Payment Rules for Combinatorial Auctions via Structural Support Vector Machines

Felix Fischer
Harvard University

joint work with Paul Dütting (EPFL), Petch Jirapinyo (Harvard), John Lai (Harvard), Ben Lubin (BU), and David C. Parkes (Harvard)

September 7, 2011
Combinatorial Auctions

- n agents
- m items
- Bundles $Y = \{0, 1\}^m$
- Valuation profiles $X = \mathbb{R}^{2^m \times n}$
- Allocation rule $g_i : X \rightarrow Y$
- Payment rule $t_i : X \times Y \rightarrow \mathbb{R}$

- Optimal allocation: maximize $\sum_i x_i[y_i]$ such that $y_i \cap y_j = \emptyset$
- Strategyproofness:
 \[
 x_i[g_i(x)] - t_i(x, g_i(x)) \geq x_i[g_i(x'_i, x_{-i})] - t_i(x'_i, x_{-i}, g_i(x'_i, x_{-1}))
 \]
Combinatorial Auctions

- \(n \) agents
- \(m \) items
- Bundles \(Y = \{0, 1\}^m \)
- Valuation profiles \(X = \mathbb{R}^{2^m \times n} \)
- Allocation rule \(g_i : X \rightarrow Y \)
- Payment rule \(t_i : X \times Y \rightarrow \mathbb{R} \)

Optimal allocation: maximize \(\sum_i x_i[y_i] \) such that \(y_i \cap y_j = \emptyset \)

Strategyproofness:

\[
x_i[g_i(x)] - t_i(x, g_i(x)) \geq x_i[g_i(x'_i, x_{-i})] - t_i(x'_i, x_{-i}, g_i(x'_i, x_{-1}))
\]
Problem Statement

- Elicitation of valuations and computation of optimal allocation are costly, often prohibitively so
- Canonical strategyproof mechanism: VCG
 - depends on ability to find efficient allocation
 - other problems: collusion, small or non-monotonic revenue
- Alternative solutions hard to come by
- Our approach: take allocation rule g as given, use to generate input for a learning algorithm
- Implicitly learns payment rule t that makes g “maximally incentive compatible” (we will see in what sense)
Outline

Combinatorial Auctions and Margin-Based Learning

Learning a Payment Rule

Summary and Open Problems
Learning What We Already Know

- By symmetry concentrate on agent 1, consider $g = g_1$ and $t = t_1$
- Assume g is given, as well as a distribution $P(X)$ on X
- Together they induce a distribution $P(X, Y)$ on $X \times Y$
- Sample set of training examples from $P(X, Y)$ and learn an allocation function $h : X \rightarrow Y$
Learning What We Already Know

- By symmetry concentrate on agent 1, consider \(g = g_1 \) and \(t = t_1 \)
- Assume \(g \) is given, as well as a distribution \(P(X) \) on \(X \)
- Together they induce a distribution \(P(X, Y) \) on \(X \times Y \)
- Sample set of training examples from \(P(X, Y) \) and learn an allocation function \(h : X \to Y \)
- We know \(g \), so we are not actually interested in \(h \)
- Rather: employ a margin-based learning method, infer \(t \) from the margin
Learning How to Allocate

- Single-item case corresponds to an ordinary binary classifier: allocate the item or not

+ + +
- + +
- - +
- - -
- -
Learning How to Allocate

- Single-item case corresponds to an ordinary binary classifier: allocate the item or not

![Diagram of binary classifier](image)
Learning How to Allocate

- Single-item case corresponds to an ordinary binary classifier: allocate the item or not

![Diagram showing single-item allocation decision](image)
Learning How to Allocate

- Single-item case corresponds to an ordinary binary classifier: allocate the item or not

- In general: one class for each bundle that could be allocated
- Learn a discriminant function $f : X \times Y \rightarrow \mathbb{R}$ that rates bundles
- Define h to choose the most appropriate bundle:

$$h(x) = \arg \max_{y \in Y(x-1)} f(x, y)$$
The Discriminant Function

- Impose additional structure on f:
 \[f_w(x, y) = w_1 x_1 [y] + w_{-1}^T \psi(x_{-1}, y) \]

- $w = (w_1, w_{-1}) \in \mathbb{R}^{M+1}$ is a parameter vector to be learned
- $\psi(x_{-1}, y) \in \mathbb{R}^{M}$ is a feature vector derived from x_{-1} and y
The Discriminant Function

- Impose additional structure on f:

$$f_w(x, y) = w_1 x_1[y] + w_{-1}^T \psi(x_{-1}, y)$$

- $w = (w_1, w_{-1}) \in \mathbb{R}^{M+1}$ is a parameter vector to be learned

- $\psi(x_{-1}, y) \in \mathbb{R}^M$ is a feature vector derived from x_{-1} and y

- Linear in \mathbb{R}^M, but can be very expressive in X
The Discriminant Function

- Impose additional structure on f:

$$ f_w(x, y) = w_1 x_1 [y] + w_{-1}^T \psi(x_{-1}, y) $$

- $w = (w_1, w_{-1}) \in \mathbb{R}^{M+1}$ is a parameter vector to be learned
- $\psi(x_{-1}, y) \in \mathbb{R}^M$ is a feature vector derived from x_{-1} and y

- Linear in \mathbb{R}^M, but can be very expressive in X
The Discriminant Function

- Impose additional structure on f:
 \[f_w(x, y) = w_1 x_1[y] + w_{-1}^T \psi(x_{-1}, y) \]
 - $w = (w_1, w_{-1}) \in \mathbb{R}^{M+1}$ is a parameter vector to be learned
 - $\psi(x_{-1}, y) \in \mathbb{R}^M$ is a feature vector derived from x_{-1} and y
 - Linear in \mathbb{R}^M, but can be very expressive in X
The Discriminant Function

