Complexity Results for Some Classes of Strategic Games

Felix Fischer

Institut für Informatik
Ludwig-Maximilians-Universität München

July 3, 2009

Outline

1. Problem: Games, Solutions, and Complexity
2. Results: An Overview
3. Example: Pure Nash Equilibria of Anonymous Games

Game Theory

- A mathematical theory of strategic interaction
- John von Neumann, Oskar Morgenstern: Theory of Games and Economic Behavior (1944)
- Non-cooperative game theory
- Different outcomes depending on choices of several individuals (players)
- Disagreement about quality of the outcomes
- Applications in economics, political science, biology, ...
- In computer science: analysis of electronic markets, the Internet, social networks, ...

Normal-form Games

- Normal-form game $\Gamma=\left(N,\left(A_{i}\right)_{i \in N},\left(p_{i}\right)_{i \in N}\right)$
- Na (finite) set of players
- A_{i} a (finite) set of actions for player i
- $p_{i}: X_{j \in N} A_{j} \rightarrow \mathbb{R}$ a payoff function
$O \quad F$
 for player i
- Rational players: maximize their own payoff
- Strategy of player i : probability distribution $s_{i} \in S_{i}=\Delta\left(A_{i}\right)$
- Strategy profile: vector $s \in S=X_{j \in N} S_{j}$ of strategies

From Games to Solutions

- Solution concepts single out "interesting" strategy profiles
- Nash equilibrium: profile of strategies that are mutual best responses
- Formally: $s \in S$ such that for all $i \in N, a \in A_{i}, p_{i}(s) \geq p_{i}\left(s_{-i}, a\right)$

From Games to Solutions

- Solution concepts single out "interesting" strategy profiles
- Nash equilibrium: profile of strategies that are mutual best responses
- Formally: $s \in S$ such that for all $i \in N, a \in A_{i}, p_{i}(s) \geq p_{i}\left(s_{-i}, a\right)$

O		F
	$(2,1)$	$(0,0)$
F	$(0,0)$	$(1,2)$

From Games to Solutions

- Solution concepts single out "interesting" strategy profiles
- Nash equilibrium: profile of strategies that are mutual best responses
- Formally: $s \in S$ such that for all $i \in N, a \in A_{i}, p_{i}(s) \geq p_{i}\left(s_{-i}, a\right)$

O		F
	$(2,1)$	$(0,0)$
F	$(0,0)$	$(1,2)$

- Existence guaranteed (Nash, 1950);

From Games to Solutions

- Solution concepts single out "interesting" strategy profiles
- Nash equilibrium: profile of strategies that are mutual best responses
- Formally: $s \in S$ such that for all $i \in N, a \in A_{i}, p_{i}(s) \geq p_{i}\left(s_{-i}, a\right)$

	O	F
O	$(2,1)$	$(0,0)$
F	$(0,0)$	$(1,2)$

	H	T
H	$(1,-1)$	$(-1,1)$
T	$(-1,1)$	$(1,-1)$

- Existence guaranteed (Nash, 1950); not so for pure equilibrium

Towards Algorithmic Game Theory

- Nobel laureate Robert Aumann: "A solution concept must be calculable, otherwise you are not going to use it."
- Still, computational complexity of finding solutions has received fairly little attention in traditional game theory
- Possible reason: the right tools were missing

Towards Algorithmic Game Theory

- Nobel laureate Robert Aumann: "A solution concept must be calculable, otherwise you are not going to use it."
- Still, computational complexity of finding solutions has received fairly little attention in traditional game theory
- Possible reason: the right tools were missing
- Computational complexity theory
- Classes of problems with similar resource requirements
- P (efficiently solvable) vs. NP (efficiently verifiable)
- NP-hard: not in P if $P \neq N P$

The Complexity of Nash Equilibrium

- Pure Nash equilibrium: decision problem
- decidable by enumeration of action profiles, complexity depends on representation
- in P when games are given explicitly
- potentially NP-hard given succinct description of games with many players
- Nash equilibrium: search problem, solution guaranteed to exist
- PPAD-complete, even for $|N|=2$ (Chen and Deng, 2005)
- known algorithms (e.g., Lemke's algorithm) have exponential worst-case running time

Point of Departure

- Most well-known solution concepts computationally hard in general normal-form games

Point of Departure

- Most well-known solution concepts computationally hard in general normal-form games
- Maybe real-world games are not "general"
- Evidence: number of outcomes in general games may be exponential in $|N|$, even if $|A|=2$
- Could not even be played efficiently

