, p) is a Vickrey-Clark-Groves
mechanism if

f(θ) ∈ argmax
a∈A

∑
i∈N

vi(a, θi) and

pi(θ) = hi(θ−i) −
∑

j∈N\{i}

vj(f(θ), θj) for all i ∈ N,

where hi : Θ−i → R is some function that depends on the types of all agents but i. The
crucial component is the term

∑
j∈N\{i} vj(f(θ), θj), which is equal to the social welfare

for all agents but i. The utility of agent i adds its own valuation vi(f(θ), θi) and thus
becomes equal to the social welfare of alternative f(θ) minus the term hi(θ−i). The
latter does not depend on θi and therefore has no strategic implications.

Theorem 24.1. VCG mechanisms are strategyproof.

Proof. Let i ∈ N, θ ∈ Θ, and θ ′i ∈ Θi. Then,

ui(θ, θi) = vi(f(θ), θi) − pi(θ)

107
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=
∑
j∈N

vj(f(θ), θj) − hi(θ−i)

>
∑
j∈N

vj(f(θ
′
i, θ−i), θj) − hi(θ−i)

= ui((θ
′
i, θ−i), θi),

where the inequality holds because f(θ) maximizes social welfare with respect to θ.

Strategyproofness holds for any choice of the functions hi, so it is natural to ask
for a good way to define these functions. In many cases it makes sense that agents
are charged rather than paid, but not more than their gain from participating in the
mechanism. Formally, mechanism (f, p) makes no positive transfers if pi(θ) > 0 for all
i ∈ N and θ ∈ Θ, and is ex-post individually rational if it always yields non-negative
utility for all agents, i.e., if vi(f(θ)) − pi(θ) > 0 for all i ∈ N and θ ∈ Θ. It turns
out that these two properties can indeed be achieved simultaneously. The so-called
Clark pivot rule sets hi(θ−i) = maxa∈A

∑
j∈N\{i} vj(a, θj), such that the payment of

agent i becomes pi(θ) = maxa∈A
∑
j∈N\{i} vj(a, θj)−

∑
j∈N\{i} vj(f(θ)). Intuitively, this

latter amount is equal to the externality agent i imposes on the other agents, i.e., the
difference between their social welfare with and without i’s participation. The payment
makes the agent internalize this externality.

Theorem 24.2. A VCG mechanism with Clarke pivot rule makes no positive trans-
fers. If vi(a, θi) > 0 for all i ∈ N, θi ∈ Θi, and a ∈ A, it also is individually
rational.

Proof. Fix θ ∈ Θ and i ∈ N, and let a = f(θ) and b ∈ argmaxa ′∈A
∑
j∈N\{i} vj(a

′, θj).
Then, by choice of b, pi(θ) =

∑
j∈N\{i} vj(b, θj) −

∑
j∈N\{i} vj(a, θj) > 0, so the mech-

anism makes no positive transfers. Moreover,

ui(θ, θi) = vi(a, θi) +
∑

j∈N\{i}

vj(a, θj) −
∑

j∈N\{i}

vj(b, θj)

>
∑
j∈N

vj(a, θj) −
∑
j∈N

vj(b, θj) > 0,

where the two inequalities respectively hold because vi(b, θi) > 0 and by choice of a.

Consider for example the application of the VCG mechanism with Clarke pivot
rule to an auction of a single good. In this case A = N, and the valuation func-
tion can be written as vi : A → R, such that vi(a) is equal to agent i’s valuation
for the good if a = i and zero otherwise. Since only a single agent can receive the
good, maxa∈A

∑
i∈N vi(a) = maxi∈N vi(i), and thus f(θ) ∈ argmaxi∈N vi(i). More-

over, pi(θ) = maxa∈A
∑
j∈N\{i} vj(a) −

∑
j∈N\{i} vj(f(θ)). The first term is equal to

maxj∈N\{i} vj(j) if a = i, the second term is zero if a = i and equal to the first term
otherwise, and thus pi(θ) = maxj∈N\{i} vj(j) if f(θ) = i and pi(θ) = 0 otherwise. We
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thus obtain the well-know Vickrey (or second-price) auction, which assigns the good to
the agent with the highest bid and charges this agent a payment equal to the second-
highest bid.

