Symmetries and the Complexity of Pure Nash Equilibrium

Felix Brandt ${ }^{1} \quad$ Felix Fischer ${ }^{1} \quad$ Markus Holzer ${ }^{2}$
${ }^{1}$ Institut für Informatik, Universität München
${ }^{2}$ Institut für Informatik, Technische Universität München

Outline

Strategic Games and Nash Equilibrium

Four Notions of Symmetry in Multi-Player Games

Nash Equilibria in Symmetric Games

Conclusion

Strategic Games

- Normal-form game $\Gamma=\left(N,\left(A_{i}\right)_{i \in N},\left(p_{i}\right)_{i \in N}\right)$
- N a set of players
- A_{i} a nonempty set of actions for player i
- $p_{i}:\left(X_{j \in N} A_{j}\right) \rightarrow \mathbb{R}$ a payoff function for player i
- Examples: Prisoners' Dilemma, Matching Pennies

	C
$c \mid$	
C	$(2,2)$
	$(0,3)$
	$(3,0)$
	$(1,1)$

	H	T
	1	
H	$(1,0)$	$(0,1)$
T	$(0,1)$	$(1,0)$

- Strategy $s_{i} \in \Delta\left(A_{i}\right)$: probability distribution over A_{i}
- Strategy profile $s \in X_{i \in N} \Delta\left(A_{i}\right)$
- Pure strategy: a degenerate distribution

Nash Equilibrium

- Informally: a profile of strategies that are mutual best responses to each other
- Formally: s is a Nash equilibrium if for every player $i \in N$, s_{i} is a best response to s_{-i}, i.e., for every $a \in A_{i}$,

$$
p_{i}(s) \geq p_{i}\left(\left(s_{-i}, a\right)\right)
$$

where $s_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$ and $\left(s_{-i}, a\right)=\left(s_{1}, \ldots, s_{i-1}, a, s_{i+1}, \ldots, s_{n}\right)$

- General existence theorem (Nash, 1951): every finite game Γ has at least one equilibrium
- Pure Nash equilibrium: Nash equilibrium that is a pure strategy profile; not guaranteed to exist

Complexity of Nash Equilibrium

- PPAD complete for $|N| \geq 2$ by reduction from Brouwer fixed points (Daskalakis and Papadimitriou 2006; Chen and Deng, 2006)
- Pure Nash equilibria: existence decidable by enumeration of action profiles, complexity depends on representation
- List of payoffs for every action profile requires space $|N| \cdot|A|^{|N|}$
- Succinct representations
- Congestion games (Rosenthal, 1973): PLS-complete (Fabrikant et al., 2004)
- Graphical normal form (Kearns et al., 2001): NP-complete (Gottlob et al., 2005; Fischer et al., 2006)
- Circuit form: NP-complete (Schoenebeck and Vadhan, 2006)

Outline

Strategic Games and Nash Equilibrium

Four Notions of Symmetry in Multi-Player Games

Nash Equilibria in Symmetric Games

Conclusion

Symmetries and Succinct Representation

- Idea: Exploit similarities between players to enable succinct representation
- Prerequisite: $A_{1}=\cdots=A_{n}=A$
- Weak symmetry: players cannot or need not distinguish between other players, i.e.,

$$
\begin{array}{r}
p_{i}(s)=p_{i}(t) \quad \text { for all } i \in N \text { and all } s, t \in A^{N} \\
\\
\text { with } s_{i}=t_{i} \text { and } \#\left(s_{-i}\right)=\#\left(t_{-i}\right)
\end{array}
$$

- $\#(s)=(\#(a, s))_{a \in A}$ is the commutative image (or Parikh image) of action profile s
- $\binom{n+k-1}{k-1}$ distributions of n players among k actions
- Representation has polynomial size in general if and only if k is a constant

Other Forms of Symmetry

- Strong symmetry: identical payoff functions for all players (in addition to the above), i.e.,

$$
\begin{array}{rr}
p_{i}(s)=p_{j}(t) \quad \text { for all } i, j \in N \text { and all } s, t \in A^{N} \\
& \text { with } s_{i}=t_{j} \text { and } \#\left(s_{-i}\right)=\#\left(t_{-j}\right)
\end{array}
$$

- Weak/strong anonymity: players do not distinguish themselves from the other players

