Sum of Us
 Strategyproof Selection from the Selectors

Noga Alon Felix Fischer
Ariel Procaccia Moshe Tennenholtz

Dagstuhl Seminar on
Computational Foundations of Social Choice

The Problem

- Approval voting
- each voter approves of set of candidates (of any size)
- choose candidate (or committee of desired size) with largest number of votes
- Strategyproof (assuming dichotomous preferences)

The Problem

- Approval voting
- each voter approves of set of candidates (of any size)
- choose candidate (or committee of desired size) with largest number of votes
- Strategyproof (assuming dichotomous preferences)
- No longer the case when sets of candidates and voters coincide - scientific organizations (GTS, AMS, IEEE, IFAAMAS)
- web graph, (directed) social networks, reputation systems

Outline

The Model

Deterministic Mechanisms

Randomized Mechanisms

Group-Strategyproofness

Sum of Us

- Set $N=[n]$ of agents
- Directed graph $G=(N, E) \in \mathcal{G}$, no self-loops
- Goal: select $S \in \mathcal{S}_{k}=\{T \subseteq N:|T|=k\}$ to maximize

$$
\sum_{i \in S} \operatorname{deg}(i)=\sum_{i \in S}|\{j \in N:(j, i) \in E\}|
$$

- Mechanism $M: \mathcal{G} \rightarrow \Delta\left(\mathcal{S}_{k}\right)$
- Strategyproofness: probability of selecting i independent of edges (i, j) for $j \in N$

Sum of Us

- Set $N=[n]$ of agents
- Directed graph $G=(N, E) \in \mathcal{G}$, no self-loops
- Goal: select $S \in \mathcal{S}_{k}=\{T \subseteq N:|T|=k\}$ to maximize

$$
\sum_{i \in S} \operatorname{deg}(i)=\sum_{i \in S}|\{j \in N:(j, i) \in E\}|
$$

- Mechanism $M: \mathcal{G} \rightarrow \Delta\left(\mathcal{S}_{k}\right)$
- Strategyproofness: probability of selecting i independent of edges (i, j) for $j \in N$

Sum of Us

- Set $N=[n]$ of agents
- Directed graph $G=(N, E) \in \mathcal{G}$, no self-loops
- Goal: select $S \in \mathcal{S}_{k}=\{T \subseteq N:|T|=k\}$ to maximize

$$
\sum_{i \in S} \operatorname{deg}(i)=\sum_{i \in S}|\{j \in N:(j, i) \in E\}|
$$

- Mechanism $M: \mathcal{G} \rightarrow \Delta\left(\mathcal{S}_{k}\right)$
- Strategyproofness: probability of selecting i independent of edges (i, j) for $j \in N$
- α-efficiency: for every graph,

$$
\frac{\max _{S \in \mathcal{S}_{k}} \sum_{i \in S} \operatorname{deg}(i)}{\mathbb{E}_{S \sim M}\left[\sum_{i \in S} \operatorname{deg}(i)\right]} \leq \alpha
$$

Bad News

Theorem: Let $n \geq 2, k \leq n-1$. Then there is no strategyproof and α-efficient deterministic mechanism for any finite α.
Proof: ...

Bad News

Theorem: Let $n \geq 2, k \leq n-1$. Then there is no strategyproof and α-efficient deterministic mechanism for any finite α.
Proof: ...

Cannot make sure only agent with any votes is selected (particularly surprising for $k=1, k=n-1$)

Proof

- Assume for contradiction M was such a mechanism
- Since $k<n$, assume w.l.o.g. $n \notin M((N, \emptyset))$

Proof

- Assume for contradiction M was such a mechanism
- Since $k<n$, assume w.l.o.g. $n \notin M((N, \emptyset))$
- Restrict domain to stars with n at the center

(5) (6)

Proof

- Assume for contradiction M was such a mechanism
- Since $k<n$, assume w.l.o.g. $n \notin M((N, \emptyset))$
- Restrict domain to stars with n at the center