Point of Departure

- Most well-known solution concepts computationally hard in general normal-form games
- Maybe real-world games are not "general"
- Evidence: number of outcomes in general games may be exponential in $|N|$, even if $|A|=2$
- Could not even be played efficiently
- Consider restricted classes of (multi-player) games with properties found in the real world

Some Classes of Strategic Games

- Ranking Games
- outcomes are rankings of the players
- only performance relative to the others matters
- examples: parlor games, economic scenarios
- Anonymous Games
- other players are similar, cannot be distinguished
- payoff only depends on how many of them play each action
- example: large open systems (e.g., the Internet)
- Graphical Games
- payoff depends only on players in a local neighborhood
- examples: networks (computer or social)

Overview of Results

Overview of Results

iterated weak dominance
pure Nash equilibrium

Brandt, Fischer, Harrenstein, Shoham: Ranking Games, Artificial Intelligence, 2009 (also 21st AAAI, 2006, and 20th IJCAI, 2007)

Overview of Results

iterated weak dominance
pure Nash equilibrium

Brandt, Fischer, Holzer: Symmetries and the complexity of pure Nash equilibrium, JCSS, 2009 (also 24th STACS, 2007)

Overview of Results

iterated weak dominance
pure Nash equilibrium

Brandt, Fischer, Holzer: On iterated dominance, matrix elimination, and matched paths, 2008

Overview of Results

iterated weak dominance pure Nash equilibrium

Fischer, Holzer, Katzenbeisser: The influence of neighbourhood and choice on the complexity of finding pure Nash equilibria, IPL, 2006

Overview of Results

iterated weak dominance
pure Nash equilibrium

Brandt, Fischer, Holzer: Equilibria of graphical games with symmetries, 4th WINE, 2008

Two More Solution Concepts

- Nash equilibrium commonly criticized
- Indifference between actions played and not played
- Requires randomization (with irrational weights if $|N| \geq 3$)

Two More Solution Concepts

- Nash equilibrium commonly criticized
- Indifference between actions played and not played
- Requires randomization (with irrational weights if $|N| \geq 3$)

Two More Solution Concepts

- Nash equilibrium commonly criticized
- Indifference between actions played and not played
- Requires randomization (with irrational weights if $|N| \geq 3$)

Brandt, Fischer: On the hardness and existence of quasi-strict equilibria, 1st SAGT, 2008

Two More Solution Concepts

- Nash equilibrium commonly criticized
- Indifference between actions played and not played
- Requires randomization (with irrational weights if $|N| \geq 3$)

Brandt, Fischer: On the hardness and existence of quasi-strict equilibria, 1st SAGT, 2008

Two More Solution Concepts

- Nash equilibrium commonly criticized
- Indifference between actions played and not played
- Requires randomization (with irrational weights if $|N| \geq 3$)

Brandt, Brill, Fischer, Harrenstein: Computational aspects of Shapley's saddles, 8th AAMAS, 2009

Anonymous Games

- No distinction between other players
- All players have same set A of actions
- Payoff determined by
- own action
- number of other players playing each action
- Useful concept: commutative image of action profile s

$$
\#(s)=\left(\left|\left\{i \in N \mid s_{i}=a\right\}\right|\right)_{a \in A}
$$

An Example

$$
p_{1}: \begin{array}{llll}
& 0 & 1 & 2 \\
\hline 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array} \quad p_{2}: \begin{array}{llll}
& 0 & 1 & 2 \\
\hline 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array} \quad \begin{array}{lllll}
\\
\hline
\end{array} \quad \begin{array}{llll}
& 0 & 1 & 2 \\
\hline 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\hline
\end{array}
$$

An Example

$$
p_{1}: \begin{array}{llll}
& 0 & 1 & 2 \\
\hline 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array} \quad p_{2}: \begin{array}{llll}
& 0 & 1 & 2 \\
\hline 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array} \quad \begin{array}{lllll}
\\
\hline
\end{array} \quad \begin{array}{lllll}
& 0 & 1 & 2 \\
\hline 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\hline
\end{array}
$$

$(0,1,1)$	$(0,0,1)$
$(1,1,1)$	$(0,0,0)$

$(0,1,0)$	$(0,0,0)$
$(0,1,0)$	$(1,0,1)$

An Example

$$
p_{3}: \begin{array}{llll}
& 0 & 1 & 2 \\
\hline 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\hline
\end{array}
$$

- Exponential number of different outcomes still possible
- Equilibrium property not determined by commutative image

$$
\begin{aligned}
& p_{1}: \begin{array}{llll}
& 0 & 1 & 2 \\
\hline 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
\hline
\end{array} \\
& p_{2}: \begin{array}{llll}
& 0 & 1 & 2 \\
\hline 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