24.2 Characterizations of Strategyproof Mechanisms

One might wonder whether other objectives can be implemented in the quasilinear
setting besides maximization of social welfare. Two characterizations of strategyproof
mechanisms (f, p) exist in the literature. The first characterization states that a mech-
anism is strategyproof if and only if the payment of an agent is independent of its re-
ported type and the chosen outcome simultaneously maximizes the utility of all agents.

Theorem 24.3. A mechanism (f, p) is strategyproof if and only if for every i ∈ N
and θ ∈ Θ,

pi(θ) = ti(θ−i, f(θ)) and

f(θ) ∈ argmax
a∈A(θ−i)

(vi(θi, a) − ti(θ−i, a)),

where ti : Θ−i ×A→ R is a price function and A(θ−i) = {f(θi, θ−i) : θi ∈ Θi} is the
range of f given that the reported types of all agents but i are fixed to θ−i.

Alternatively, strategyproof mechanisms can be characterized purely in terms of
their social choice function. SCF f satisfies weak monotonicity if for all θ ∈ Θ,
i ∈ N, and θ ′i ∈ Θi, f(θ) = a 6= b = f(θi, θ−i) implies that vi(a, θi) − vi(b, θi) >
vi(a, θ

′
i) − vi(b, θ

′
i). Intuitively, an SCF is weakly monotone if a change in the social

choice due to a change of type of a single agent means that the agent’s value for the
new choice must have increased relative to its value for the old choice.

Theorem 24.4. If mechanism (f, p) is strategyproof, then f satisfies weak mono-
tonicity. If SCF f satisfies weak monotonicity and for each i ∈ N, {(vi(a, θi))a∈A :

θi ∈ Θi} ⊆ R|A| is a convex set, then there exists a payment function p : Θ → Rn

such that (f, p) is strategyproof.

This result reduces the characterization of strategyproof mechanisms to one of
weakly monotone social choice function. The problem with the latter is that weak
monotonicity is a local condition that is hard to check, and existence of a global condi-
tion depends on the domain of possible preferences. Good global conditions are known
to exist for two extreme cases: domains that are unrestricted in the sense that the
utilities an agent assigns to the alternatives in A can be arbitrary vectors in R|A|, and
domains that are essentially one-dimensional.

A closer look at the unrestricted case reveals that the only strategyproof mechanisms
are simple variations of VCG mechanisms, which allow for the assignment of weights
to agents and alternatives and for restrictions of the range. SCF f is called an affine
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maximizer if there exist A ′ ⊆ A, wi ∈ R>0 for i ∈ N, and ca ∈ R for a ∈ A ′ such
that for every θ ∈ Θ, f(θ) ∈ argmaxa∈A ′(ca+

∑
i∈Nwivi(a, θi)). It is easy to see that

VCG mechanisms can be generalized to affine maximizers.

Theorem 24.5. Let f be an affine maximizer, and for each i ∈ N and θ ∈ Θ, let
pi(θ) = hi(θ−i) −

∑
j∈N\{i}(wj/wi)vj(f(θ), θj) − cf(θ)/wi, where hi : Θ−i → R. Then

(f, p) is strategyproof.

Proof. The utility of agent i ∈ N is

ui(θ, θ
′
i) = vi(f(θ), θ

′
i) − hi(θ−i) +

∑
j∈N\{i}

(wj/wi)vj(f(θ), θj) + cf(θ)/wi.

By adding hi(θ−i), which does not depend on θi, and multiplying by wi, we see that
ui(θ, θ

′
i) can be maximized by maximizing cf(θ) +

∑
j∈Nwjvj(f(θ), θ

′
j). This happens

when θi = θ ′i.

When there are at least three alternatives and preferences are unrestricted, affine
maximizers are the only strategyproof mechanisms.

Theorem 24.6 (Roberts, 1979). Let |A| > 3 and {(vi(a, θi))a∈A : θ ∈ Θ} = R|A| for
every i ∈ N. Let f : θ → A be a surjective SCF, p : Θ → Rn a payment function.
If (f, p) is strategyproof, then f is an affine maximizer.
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