On the Hardness and Existence of Quasi-Strict Equilibria

Felix Brandt Felix Fischer

Institut für Informatik
Ludwig-Maximilians-Universität München

1st International Symposium on Algorithmic Game Theory

Motivation

- Nash equilibrium: strategy profile that does not allow beneficial unilateral deviation
- Guaranteed to exist in finite games, but usually not unique
- Equilibrium refinements that single out particularly reasonable equilibria (see, e.g., van Damme 1983)
- Quasi-strict equilibrium (Harsanyi, 1973): every best response played with positive probability
- Isolated q.s.e. are essential, strongly stable, regular, proper, and strictly perfect
- Satisfy Cubitt \& Sugden (1994) axioms, existence of q.s.e. justifies assumption of common knowledge of rationality

Outline

Preliminaries

A Characterization in Matrix Games

Existence in Symmetric Games with Two Actions

NP-Hardness in Multi-Player Games

Quasi-Strict Equilibrium

- Normal-form game $\Gamma=\left(N,\left(A_{i}\right)_{i \in N},\left(p_{i}\right)_{i \in N}\right)$
- N a set of players
- A_{i} a nonempty set of actions for player i
- $p_{i}:\left(X_{j \in N} A_{j}\right) \rightarrow \mathbb{R}$ a payoff function for player i
- Nash equilibrium: strategy profile $s \in S=X_{j \in N} \Delta\left(A_{j}\right)$ such that for all $i \in N, a \in A_{i}$,

$$
p_{i}(s) \geq p\left(s_{-i}, a\right)
$$

- Quasi-strict equilibrium: Nash equilibrium $s \in S$ such that for all $i \in N$ and $a, b \in A_{i}$ with $s_{i}(a)>0$ and $s_{i}(b)=0$,

$$
p_{i}\left(s_{-i}, a\right)>p_{i}\left(s_{-i}, b\right)
$$

Some Facts about Quasi-Strict Equilibria

- Guaranteed to exist in bimatrix games (Norde, 1999) and generic n-player games (Harsanyi, 1973)
- But not in three-player games, we will see an example later (others by van Damme, 1983; Kojima et al., 1984; Cubitt \& Sugden, 1994; Brandt et al., 2007)
- PPAD-hard in bimatrix games (trivial)
- Membership in PPAD not obvious (Brouwer fixed point of a mapping that is complicated to construct)
- We will see it is likely harder in three-player games

A Characterization in Matrix Games

- Theorem: In matrix games, q.s.e. have a unique support, namely the set of all actions played in some Nash equilibrium
- LP characterization
- Start from linear program for ordinary Nash equilibria
- Primal and dual are feasible and have the same unique solution v (the "value" of the game)
- Construct a feasibility program with the constraints of primal and dual, and additional constraints for $i \in\{0,1\}$ and $a \in A_{i}$:

$$
s_{i}(a)+v>\sum_{b \in A_{1-i}} s_{1-i}(b) p(a, b)
$$

- No additional restriction if $s_{1}(a)>0$, but action a with $s_{1}(a)=0$ yields payoff strictly less than v

Anonymous and Symmetric Games

- Anonymous game: payoff depends on own action and number of other players playing each of the different actions (but not their identities)
- Symmetric game: anonymous plus identical payoff functions for all players
- Observation: for symmetric matrix games the LP on the previous slide yields a symmetric equilibrium
- An anonymous game without quasi-strict equilibria:

$(1,1,0)$	$(0,1,1)$			
$(0,1,1)$	$(1,0,1)$	\quad	$(0,1,1)$	$(1,0,1)$
:---	:---			
$(1,0,1)$	$(1,1,0)$			

Existence in Symmetric Games with Two Actions

- Theorem: Every symmetric game Γ with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
- Denote by $p_{m a}$ the payoff from playing $a \in\{0,1\}$ when m other players play action 1

$p_{m 0}$	\cdots	$p_{\ell 0}$	\cdots	$p_{n-1,0}$
$p_{m 1}$	\cdots	$p_{\ell 1}$	\cdots	$p_{n-1,1}$

Existence in Symmetric Games with Two Actions

- Theorem: Every symmetric game Г with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
- Denote by $p_{m a}$ the payoff from playing $a \in\{0,1\}$ when m other players play action 1