An Example

$$
p_{1}: \begin{array}{lllll}
& 0 & 1 & 2 \\
\hline 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array} \quad p_{2}: \begin{array}{llll}
& 0 & 1 & 2 \\
\hline 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array} \quad p_{3}: \begin{array}{rlll}
& 0 & 1 & 2 \\
\hline 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\hline
\end{array}
$$

$(0,1,1)$	$(0,0,1)$
$(1,1,1)$	$(0,0,0)$

$(0,1,0)$	$(0,0,0)$
$(0,1,0)$	$(1,0,1)$

- Exponential number of different outcomes still possible
- Equilibrium property not determined by commutative image

Pure Nash Equilibria of Anonymous Games

Theorem: In anonymous games with a constant number of actions, existence of a pure Nash equilibrium can be decided in polynomial time.

Pure Nash Equilibria of Anonymous Games

Theorem: In anonymous games with a constant number of actions, existence of a pure Nash equilibrium can be decided in polynomial time.

Proof: by reduction to perfect matchings of a bipartite graph

- Fix a commutative image x (only polynomially many)
- Left side of the graph: players
- Right side: actions with multiplicities according to x
- Edge to (all copies of) action if it is potential best response
- Claim: perfect matchings correspond to pure equilibria

Pure Nash Equilibria of Anonymous Games

$(0,1,1)$	$(0,0,1)$
$(1,1,1)$	$(0,0,0)$

$(0,1,0)$	$(0,0,0)$
$(0,1,0)$	$(1,0,1)$

Pure Nash Equilibria of Anonymous Games

$(0,1,1)$	$(0,0,1)$
$(1,1,1)$	$(0,0,0)$

$(0,1,0)$	$(0,0,0)$
$(0,1,0)$	$(1,0,1)$

Pure Nash Equilibria of Anonymous Games

$(0,1,1)$	$(0,0,1)$
$(1,1,1)$	$(0,0,0)$

$(0,1,0)$	$(0,0,0)$
$(0,1,0)$	$(1,0,1)$

Pure Nash Equilibria of Anonymous Games

$(0,1,1)$	$(0,0,1)$
$(1,1,1)$	$(0,0,0)$

$(0,1,0)$	$(0,0,0)$
$(0,1,0)$	$(1,0,1)$

Pure Nash Equilibria of Anonymous Games

- As hard as finding matchings (i.e., NL-hard)?

Pure Nash Equilibria of Anonymous Games

- As hard as finding matchings (i.e., NL-hard)?
- Hall's Theorem: A bipartite graph $G=(A \cup B, E)$ has a perfect matching if and only if for each $X \subseteq A,|X| \leq|v(X)|$.

Pure Nash Equilibria of Anonymous Games

- As hard as finding matchings (i.e., NL-hard)?
- Hall's Theorem: A bipartite graph $G=(A \cup B, E)$ has a perfect matching if and only if for each $X \subseteq A,|X| \leq|v(X)|$.
- Collapse nodes with same neighborhood

Pure Nash Equilibria of Anonymous Games

- As hard as finding matchings (i.e., NL-hard)?
- Hall's Theorem: A bipartite graph $G=(A \cup B, E)$ has a perfect matching if and only if for each $X \subseteq A,|X| \leq|v(X)|$.
- Collapse nodes with same neighborhood
- Graph of constant size, condition can be checked in $\mathrm{TC}^{0} \subseteq \mathrm{NL}$

We Have Only Just Begun

- Most interesting open problems:
- quasi-strict equilibria of 2-player games
- iterated weak dominance in 2-action anonymous games
- Quasi-strict equilibria and Shapley's saddles in restricted classes of games
- More restricted classes of games

Brandt, Brill, Fischer, Harrenstein: On the complexity of iterated weak dominance in constant-sum games, 2nd SAGT, 2009

- Shapley's saddles: defined via inclusion-minimality, leads to interesting questions regarding complexity of search problem
Brandt, Brill, Fischer, Hoffmann: The computational complexity of weak saddles, 2nd SAGT, 2009
- Other classes of games (existing or new ones)

We Have Only Just Begun

- Most interesting open problems:

Thank you!

- quasi-strict equilibria of 2-player games
- iterated weak dominance in 2-action anonymous games
- Quasi-strict equilibria and Shapley's saddles in restricted classes of games
- More restricted classes of games

Brandt, Brill, Fischer, Harrenstein: On the complexity of iterated weak dominance in constant-sum games, 2nd SAGT, 2009

- Shapley's saddles: defined via inclusion-minimality, leads to interesting questions regarding complexity of search problem
Brandt, Brill, Fischer, Hoffmann: The computational complexity of weak saddles, 2nd SAGT, 2009
- Other classes of games (existing or new ones)

