Symmetries and the Complexity of Pure Nash Equilibrium

Felix Brandt¹ Felix Fischer¹ Markus Holzer²

¹Institut für Informatik, Universität München

²Institut für Informatik, Technische Universität München

Strategic Games and Nash Equilibrium

Four Notions of Symmetry in Multi-Player Games

Nash Equilibria in Symmetric Games

Strategic Games

► Normal-form game $\Gamma = (N, (A_i)_{i \in N}, (p_i)_{i \in N})$

- N a set of players
- ► A_i a nonempty set of actions for player i
- $p_i : (X_{j \in N} A_j) \to \mathbb{R}$ a payoff function for player *i*
- ► Examples: Prisoners' Dilemma, Matching Pennies

- ► Strategy $s_i \in \Delta(A_i)$: probability distribution over A_i
- Strategy profile $s \in X_{i \in N} \Delta(A_i)$
- Pure strategy: a degenerate distribution

Nash Equilibrium

- Informally: a profile of strategies that are mutual best responses to each other
- ► Formally: *s* is a *Nash equilibrium* if for every player $i \in N$, s_i is a *best response* to s_{-i} , i.e., for every $a \in A_i$,

$$p_i(s) \geq p_i((s_{-i}, a)),$$

where
$$s_{-i} = (s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_n)$$
 and $(s_{-i}, a) = (s_1, \dots, s_{i-1}, a, s_{i+1}, \dots, s_n)$

- General existence theorem (Nash, 1951): every finite game Γ has at least one equilibrium
- Pure Nash equilibrium: Nash equilibrium that is a pure strategy profile; not guaranteed to exist

Complexity of Nash Equilibrium

- ▶ PPAD complete for |N| ≥ 2 by reduction from Brouwer fixed points (Daskalakis and Papadimitriou 2006; Chen and Deng, 2006)
- Pure Nash equilibria: existence decidable by enumeration of action profiles, complexity depends on *representation*
- List of payoffs for every action profile requires space $|N| \cdot |A|^{|N|}$
- Succinct representations
 - Congestion games (Rosenthal, 1973): PLS-complete (Fabrikant et al., 2004)
 - Graphical normal form (Kearns et al., 2001): NP-complete (Gottlob et al., 2005; Fischer et al., 2006)
 - Circuit form: NP-complete (Schoenebeck and Vadhan, 2006)

Strategic Games and Nash Equilibrium

Four Notions of Symmetry in Multi-Player Games

Nash Equilibria in Symmetric Games

Symmetries and Succinct Representation

- Idea: Exploit similarities between players to enable succinct representation
- Prerequisite: $A_1 = \cdots = A_n = A$
- Weak symmetry: players cannot or need not distinguish between other players, i.e.,

$$p_i(s) = p_i(t)$$
 for all $i \in N$ and all $s, t \in A^N$
with $s_i = t_i$ and $\#(s_{-i}) = \#(t_{-i})$

- #(s) = (#(a, s))_{a∈A} is the commutative image (or Parikh image) of action profile s
- $\binom{n+k-1}{k-1}$ distributions of *n* players among *k* actions
- Representation has polynomial size *in general* if and only if k is a constant

Other Forms of Symmetry

 Strong symmetry: identical payoff functions for all players (in addition to the above), i.e.,

$$p_i(s) = p_j(t)$$
 for all $i, j \in N$ and all $s, t \in A^N$
with $s_i = t_j$ and $\#(s_{-i}) = \#(t_{-j})$

 Weak/strong anonymity: players do not distinguish themselves from the other players

