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Strategic Games and Nash Equilibrium

Strategic Games
◮ Normal-form game Γ = (N, (Ai )i∈N , (pi)i∈N)

◮ N a set of players
◮ Ai a nonempty set of actions for player i
◮ pi : ("j∈NAj) → R a payoff function for player i

◮ Examples: Prisoners’ Dilemma, Matching Pennies
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◮ Strategy si ∈ ∆(Ai): probability distribution over Ai

◮ Strategy profile s ∈ "i∈N∆(Ai )

◮ Pure strategy: a degenerate distribution



Symmetries and the Complexity of Pure Nash Equilibrium 4

Strategic Games and Nash Equilibrium

Nash Equilibrium

◮ Informally: a profile of strategies that are mutual best

responses to each other

◮ Formally: s is a Nash equilibrium if for every player i ∈ N,
si is a best response to s−i , i.e., for every a ∈ Ai ,

pi(s) ≥ pi((s−i , a)),

where s−i = (s1, . . . , si−1, si+1, . . . , sn) and
(s−i , a) = (s1, . . . , si−1, a, si+1, . . . , sn)

◮ General existence theorem (Nash, 1951): every finite
game Γ has at least one equilibrium

◮ Pure Nash equilibrium: Nash equilibrium that is a pure
strategy profile; not guaranteed to exist
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Strategic Games and Nash Equilibrium

Complexity of Nash Equilibrium
◮ PPAD complete for |N| ≥ 2 by reduction from Brouwer

fixed points (Daskalakis and Papadimitriou 2006; Chen
and Deng, 2006)

◮ Pure Nash equilibria: existence decidable by enumeration
of action profiles, complexity depends on representation

◮ List of payoffs for every action profile requires space
|N| · |A||N|

◮ Succinct representations
◮ Congestion games (Rosenthal, 1973): PLS-complete

(Fabrikant et al., 2004)
◮ Graphical normal form (Kearns et al., 2001):

NP-complete (Gottlob et al., 2005; Fischer et al., 2006)
◮ Circuit form: NP-complete (Schoenebeck and Vadhan,

2006)
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Four Notions of Symmetry in Multi-Player Games

Symmetries and Succinct Representation
◮ Idea: Exploit similarities between players to enable

succinct representation

◮ Prerequisite: A1 = · · · = An = A

◮ Weak symmetry: players cannot or need not distinguish
between other players, i.e.,

pi(s) = pi(t) for all i ∈ N and all s, t ∈ AN

with si = ti and #(s−i) = #(t−i)

◮ #(s) = (#(a, s))a∈A is the commutative image (or Parikh
image) of action profile s

◮

(

n+k−1

k−1

)

distributions of n players among k actions

◮ Representation has polynomial size in general if and only
if k is a constant
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Four Notions of Symmetry in Multi-Player Games

Other Forms of Symmetry
◮ Strong symmetry: identical payoff functions for all players

(in addition to the above), i.e.,

pi(s) = pj(t) for all i , j ∈ N and all s, t ∈ AN

with si = tj and #(s−i) = #(t−j)

◮ Weak/strong anonymity: players do not distinguish
themselves from the other players

WS

SS WASA
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Nash Equilibria in Symmetric Games

Nash equilibria in symmetric games

◮ Every (strongly) symmetric game has a symmetric

equilibrium (Nash, 1951)

◮ Symmetric equilibrium can be computed in P if
|A| = O(log |N|/ log log |N|) (Papadimitriou and
Roughgarden, 2005)

◮ Does not apply to pure equilibria or weak symmetry

◮ Not obvious that symmetry simplifies the search for
equilibria
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Nash Equilibria in Symmetric Games

Results

|A| = O(1) |A| = O(|N|)

weakly symmetric
TC0-complete

NP-completeweakly anonymous

strongly symmetric
in AC0

strongly anonymous PLS-complete

◮ AC0: Boolean circuits with constant depth, unbounded fan-in,
polynomial size

◮ TC0: AC0 plus threshold gates
◮ AC0 ⊂ TC0 ⊆ P ⊆ NP
◮ PLS: polynomial local search
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Nash Equilibria in Symmetric Games

Weak Symmetry/Anonymity, |A| = O(1)
Membership in TC0

◮ Fix a particular x = #(s), s ∈ AN , and do the following:

1. For each C ⊆ A, compute the number wC of players for
which C is the set of potential best responses under x

2. Check whether the numbers (wC )C⊆A are “compatible”
with x

◮ Step 1 involves checking the Nash equilibrium condition

◮ Step 2 reduces to a homologous flow problem

◮ Constant |A|
◮ Constant number of subsets C
◮ x takes only polynomially many different values

◮ Certainly in P; membership in TC0 can be shown by
exploiting the structure of the flow network
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Nash Equilibria in Symmetric Games

Weak Symmetry/Anonymity, |A| = O(1)
TC0-hardness

◮ Reduction from MAJORITY

◮ Game that has a pure Nash equilibrium iff exactly ℓ bits
of an m-bit string are 1

◮ m + 2 players of two different types

◮ Type of player i depends on value of ith input bit, players
m + 1 and m + 2 are of of type 0 and 1, respectively

◮ Payoffs:

0 . . . ℓ + 1 . . . m + 2

p0 . . . 0 1 0 2 1 0 1 0 1 . . .

p1 . . . 1 0 1 0 1 2 0 1 0 . . .
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Nash Equilibria in Symmetric Games

Strong Symmetry/Anonymity, |A| = O(1)

◮ Unlike weak symmetry/anonymity: if s is a Nash
equilibrium, so are all t with #(t) = #(s)

◮ We only need to check best response property for player
playing a certain action, of which there are at most |A|

◮ Again, #(s), s ∈ AN takes only polynomially many
different values

◮ Strongly anonymous games are common payoff; finding
the maximum payoff (in AC0) even finds a social welfare

maximizing Nash equilibrium
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Nash Equilibria in Symmetric Games

Strong Symmetry/Weak Anonymity, |A| = O(|N|)

◮ Membership: Guess an action profile and verify that it is
an equilibrium

◮ Hardness: reduction from satisfiability of a Boolean
circuit C with inputs M (CSAT)

◮ Design game Γ with players N = M and actions
A = { a0

i , a
1
i | i ∈ M }

◮ Action profile s corresponds to assignment of C if for
every i ∈ M , #(a0

i , s) + #(a1
i , s) = 1

◮ Map satisfying assignments of C to Nash equilibria of Γ
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Nash Equilibria in Symmetric Games

Strong Anonymity, |A| = O(|N|)

◮ Strongly anonymous games are common payoff, always
have a pure Nash equilibrium

◮ PLS: class of search problems where the existence of a
solution is guaranteed by a local optimality argument

◮ Typical problem: finding a locally optimal solution of an
NP-hard optimization problem

◮ Reduction from the PLS-complete problem FLIP to
finding Nash equilibria in a weakly anonymous game with
a growing number of actions and exponentially many
payoffs
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Conclusion

Conclusion

◮ Four notions of symmetry in multi-player games

◮ Finding pure Nash equilibria is tractable if the number of
actions is a constant

◮ Identical payoff functions for all players simplify the
problem

◮ A growing number of actions makes it intractable

◮ Anonymity seems to have no influence on the complexity

◮ Future work:
◮ Games with a slowly growing number of actions
◮ Mixed equilibria in weakly symmetric games
◮ Player types, such that players of different types can be

distinguished
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Thank you for your attention!
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