Voting Caterpillars

Felix Fischer ${ }^{1} \quad$ Ariel D. Procaccia ${ }^{2} \quad$ Alex Samorodnitsky ${ }^{2}$

${ }^{1}$ Institut für Informatik
Ludwig-Maximilians-Universität München
${ }^{2}$ School of Computer Science and Engineering
The Hebrew University of Jerusalem

June 25, 2008

Choosing from a Tournament

- Set $A=\{1,2, \ldots, m\}$ of alternatives
- Tournament $T \in \mathcal{T}(A)$: a complete, irreflexive, asymmetric relation on A
- Directed edge (a, b) means that a "beats" b

- For example arises from majority voting over pairs of alternatives (with an odd number of voters, linear preferences)
- Tournament solution $f: \mathcal{T}(A) \rightarrow 2^{A}$ that singles out good alternatives in the presence of cycles

Choosing from a Tournament

- Set $A=\{1,2, \ldots, m\}$ of alternatives
- Tournament $T \in \mathcal{T}(A)$: a complete, irreflexive, asymmetric relation on A
- Directed edge (a, b) means that a "beats" b

- For example arises from majority voting over pairs of alternatives (with an odd number of voters, linear preferences)
- Tournament solution $f: \mathcal{T}(A) \rightarrow 2^{A}$ that singles out good alternatives in the presence of cycles
- Copeland solution: alternatives with maximum (out-)degree

Voting Trees

- A procedure for choosing from a tournament
- Voting tree Г on A : Binary tree with elements of A at the leaves
- Given tournament T, label each internal node with the label of its children that is better according to T
- Label at the root is the winner, denoted $\Gamma(T)$
- Question: Which solutions can be implemented by voting trees?
- 「 implements f if for any $T \in \mathcal{T}(A), \Gamma(T) \in f(T)$
- Copeland solution can be implemented if and only if $m \leq 7$ (Moulin, 1986; Srivastava and Trick, 1996)
- Question: Can the Copeland solution be approximated?

Two Models

- Deterministic: Voting tree 「 on A provides approximation ratio α if for all $T \in \mathcal{T}(A)$,

$$
\frac{s_{\Gamma(T)}}{\max _{i \in A} s_{i}(T)} \geq \alpha
$$

where s_{i} is the degree (or score) of i

- Randomized: Probability distribution Δ over voting trees on A
- provides approximation ratio α if for all $T \in \mathcal{T}(A)$,

$$
\frac{\mathbb{E}_{\Gamma \sim \Delta}\left[s_{\Gamma(T)}\right]}{\max _{i \in A} s_{i}(T)} \geq \alpha
$$

- is admissible if its support contains only surjective trees

Upper Bounds by Composition Consistency

- Theorem: No voting tree provides an approximation ratio better than $\frac{3}{4}+O\left(\frac{1}{m}\right)$.
- Theorem: No distribution over voting trees provides an approximation ratio better than $\frac{5}{6}+O\left(\frac{1}{m}\right)$.

Upper Bounds by Composition Consistency

- Theorem: No voting tree provides an approximation ratio better than $\frac{3}{4}+O\left(\frac{1}{m}\right)$.
- Theorem: No distribution over voting trees provides an approximation ratio better than $\frac{5}{6}+O\left(\frac{1}{m}\right)$.
- $C \subseteq A$ is a component of $T \in \mathcal{T}(A)$ if for all $i, j \in C, k \in A \backslash C$, iTk if and only if $j T k$

- Lemma (Moulin, 1986): Consider $T, T^{\prime} \in \mathcal{T}(A)$ that differ only inside a component C. Then for any voting tree Γ on A,
(i) $\Gamma(T) \in C$ if and only if $\Gamma\left(T^{\prime}\right) \in C$
(ii) $\Gamma(T) \in A \backslash C$ implies $\Gamma(T)=\Gamma\left(T^{\prime}\right)$

Upper Bounds by Composition Consistency

- Theorem: No voting tree provides an approximation ratio better than $\frac{3}{4}+O\left(\frac{1}{m}\right)$.
- Theorem: No distribution over voting trees provides an approximation ratio better than $\frac{5}{6}+O\left(\frac{1}{m}\right)$.
- $C \subseteq A$ is a component of $T \in \mathcal{T}(A)$ if for all $i, j \in C, k \in A \backslash C, i T k$ if and only if $j T k$