(5) (6)
- Isomorphic to $\{0,1\}^{n-1}$, so we now look at mechanisms $M:\{0,1\}^{n-1} \rightarrow S_{k}$

Proof

(1) $n \notin M(0)$
(2) $n \in M(x)$ for all $x \in\{0,1\}^{n-1} \backslash\{0\}$
(3) $i \in M(x)$ iff $i \in M\left(x+e_{i}\right)$ for all $x \in\{0,1\}^{n-1}$ and $i \in N \backslash\{n\}$
(by strategyproofness)

Proof

(1) $n \notin M(0)$
(2) $n \in M(x)$ for all $x \in\{0,1\}^{n-1} \backslash\{0\}$
(3) $i \in M(x)$ iff $i \in M\left(x+e_{i}\right)$ for all $x \in\{0,1\}^{n-1}$ and $i \in N \backslash\{n\}$
(by strategyproofness)

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{n-1}}|M(x)| & =\sum_{i \in N}\left|\left\{x \in\{0,1\}^{n-1}: i \in M(x)\right\}\right| \\
& =\underbrace{\left(2^{n-1}-1\right)}_{\text {by }(1) \text { and }(2)}+\sum_{i \in M\{\{n\}}\left|\left\{x \in\{0,1\}^{n-1}: i \in M(x)\right\}\right|
\end{aligned}
$$

Proof

(1) $n \notin M(0)$
(2) $n \in M(x)$ for all $x \in\{0,1\}^{n-1} \backslash\{0\}$
(3) $i \in M(x)$ iff $i \in M\left(x+e_{i}\right)$ for all $x \in\{0,1\}^{n-1}$ and $i \in N \backslash\{n\}$
(by strategyproofness)

Random Partitions

Random m-partition (m-RP)

1. assign each agent i.i.d. to one of m sets
2. from each subset, select $\sim k / m$ agents with largest indegrees based on edges from other subsets

Random Partitions

Random m-partition (m-RP)

1. assign each agent i.i.d. to one of m sets
2. from each subset, select $\sim k / m$ agents with largest indegrees based on edges from other subsets

Random Partitions

Random m-partition (m-RP)

1. assign each agent i.i.d. to one of m sets
2. from each subset, select $\sim k / m$ agents with largest indegrees based on edges from other subsets

Random Partitions

Random m-partition (m-RP)

1. assign each agent i.i.d. to one of m sets
2. from each subset, select $\sim k / m$ agents with largest indegrees based on edges from other subsets

Random Partitions

Random m-partition (m-RP)

1. assign each agent i.i.d. to one of m sets
2. from each subset, select $\sim k / m$ agents with largest indegrees based on edges from other subsets

Bounds for Randomized Mechanisms

Theorem: m-RP is (universally) strategyproof for all n, k, m and

- 4-efficient (even) for $m=2$,
- $1+O\left(1 / k^{\frac{1}{3}}\right)$-efficient for $m \sim k^{\frac{1}{3}}$.

Theorem: Let $n \geq 2, k \leq n-1$. Then there is no strategyproof and α-efficient mechanism for $\alpha<1+\Omega\left(1 / k^{2}\right)$.

Bounds for Group-Strategyproof Mechanisms

- Group-strategyproofness: among any coalition of manipulators, some member does not gain
- Selecting a random k-subset is group strategyproof and n / k-efficient

Bounds for Group-Strategyproof Mechanisms

- Group-strategyproofness: among any coalition of manipulators, some member does not gain
- Selecting a random k-subset is group strategyproof and n / k-efficient

Theorem: There is no mechanism that is group-strategyproof and α-efficient for $\alpha<(n-1) / k$.

Homework

- Gap for randomized mechanisms
$k=1$: lower bound 2 , upper bound 4

Homework

- Gap for randomized mechanisms
$k=1$: lower bound 2 , upper bound 4
- A mechanism selecting one or two agents:

1. Fix any ordering of the agents
2. Pick agent with "first" incoming edge from left to right, and agent with "first" incoming edge from right to left

Thank you!

