The Price of Neutrality for the Ranked Pairs Method

Markus Brill Felix Fischer

Technische Universität München
University of Cambridge
26th AAAI Conference

Social Choice

- Finite set A of alternatives
- Finite set $N=\{1, \ldots, n\}$ of voters, each with preferences over A
- Preference profile $R \in \mathcal{L}(A)^{n}$
$\mathcal{L}(A)$: set of rankings of A (complete, transitive, asymmetric)
- $a R_{i} b$ means voter i strictly prefers a over b
- Social choice function (SCF) $f: \mathcal{L}(A)^{n} \rightarrow 2^{A}$
- Social preference function (SPF) $f: \mathcal{L}(A)^{n} \rightarrow 2^{\mathcal{L}(A)}$
- Central problem: $L \subseteq A \times A$ such that $a L b$ if and only if $\left|\left\{i \in N: a R_{i} b\right\}\right|>\left|\left\{i \in N: b R_{i} a\right\}\right|$ not necessarily transitive

Outline

Two Variants of the Ranked Pairs Method

Ranked Pairs Rankings, Winners, and Unique Winners

Possible and Necessary Ranked Pairs Winners

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

- Definition depends on tie-breaking, two variants in the literature

2	1	3	1	2
a	b	d	a	c
b	d	c	b	b
c	a	a	d	d
d	c	b	c	a

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity
majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

- Definition depends on tie-breaking, two variants in the literature
- $\operatorname{RPT}(R, \tau)$ for fixed tie-breaking rule $\tau \in \mathcal{L}(A \times A)$: resolute but not neutral
- f is resolute if $|f(R)|=1$ for every $R \in \mathcal{L}(A)^{n}$
- f is neutral if $f(\pi(R))=\pi(f(R))$ for every $R \in \mathcal{L}(A)^{n}$ and every permutation π of A

Ranked Pairs

- Insert elements into the social ranking by decreasing majority margin, while maintaining transitivity
majority margin of a over b in R :

$$
m_{R}(a, b)=\left|\left\{i \in N: a R_{i} b\right\}\right|-\left|\left\{i \in N: b R_{i} a\right\}\right|
$$

- Definition depends on tie-breaking, two variants in the literature
- $\operatorname{RPT}(R, \tau)$ for fixed tie-breaking rule $\tau \in \mathcal{L}(A \times A)$: resolute but not neutral
- f is resolute if $|f(R)|=1$ for every $R \in \mathcal{L}(A)^{n}$
- f is neutral if $f(\pi(R))=\pi(f(R))$ for every $R \in \mathcal{L}(A)^{n}$ and every permutation π of A
- $\operatorname{RP}(R)=\bigcup_{\tau \in \mathcal{L}(A \times A)} \operatorname{RPT}(R, \tau)$: neutral and irresolute, original definition of Tideman

Ranked Pairs Rankings

Finding a ranked pairs ranking is in P

- execute ranked pairs method for a specific tie-breaking rule

Deciding whether a given ranking is a ranked pairs ranking is in P

- Zavist, Tideman (1989): L is ranked pairs ranking iff L is stack
- say a attains b through L if there are distinct a_{1}, \ldots, a_{t} such that $a_{1}=a, a_{t}=b$, and for all $i=1, \ldots, t-1$,

$$
a_{i} L a_{i+1} \quad \text { and } \quad m_{R}\left(a_{i}, a_{i+1}\right) \geq m_{R}(b, a)
$$

- L is a stack if $a L b$ implies that a attains b through L
- deciding whether a ranking is a stack is in P
- a attains b through L if there is a path from a to b in the directed graph $\left(A,\left\{(x, y): x L y, m_{R}(x, y) \geq m_{R}(b, a)\right\}\right)$

