On the Hardness and Existence of Quasi-Strict Equilibria

Felix Brandt Felix Fischer

Institut für Informatik Ludwig-Maximilians-Universität München

1st International Symposium on Algorithmic Game Theory

Motivation

- Nash equilibrium: strategy profile that does not allow beneficial unilateral deviation
- Guaranteed to exist in finite games, but usually not unique
- Equilibrium refinements that single out particularly reasonable equilibria (see, e.g., van Damme 1983)
- Quasi-strict equilibrium (Harsanyi, 1973): every best response played with positive probability
- Isolated q.s.e. are essential, strongly stable, regular, proper, and strictly perfect
- Satisfy Cubitt & Sugden (1994) axioms, existence of q.s.e. justifies assumption of common knowledge of rationality

Outline

Preliminaries

A Characterization in Matrix Games

Existence in Symmetric Games with Two Actions

NP-Hardness in Multi-Player Games

Quasi-Strict Equilibrium

- Normal-form game $\Gamma = (N, (A_i)_{i \in N}, (p_i)_{i \in N})$
 - N a set of players
 - A_i a nonempty set of actions for player i
 - ► $p_i : (\bigotimes_{j \in N} A_j) \to \mathbb{R}$ a payoff function for player *i*
- Nash equilibrium: strategy profile s ∈ S = ×_{j∈N} Δ(A_j) such that for all i ∈ N, a ∈ A_i,

$$p_i(s) \ge p(s_{-i}, a)$$

• Quasi-strict equilibrium: Nash equilibrium $s \in S$ such that for all $i \in N$ and $a, b \in A_i$ with $s_i(a) > 0$ and $s_i(b) = 0$,

$$p_i(s_{-i},a) > p_i(s_{-i},b)$$

Some Facts about Quasi-Strict Equilibria

- Guaranteed to exist in bimatrix games (Norde, 1999) and generic *n*-player games (Harsanyi, 1973)
- But not in three-player games, we will see an example later (others by van Damme, 1983; Kojima et al., 1984; Cubitt & Sugden, 1994; Brandt et al., 2007)
- PPAD-hard in bimatrix games (trivial)
- Membership in PPAD not obvious (Brouwer fixed point of a mapping that is complicated to construct)
- ► We will see it is likely harder in three-player games

A Characterization in Matrix Games

- Theorem: In matrix games, q.s.e. have a unique support, namely the set of all actions played in *some* Nash equilibrium
- LP characterization
 - Start from linear program for ordinary Nash equilibria
 - Primal and dual are feasible and have the same unique solution v (the "value" of the game)
 - Construct a feasibility program with the constraints of primal and dual, and additional constraints for *i* ∈ {0, 1} and *a* ∈ *A_i*:

$$s_i(a) + v > \sum_{b \in \mathcal{A}_{1-i}} s_{1-i}(b) \ p(a,b)$$

No additional restriction if s₁(a) > 0, but action a with s₁(a) = 0 yields payoff strictly less than v

Brandt, Fischer

Anonymous and Symmetric Games

- Anonymous game: payoff depends on own action and number of other players playing each of the different actions (but not their identities)
- Symmetric game: anonymous plus identical payoff functions for all players
- Observation: for symmetric matrix games the LP on the previous slide yields a symmetric equilibrium
- An anonymous game without quasi-strict equilibria:

- Theorem: Every symmetric game Γ with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
 - Denote by *p_{ma}* the payoff from playing *a* ∈ {0, 1} when *m* other players play action 1

p_{m0}	 $p_{\ell 0}$	 <i>p</i> _{n-1,0}	
<i>p</i> _{m1}	 $p_{\ell 1}$	 p _{n-1,1}	

- Theorem: Every symmetric game Γ with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
 - Denote by *p_{ma}* the payoff from playing *a* ∈ {0, 1} when *m* other players play action 1

<i>p</i> _{m0}	• • •	$p_{\ell 0}$	• • •	<i>p</i> _{n-1,0}
				VI
<i>p</i> _{m1}	•••	$p_{\ell 1}$	•••	<i>p</i> _{n-1,1}

- Theorem: Every symmetric game Γ with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
 - Denote by *p_{ma}* the payoff from playing *a* ∈ {0, 1} when *m* other players play action 1

p _{m0}		$p_{\ell 0}$	• • •	p _{n-1,0}
		#		VI
p _{m1}	• • •	$p_{\ell 1}$	•••	<i>p</i> _{n-1,1}

- Theorem: Every symmetric game Γ with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
 - Denote by *p_{ma}* the payoff from playing *a* ∈ {0, 1} when *m* other players play action 1

p _{m0}		$p_{\ell 0}$	• • •	p _{n-1,0}
Ш		#		VI
p _{m1}	• • •	$p_{\ell 1}$	•••	<i>p</i> _{n-1,1}

- Theorem: Every symmetric game Γ with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
 - Denote by *p_{ma}* the payoff from playing *a* ∈ {0, 1} when *m* other players play action 1

<i>p</i> _{m0}	 $p_{\ell 0}$	•••	<i>p</i> _{n-1,0}
Ш	*		VI
p_{m1}	 $p_{\ell 1}$	•••	p _{n-1,1}

Payoffs have the form

• • •	<i>p</i> _{m-1,0}	p _{m0}		<i>p</i> _{m'0}	<i>p</i> _{m'+1,0}	
	\wedge	Ш	•••	Ш	V	
• • •	p _{m-1,1}	p_{m1}		p _{m' 1}	<i>p</i> _{m'+1,1}	

► Q.s.e. where n - m' - 1 players play 0, *m* players play 1, and m' - m + 1 players randomize

Brandt, Fischer

NP-Hardness in Multi-Player Games

- Theorem: Deciding whether a three-player game has a quasi-strict equilibrium is NP-complete
- Proof sketch:
 - Reduction from CLIQUE, inspired by McLennan & Tourky (2005)
 - Actions of players 1 and 2 correspond to vertices of a graph
 - Player 1 gets more payoff for vertices connected by an edge
 - Player 2 plays the same actions as player 1 in every equilibrium (imitation game)
 - Player 3 has two actions, with payoff the same as player 1 or depending on the desired clique size, respectively

NP-Hardness in Multi-Player Games

- Theorem: Deciding whether a three-player game has a quasi-strict equilibrium is NP-complete
- Proof sketch:

	$b_1 \cdots b_{ V }$	<i>b</i> ₀		b_1	•••	$b_{ V }$	b_0
a ₁		(0,0,0)	a ₁	(0,0,K)		(0,0,K)	(0,0,0)
÷	$(m_{ij}, e_{ij}, m_{ij})_{i,j \in V}$:	÷	:	۰.	:	÷
$a_{ V }$		(0,0,0)	a _{IVI}	(0,0,K)		(0,0,K)	(0,0,0)
<i>a</i> 0	(0,0,0) $(0,0,0)$	(0,1,0)	a ₀	(1,0,0)		(1,0,0)	(0,0,0)
C1					c	<i>`</i> 2	

Conclusion

- Quasi-strict equilibrium: Nash equilibrium where every best response is played with positive probability
- Main results:
 - Every symmetric game with two actions has a quasi-strict equilibrium
 - Deciding existence in three-player games is NP-complete (so the search problem is NP-hard under Turing reductions)
- Open Problems:
 - Complexity of the search problem in bimatrix games
 - Existence in larger classes of multi-player games (*e.g.*, symmetric games with more than two actions)

Thank you for your attention!

Brandt, Fischer

On the Hardness and Existence of Quasi-Strict Equilibria