- Impose additional structure on f:
 \[
 f_w(x, y) = w_1 x_1[y] + w_{-1}^T \psi(x_{-1}, y)
 \]
 - $w = (w_1, w_{-1}) \in \mathbb{R}^{M+1}$ is a parameter vector to be learned
 - $\psi(x_{-1}, y) \in \mathbb{R}^M$ is a feature vector derived from x_{-1} and y
 - Linear in \mathbb{R}^M, but can be very expressive in X
The Payment Rule

- Ensure $w_1 > 0$ and let
 \[
 t_w(x, y) = -\left(\frac{w_{-1}}{w_1}\right)^T \psi(x_{-1}, y)
 \]

- agent-independent
- h_w predicts the utility-maximizing bundle:
 \[
 h_w(x) = \arg\max_{y \in Y(x_{-1})} f_w(x, y) = \arg\max_{y \in Y(x_{-1})} w_1 x_1[y] + w_{-1}^T \psi(x_{-1}, y)
 \]
 \[
 = \arg\max_{y \in Y(x_{-1})} w_1 x_1[y] + w_{-1}^T \left(-\frac{w_1}{w_{-1}} t_w(x, y)\right)
 \]
 \[
 = \arg\max_{y \in Y(x_{-1})} (x_1[y] - t_w(x, y))
 \]

- Can ensure by translation that $w_{-1}^T \psi(x_{-1}, 0) = 0$, i.e., that payment for empty bundle is zero
Truthfulness and Regret

- Looks like the characterization of a strategyproof mechanism, but h_w might not be feasible
- Also recall that we want to allocate according to g, not h_w
Truthfulness and Regret

- Looks like the characterization of a strategyproof mechanism, but h_w might not be feasible
- Also recall that we want to allocate according to g, not h_w
- Ex-post regret (for bidding truthfully): maximum gain in utility by bidding differently

Lemma: The ex-post regret for bidding truthfully in (g, t_w) is

$$\frac{1}{w_1} \left(\max_{y' \in Y(x_{-1})} f_w(x, y') - f_w(x, g(x)) \right).$$

Theorem: If h_w is exact, then (g, t_w) is strategyproof.
Truthfulness and Regret

- Looks like the characterization of a strategyproof mechanism, but h_w might not be feasible
- Also recall that we want to allocate according to g, not h_w
- Ex-post regret (for bidding truthfully): maximum gain in utility by bidding differently

Lemma: The ex-post regret for bidding truthfully in (g, t_w) is

$$
\frac{1}{w_1} \left(\max_{y' \in Y(x_{-1})} f_w(x, y') - f_w(x, g(x)) \right).
$$

Theorem: If h_w is exact, then (g, t_w) is strategyproof.

- But: h_w will not always be exact, we know it cannot be if g is not monotonic
Regret and Generalization Error

- Generalization error of a classifier $h_w \in \mathcal{H}_\psi$:

$$R_P(h_w) = \int_{X \times Y} \Delta_x(y, h_w(x)) \, dP(x, y)$$

where $\Delta_x(y, y') = \frac{1}{w_1} (f_w(x, y') - f_w(x, y))$

Theorem: If h_w minimizes generalization error then t_w minimizes expected ex-post regret for truthful bidding.

- Amount a random agent can gain by lying when all others tell the truth, for valuations drawn from $P(X)$

- Different from (approximate) ex-ante and ex-interim equilibrium, rather provides an upper bound on the expected ex-interim gain
Support Vector Machines?

- Learn a discriminant function that maximizes the margin
- Binary setting: minimize generalization error in the limit
- Version with structured/multi-class output due to Joachims et al.
- Training by solving a quadratic optimization problem with linear constraints, can be done efficiently under certain conditions
- Training requires computation of inner products in the (high- or infinite-dimensional) feature space \mathbb{R}^M
- Kernel trick: choose ψ carefully to ensure they can be computed efficiently from vectors in the original space
- Linear classification in \mathbb{R}^M without any explicit calculations in \mathbb{R}^M
Summary

- Design of payment rules using margin-based classifier, given oracle access to valuation distribution and allocation rule.
- Exact classifier yields strategyproof payment rule, minimization of error implies minimization of expected ex-post regret.
- Experiments for 5 items, 2 to 6 agents, 200 training examples.

\[
\psi(x_{-1}, y) = \phi([x_2 \setminus y, \ldots, x_n \setminus y])
\]

- \(\phi\) corresponding to RBF kernel \(K(z, z') = \exp(-||z - z'||/2\sigma^2)\)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Accuracy</th>
<th>Average Regret</th>
<th>IR Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single item</td>
<td>96%</td>
<td>0.2%</td>
<td>2%</td>
</tr>
<tr>
<td>Single-minded</td>
<td>90%</td>
<td>1%</td>
<td>6%</td>
</tr>
<tr>
<td>Multi-minded, complements</td>
<td>94%</td>
<td>0.1%</td>
<td>3%</td>
</tr>
<tr>
<td>Multi-minded, substitutes</td>
<td>75%</td>
<td>2%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Open Problems

- Possibly $-\mathbf{w}_1^T \psi(x_1, y) \geq x_1[y]$, failure of individual rationality
 - tradeoff between individual rationality and strategyproofness
 - both at the same time (only?) by deviation from g, e.g., by discarding y and allocating \emptyset

- Training problem has $\Omega(|Y(x_1)|)$ constraints, exponential in m in general
 - only polynomially many constraints matter, a separation oracle would suffice
 - when valuations can be represented succinctly, payment monotonicity would also suffice
 - more highly structured payment rules for restricted valuations

- More clever feature maps, e.g., to allow for generalization across different numbers of agents
Thank you!