$p_{m 0}$	\cdots	$p_{\ell 0}$	\cdots	$p_{n-1,0}$
				$\vee \mathrm{VI}$
$p_{m 1}$	\cdots	$p_{\ell 1}$	\cdots	$p_{n-1,1}$

Existence in Symmetric Games with Two Actions

- Theorem: Every symmetric game Г with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
- Denote by $p_{m a}$ the payoff from playing $a \in\{0,1\}$ when m other players play action 1

$p_{m 0}$	\cdots	$p_{\ell 0}$	\cdots	$p_{n-1,0}$
		+		VI
$p_{m 1}$	\cdots	$p_{\ell 1}$	\cdots	$p_{n-1,1}$

Existence in Symmetric Games with Two Actions

- Theorem: Every symmetric game Г with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
- Denote by $p_{m a}$ the payoff from playing $a \in\{0,1\}$ when m other players play action 1

$p_{m 0}$	\cdots	$p_{\ell 0}$	\cdots	$p_{n-1,0}$
॥		+		VI
$p_{m 1}$	\cdots	$p_{\ell 1}$	\cdots	$p_{n-1,1}$

Existence in Symmetric Games with Two Actions

- Theorem: Every symmetric game Γ with two actions has a quasi-strict equilibrium (not necessarily a symmetric one)
- Proof sketch:
- Denote by $p_{m a}$ the payoff from playing $a \in\{0,1\}$ when m other players play action 1

$p_{m 0}$	\cdots	$p_{\ell 0}$	\cdots	$p_{n-1,0}$
॥		+		VI
$p_{m 1}$	\cdots	$p_{\ell 1}$	\cdots	$p_{n-1,1}$

- Payoffs have the form

\cdots	$p_{m-1,0}$	$p_{m 0}$		$p_{m^{\prime} 0}$	$p_{m^{\prime}+1,0}$	\cdots
	\wedge	॥	\cdots	॥	v	
\cdots	$p_{m-1,1}$	$p_{m 1}$		$p_{m^{\prime} 1}$	$p_{m^{\prime}+1,1}$	\cdots

- Q.s.e. where $n-m^{\prime}-1$ players play $0, m$ players play 1 , and $m^{\prime}-m+1$ players randomize

NP-Hardness in Multi-Player Games

- Theorem: Deciding whether a three-player game has a quasi-strict equilibrium is NP-complete
- Proof sketch:
- Reduction from CLIQUE, inspired by McLennan \& Tourky (2005)
- Actions of players 1 and 2 correspond to vertices of a graph
- Player 1 gets more payoff for vertices connected by an edge
- Player 2 plays the same actions as player 1 in every equilibrium (imitation game)
- Player 3 has two actions, with payoff the same as player 1 or depending on the desired clique size, respectively

NP-Hardness in Multi-Player Games

- Theorem: Deciding whether a three-player game has a quasi-strict equilibrium is NP-complete
- Proof sketch:

	b_{1}	$b_{\|V\|}$	b_{0}
a_{1}	$\left(m_{i j}, e_{i j}, m_{i j}\right)_{i, j \in V}$		$(0,0,0)$
:			
$a_{\|V\|}$			$(0,0,0)$
a_{0}	(0,0,0)	$(0,0,0)$	$(0,1,0)$

	b_{1}	\cdots	$b_{\|V\|}$	b_{0}
a_{1}	$(0,0, K)$	\cdots	$(0,0, K)$	$(0,0,0)$
\vdots	\vdots	\ddots	\vdots	\vdots
$a_{\|V\|}$	$(0,0, K)$	\cdots	$(0,0, K)$	$(0,0,0)$
a_{0}	$(1,0,0)$	\cdots	$(1,0,0)$	$(0,0,0)$
	c_{2}			

Conclusion

- Quasi-strict equilibrium: Nash equilibrium where every best response is played with positive probability
- Main results:
- Every symmetric game with two actions has a quasi-strict equilibrium
- Deciding existence in three-player games is NP-complete (so the search problem is NP-hard under Turing reductions)
- Open Problems:
- Complexity of the search problem in bimatrix games
- Existence in larger classes of multi-player games (e.g., symmetric games with more than two actions)

Thank you for your attention!