Ranked Pairs Winners

Finding a ranked pairs winner is in P

- execute ranked pairs method for a specific tie-breaking rule

Deciding whether a given alternative is a ranked pairs winner is NP-complete

- membership: ranked pairs ranking with alternative at the top is a certificate
- hardness: reduction from SAT

$$
\left(v_{1} \vee \bar{v}_{2}\right) \wedge\left(v_{1} \vee v_{2}\right) \wedge\left(\bar{v}_{1} \vee v_{2}\right)
$$

\longrightarrow majority margin 2
\longrightarrow majority margin 4

$\left(v_{1} \vee \bar{v}_{2}\right) \wedge\left(v_{1} \vee v_{2}\right) \wedge\left(\bar{v}_{1} \vee v_{2}\right)$
\longrightarrow majority margin 2
\longrightarrow majority margin 4

Unique Winners

Deciding whether an alternative is the unique ranked pairs winner is coNP-complete

- membership: ranked pairs ranking with some other alternative at the top is a certificate
- hardness: extend NP-hardness construction above

- d^{*} is unique ranked pairs winner iff formula is unsatisfiable
- if it is satisfiable, d^{*} can be inserted in second position of ranked pairs ranking with d at the top

Possible and Necessary Ranked Pairs Winners

- Consider partially specified preference profile R : for each i, R_{i} is transitive and asymmetric, but not necessarily complete
- Preference profile R^{\prime} is a completion of R if for all $i \in N$ and $a, b \in A$, a R b implies a $R^{\prime} b$
- Alternative a is a possible ranked pairs winner for R if it is a ranked pairs winner for some completion R^{\prime} of R
- Alternative a is a necessary ranked pairs winner for R if it is a ranked pairs winner for every completion R^{\prime} of R

New Proofs for Old and New Results

Deciding whether an alternative is a possible ranked pairs winner is NP-complete (Xia and Conitzer, 2011)

- completion and stack with alternative at the top is a certificate
- hardness: possible winner problem with complete preference profile is equivalent to winner problem

New Proofs for Old and New Results

Deciding whether an alternative is a possible ranked pairs winner is NP-complete (Xia and Conitzer, 2011)

- completion and stack with alternative at the top is a certificate
- hardness: possible winner problem with complete preference profile is equivalent to winner problem

Deciding whether an alternative is a possible unique ranked pairs winner is both NP-hard (Xia and Conitzer, 2011) and coNP-hard

- coNP-hardness: possible unique winner problem with complete preference profile is equivalent to unique winner problem

New Proofs for Old and New Results

Deciding whether an alternative is a possible ranked pairs winner is NP-complete (Xia and Conitzer, 2011)

- completion and stack with alternative at the top is a certificate
- hardness: possible winner problem with complete preference profile is equivalent to winner problem

Deciding whether an alternative is a possible unique ranked pairs winner is both NP-hard (Xia and Conitzer, 2011) and coNP-hard

- coNP-hardness: possible unique winner problem with complete preference profile is equivalent to unique winner problem

Necessary ranked pairs winner: coNP-hard and NP-hard Necessary unique ranked pairs winner: coNP-complete

Summary

- Finding some ranked pair winner is easy
- Deciding whether given alternative is ranked pairs winner is hard
- Results for possible and necessary winner problems (some of them known) as corollaries
- Tradeoff between neutrality and tractability: RPT fails neutrality, RP is intractable
- Similar tradeoff for single transferrable vote (Conitzer et al., 2009; Wichmann, 2004)
- Ranked pairs easier on average than other intractable SCFs, ties unlikely to occur for most reasonable distributions of preferences

Non-Anonymous Variants

- Resoluteness and neutrality at the cost of anonymity
f is anonymous if $f(\pi(R))=\pi(f(R))$ for every $R \in \mathcal{L}(A)^{n}$ and every permutation π of N
- Use preferences of specific voter, or chairperson, to break ties
- A priori: use preferences of chairperson to define $\tau \in \mathcal{L}(A \times A)$ efficiently computable
- A posteriori: choose $a \in \operatorname{RP}(R)$ most preferred by chairperson intractable
- Resoluteness, tractability, and appropriate generalizations of anonymity and neutrality by choosing chairperson at random

Thank you!

