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The Problem

I Approval voting
I each voter approves of set of candidates (of any size)
I choose candidate (or committee of desired size) with largest

number of votes
I Strategyproof (assuming dichotomous preferences)

I No longer the case when sets of candidates and voters coincide
I scientific organizations (GTS, AMS, IEEE, IFAAMAS)
I web graph, (directed) social networks, reputation systems
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The Model Deterministic Randomized Group-Strategyproofness

Sum of Us

I Set N = [n] of agents
I Directed graph G = (N,E) ∈ G, no self-loops
I Goal: select S ∈ Sk = {T ⊆ N : |T | = k } to maximize∑

i∈S deg(i) =
∑

i∈S |{j ∈ N : (j, i) ∈ E}|
I Mechanism M : G → ∆(Sk )
I Strategyproofness: probability of selecting i independent of

edges (i, j) for j ∈ N
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I Mechanism M : G → ∆(Sk )
I Strategyproofness: probability of selecting i independent of

edges (i, j) for j ∈ N

I α-efficiency: for every graph,

maxS∈Sk

∑
i∈S deg(i)

ES∼M [
∑

i∈S deg(i)]
≤ α
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The Model Deterministic Randomized Group-Strategyproofness

Bad News

Theorem: Let n ≥ 2, k ≤ n − 1. Then there is no strategyproof
and α-efficient deterministic mechanism for any finite α.

Proof: . . .

Cannot make sure only agent with any votes is selected
(particularly surprising for k = 1, k = n − 1)

Alon, Fischer, Procaccia, Tennenholtz Sum of Us 5



The Model Deterministic Randomized Group-Strategyproofness

Bad News

Theorem: Let n ≥ 2, k ≤ n − 1. Then there is no strategyproof
and α-efficient deterministic mechanism for any finite α.

Proof: . . .

Cannot make sure only agent with any votes is selected
(particularly surprising for k = 1, k = n − 1)

Alon, Fischer, Procaccia, Tennenholtz Sum of Us 5



The Model Deterministic Randomized Group-Strategyproofness

Proof

I Assume for contradiction M was such a mechanism
I Since k < n, assume w.l.o.g. n < M((N, ∅))

I Restrict domain to stars with n at the center

7 1

23

4

5 6

I Isomorphic to {0, 1}n−1, so we now look at mechanisms
M : {0, 1}n−1 → Sk

Alon, Fischer, Procaccia, Tennenholtz Sum of Us 6



The Model Deterministic Randomized Group-Strategyproofness

Proof

I Assume for contradiction M was such a mechanism
I Since k < n, assume w.l.o.g. n < M((N, ∅))

I Restrict domain to stars with n at the center

7 1

23

4

5 6

I Isomorphic to {0, 1}n−1, so we now look at mechanisms
M : {0, 1}n−1 → Sk

Alon, Fischer, Procaccia, Tennenholtz Sum of Us 6



The Model Deterministic Randomized Group-Strategyproofness

Proof

I Assume for contradiction M was such a mechanism
I Since k < n, assume w.l.o.g. n < M((N, ∅))

I Restrict domain to stars with n at the center

7 1

23

4

5 6

I Isomorphic to {0, 1}n−1, so we now look at mechanisms
M : {0, 1}n−1 → Sk

Alon, Fischer, Procaccia, Tennenholtz Sum of Us 6



The Model Deterministic Randomized Group-Strategyproofness

Proof

(1) n < M(0) (by assumption)
(2) n ∈ M(x) for all x ∈ {0, 1}n−1 \ {0} (by α-efficiency for finite α)
(3) i ∈ M(x) iff i ∈ M(x + ei) for all x ∈ {0, 1}n−1 and i ∈ N \ {n}

(by strategyproofness)

2n−1k (even)︷            ︸︸            ︷∑
x∈{0,1}n−1

|M(x)| =
∑
i∈N

|{x ∈ {0, 1}n−1 : i ∈ M(x)}|

= (2n−1 − 1)︸      ︷︷      ︸
odd

+
∑

i∈N\{n} |{x ∈ {0, 1}n−1 : i ∈ M(x)}|︸                                       ︷︷                                       ︸
even by (3)
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The Model Deterministic Randomized Group-Strategyproofness

Random Partitions

Random m-partition (m-RP)

1. assign each agent i.i.d. to one of m sets

2. from each subset, select ∼k/m agents with largest indegrees
based on edges from other subsets

23

4

6

1

5
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The Model Deterministic Randomized Group-Strategyproofness

Bounds for Randomized Mechanisms

Theorem: m-RP is (universally) strategyproof for all n, k ,m and
I 4-efficient (even) for m = 2,
I 1 + O(1/k

1
3 )-efficient for m ∼ k

1
3 .

Theorem: Let n ≥ 2, k ≤ n − 1. Then there is no strategyproof
and α-efficient mechanism for α < 1 + Ω(1/k 2).
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The Model Deterministic Randomized Group-Strategyproofness

Bounds for Group-Strategyproof Mechanisms

I Group-strategyproofness: among any coalition of manipulators,
some member does not gain

I Selecting a random k -subset is group strategyproof and
n/k -efficient

Theorem: There is no mechanism that is group-strategyproof
and α-efficient for α < (n − 1)/k .
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The Model Deterministic Randomized Group-Strategyproofness

Homework

I Gap for randomized mechanisms

k = 1: lower bound 2, upper bound 4

I A mechanism selecting one or two agents:
1. Fix any ordering of the agents
2. Pick agent with “first” incoming edge from left to right, and

agent with “first” incoming edge from right to left
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The Model Deterministic Randomized Group-Strategyproofness

Thank you!
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