- Lemma (Moulin, 1986): Consider $T, T^{\prime} \in \mathcal{T}(A)$ that differ only inside a component C. Then for any voting tree Γ on A,
(i) $\Gamma(T) \in C$ if and only if $\Gamma\left(T^{\prime}\right) \in C$
(ii) $\Gamma(T) \in A \backslash C$ implies $\Gamma(T)=\Gamma\left(T^{\prime}\right)$

Proof Sketch

- Choose $m=3 k$ for k odd
- T: three-cycle of regular components of size k
- $s_{\Gamma(T)}=k+\frac{k-1}{2}$
- W.l.o.g., $\Gamma(T) \in C_{1}$
- Now define T^{\prime} by making C_{2} transitive

Proof Sketch

- Choose $m=3 k$ for k odd
- T: three-cycle of regular components of size k
- $s_{\Gamma(T)}=k+\frac{k-1}{2}$
- W.l.o.g., $\Gamma(T) \in C_{1}$
- Now define T^{\prime} by making C_{2} transitive
- By the Lemma, $\Gamma(T)=\Gamma\left(T^{\prime}\right)$
- $\max _{i} s_{i}=k+(k-1)$

Proof Sketch

- Choose $m=3 k$ for k odd
- T: three-cycle of regular components of size k
- $s_{\Gamma(T)}=k+\frac{k-1}{2}$
- W.l.o.g., $\Gamma(T) \in C_{1}$
- Now define T^{\prime} by making C_{2} transitive
- By the Lemma, $\Gamma(T)=\Gamma\left(T^{\prime}\right)$
- $\max _{i} s_{i}=k+(k-1)$

- Randomized upper bound: use Yao's principle

A Randomized Lower Bound

- Theorem: There exists an admissible randomization over voting trees of polynomial size with an approximation ratio of $\frac{1}{2}-O\left(\frac{1}{m}\right)$.
- Trivial for non-admissible randomizations, random alternative has expected degree $\frac{m-1}{2}$
- Proof uses voting caterpillars
- 1-caterpillar: a leaf
- k-caterpillar: a binary tree, children of the root are a
($k-1$)-caterpillar and a leaf
- $k-R C$: leafs chosen uniformly i.i.d.

Proof Outline

- $k-R C$ is close to an admissible distribution
- Equivalent to a random walk on the tournament
- move from i to better alternative j with probability $p_{i j}=\frac{1}{m}$
- stay put with probability $p_{i i}=\frac{s_{i}+1}{m}$
- Stationary distribution π such that $\pi_{i}=\sum_{j} \pi_{j} p_{j i}$
- Yields expected degree $\sum_{i \in A} \pi_{i} s_{i} \geq \frac{m-1}{2}$
- Fast convergence:
- Look at reversibilization M of the transition matrix
- Fill (1991): $4\left\|\pi^{(k)}-\pi\right\|^{2} \leq m\left(\beta_{1}(M)\right)^{k}$, where $\beta_{1}(M)$ is the second largest eigenvalue of M
- Sinclair and Jerrum (1989): $1-2 \Phi \leq \beta_{1}(A) \leq 1-\frac{\Phi^{2}}{2}$, where Φ is the conductance of M

The Analysis is Tight

- $A^{\prime} \cup A^{\prime \prime}$ regular
- $\left|A^{\prime \prime}\right|=\epsilon(m-1)$
$-\pi_{a}=\frac{\sum_{j: a T_{j}} \pi_{j}}{m-s_{a}-1} \leq \frac{1}{m-s_{a}-1} \leq \frac{1}{\epsilon(m-1)}$
- $\sum_{i} \pi_{i} S_{i} \leq \frac{1}{\epsilon(m-1)}(m-1)+\frac{\epsilon(m-1)-1}{\epsilon(m-1)} \cdot\left(\frac{m-1}{2}+1\right) \leq \frac{m-1}{2}+\frac{1}{\epsilon}+1$
- This counterexample is generic, so we either get $\frac{1}{2}$ w.h.p. or something better in expectation

What We (Don't) Know

- Permutation tree: balanced tree, every alternative at one leaf
- Trivial (deterministic) lower bound of $\Theta\left(\frac{\log m}{m}\right)$
- Large gap between this and the upper bound of $\frac{3}{4}$
- Balanced trees of height $(\log m)+1$ do not help
- Composition of permutation trees cannot do better than $\frac{1}{2}$
- Randomized model: gap between $\frac{1}{2}$ and $\frac{5}{6}$
- Randomized balanced trees "oscillate", don’t provide any bound
- Higher-order caterpillars also oscillate

Thank you!