Strategic Games and Nash Equilibrium

Four Notions of Symmetry in Multi-Player Games

Nash Equilibria in Symmetric Games

Nash equilibria in symmetric games

- Every (strongly) symmetric game has a symmetric equilibrium (Nash, 1951)
- Symmetric equilibrium can be computed in P if |A| = O(log |N| / log log |N|) (Papadimitriou and Roughgarden, 2005)
- Does not apply to pure equilibria or weak symmetry
- Not obvious that symmetry simplifies the search for equilibria

$$\begin{array}{c|c} (0,1,0) & (0,0,0) \\ \hline (0,1,0) & (1,0,1) \end{array}$$

Results

	A =O(1)	A = O(N)		
weakly symmetric	TC ⁰ -complete	NP-complete		
weakly anonymous				
strongly symmetric	in ΔC^0			
strongly anonymous	III AC	PLS-complete		

- AC⁰: Boolean circuits with constant depth, unbounded fan-in, polynomial size
- ► TC⁰: AC⁰ plus threshold gates
- $\blacktriangleright \mathsf{AC}^0 \subset \mathsf{TC}^0 \subseteq \mathsf{P} \subseteq \mathsf{NP}$
- PLS: polynomial local search

Weak Symmetry/Anonymity, |A| = O(1)Membership in TC⁰

- Fix a particular x = #(s), $s \in A^N$, and do the following:
 - 1. For each $C \subseteq A$, compute the number w_C of players for which C is the set of *potential* best responses under x
 - Check whether the numbers (w_C)_{C⊆A} are "compatible" with x
- Step 1 involves checking the Nash equilibrium condition
- Step 2 reduces to a homologous flow problem
- Constant |A|
 - Constant number of subsets C
 - x takes only polynomially many different values
- Certainly in P; membership in TC⁰ can be shown by exploiting the structure of the flow network

Weak Symmetry/Anonymity, |A| = O(1)

- Reduction from MAJORITY
- ► Game that has a pure Nash equilibrium iff exactly ℓ bits of an *m*-bit string are 1
- m + 2 players of two different *types*
- ► Type of player *i* depends on value of *i*th input bit, players *m* + 1 and *m* + 2 are of of type 0 and 1, respectively
- Payoffs:

_	0				$\ell+1$				<i>m</i> + 2		
p_0		0	1	0	2	1	0	1	0	1	
p_1		1	0	1	0	1	2	0	1	0	

Strong Symmetry/Anonymity, |A| = O(1)

- Unlike weak symmetry/anonymity: if s is a Nash equilibrium, so are all t with #(t) = #(s)
- ► We only need to check best response property for player playing a certain action, of which there are at most |A|
- ► Again, #(s), s ∈ A^N takes only polynomially many different values
- Strongly anonymous games are common payoff; finding the maximum payoff (in AC⁰) even finds a *social welfare maximizing* Nash equilibrium

Strong Symmetry/Weak Anonymity, |A| = O(|N|)

- Membership: Guess an action profile and verify that it is an equilibrium
- ► Hardness: reduction from satisfiability of a Boolean circuit C with inputs M (CSAT)
- Design game Γ with players N = M and actions A = { a⁰_i, a¹_i | i ∈ M }
- ► Action profile s corresponds to assignment of C if for every i ∈ M, #(a⁰_i, s) + #(a¹_i, s) = 1
- Map satisfying assignments of C to Nash equilibria of Γ

Strong Anonymity, |A| = O(|N|)

- Strongly anonymous games are common payoff, always have a pure Nash equilibrium
- PLS: class of search problems where the existence of a solution is guaranteed by a local optimality argument
- Typical problem: finding a locally optimal solution of an NP-hard optimization problem
- Reduction from the PLS-complete problem FLIP to finding Nash equilibria in a weakly anonymous game with a growing number of actions and exponentially many payoffs

Strategic Games and Nash Equilibrium

Four Notions of Symmetry in Multi-Player Games

Nash Equilibria in Symmetric Games

- Four notions of symmetry in multi-player games
- Finding pure Nash equilibria is tractable if the number of actions is a constant
- Identical payoff functions for all players simplify the problem
- A growing number of actions makes it intractable
- Anonymity seems to have no influence on the complexity
- Future work:
 - Games with a slowly growing number of actions
 - Mixed equilibria in weakly symmetric games
 - Player types, such that players of different types can be distinguished

Thank you for your attention!