Outline

Strategic Games and Nash Equilibrium

Four Notions of Symmetry in Multi-Player Games

Nash Equilibria in Symmetric Games

Conclusion

Nash equilibria in symmetric games

- Every (strongly) symmetric game has a symmetric equilibrium (Nash, 1951)
- Symmetric equilibrium can be computed in P if $|A|=O(\log |N| / \log \log |N|)$ (Papadimitriou and Roughgarden, 2005)
- Does not apply to pure equilibria or weak symmetry
- Not obvious that symmetry simplifies the search for equilibria

$(0,1,1)$	$(0,0,1)$
$(1,1,1)$	$(0,0,0)$

$(0,1,0)$	$(0,0,0)$
$(0,1,0)$	$(1,0,1)$

Results

	$\|A\|=O(1)$	$\|A\|=O(\|N\|)$
weakly symmetric	TC^{0}-complete	
weakly anonymous		NP-complete
strongly symmetric	in AC^{0}	
strongly anonymous PLS-complete		

- AC^{0} : Boolean circuits with constant depth, unbounded fan-in, polynomial size
- $\mathrm{TC}^{0}: \mathrm{AC}^{0}$ plus threshold gates
- $\mathrm{AC}^{0} \subset \mathrm{TC}^{0} \subseteq \mathrm{P} \subseteq \mathrm{NP}$
- PLS: polynomial local search

Weak Symmetry/Anonymity, $|A|=O(1)$

 Membership in TC^{0}- Fix a particular $x=\#(s), s \in A^{N}$, and do the following:

1. For each $C \subseteq A$, compute the number w_{C} of players for which C is the set of potential best responses under x
2. Check whether the numbers $\left(w_{C}\right)_{C \subseteq A}$ are "compatible" with x

- Step 1 involves checking the Nash equilibrium condition
- Step 2 reduces to a homologous flow problem
- Constant $|A|$
- Constant number of subsets C
- x takes only polynomially many different values
- Certainly in P ; membership in TC^{0} can be shown by exploiting the structure of the flow network

Weak Symmetry/Anonymity, $|A|=O(1)$

 TC ${ }^{0}$-hardness- Reduction from MAJORITY
- Game that has a pure Nash equilibrium iff exactly ℓ bits of an m-bit string are 1
- $m+2$ players of two different types
- Type of player i depends on value of i th input bit, players $m+1$ and $m+2$ are of of type 0 and 1 , respectively
- Payoffs:

| | 0 | | \ldots | | $\ell+1$ | | \ldots | | $m+2$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p_{0} | \ldots | 0 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 1 | \ldots |
| p_{1} | \ldots | 1 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | \ldots |

Strong Symmetry/Anonymity, $|A|=O(1)$

- Unlike weak symmetry/anonymity: if s is a Nash equilibrium, so are all t with $\#(t)=\#(s)$
- We only need to check best response property for player playing a certain action, of which there are at most $|A|$
- Again, \#(s), $s \in A^{N}$ takes only polynomially many different values
- Strongly anonymous games are common payoff; finding the maximum payoff (in AC^{0}) even finds a social welfare maximizing Nash equilibrium

Strong Symmetry/Weak Anonymity, $|A|=O(|N|)$

- Membership: Guess an action profile and verify that it is an equilibrium
- Hardness: reduction from satisfiability of a Boolean circuit \mathcal{C} with inputs M (CSAT)
- Design game Γ with players $N=M$ and actions $A=\left\{a_{i}^{0}, a_{i}^{1} \mid i \in M\right\}$
- Action profile s corresponds to assignment of \mathcal{C} if for every $i \in M, \#\left(a_{i}^{0}, s\right)+\#\left(a_{i}^{1}, s\right)=1$
- Map satisfying assignments of \mathcal{C} to Nash equilibria of Γ

Strong Anonymity, $|A|=O(|N|)$

- Strongly anonymous games are common payoff, always have a pure Nash equilibrium
- PLS: class of search problems where the existence of a solution is guaranteed by a local optimality argument
- Typical problem: finding a locally optimal solution of an NP-hard optimization problem
- Reduction from the PLS-complete problem FLIP to finding Nash equilibria in a weakly anonymous game with a growing number of actions and exponentially many payoffs

Outline

Strategic Games and Nash Equilibrium
 Four Notions of Symmetry in Multi-Player Games

Nash Equilibria in Symmetric Games

Conclusion

Conclusion

- Four notions of symmetry in multi-player games
- Finding pure Nash equilibria is tractable if the number of actions is a constant
- Identical payoff functions for all players simplify the problem
- A growing number of actions makes it intractable
- Anonymity seems to have no influence on the complexity
- Future work:
- Games with a slowly growing number of actions
- Mixed equilibria in weakly symmetric games
- Player types, such that players of different types can be distinguished

Thank you for your attention!

