On the Complexity of Finding Pure Nash Equilibria in Strategic Games

Felix Fischer ${ }^{1}$ Markus Holzer ${ }^{2}$ Stefan Katzenbeisser ${ }^{2}$

${ }^{1}$ Institut für Informatik, Universität München
${ }^{2}$ Institut für Informatik, Technische Universität München

16th December 2005

Strategic Games

- Game $\Gamma=\left(N,\left(C_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$
- N a set of players
- C_{i} a nonempty set of (pure) strategies for player i
- $u_{i}: C \rightarrow \mathbb{R}$ a payoff function for player i and (pure) strategy profiles $C=\times_{j \in N} C_{j}$
- Examples: prisoners' dilemma, matching pennies

	C	D
C	$-1,-1$	$-5,0$
D	$0,-5$	$-4,-4$

	H	T
H	1,0	0,1
T	0,1	1,0

Nash Equilibrium

- Mixed strategy profile $\sigma \in \times_{i \in N} \Delta\left(C_{i}\right)$, where $\Delta\left(C_{i}\right)$ is a probability distribution over C_{i}
- Strategy profile $\left(\sigma_{-i}, \tau_{i}\right)$ where the i th component is $\tau_{i} \in \Delta\left(C_{i}\right)$ and all other components are as in σ
- σ is a Nash equilibrium if the following holds for every player $i \in N$ and every $\tau_{i} \in \Delta\left(C_{i}\right)$:

$$
u_{i}(\sigma) \geq u_{i}\left(\sigma_{-i}, \tau_{i}\right)
$$

- Equivalently:

$$
\text { if } \sigma_{i}\left(c_{i}\right)>0 \text {, then } c_{i} \in \arg \max _{d_{i} \in C_{i}} u_{i}\left(\sigma_{-i},\left[d_{i}\right]\right)
$$

where $\left[d_{i}\right] \in \Delta\left(C_{i}\right)$ puts probability 1 on d_{i}

- General existence theorem (Nash 1951): Any finite game Γ has at least one equilibrium in $\times{ }_{i \in N} \Delta\left(C_{i}\right)$

Complexity of Finding Nash Equilibria

- Mixed strategies: PPAD complete for $|N| \geq 2$ (Chen and Deng, 2005)
- Pure Nash equilibria can be found by enumeration of pure strategy profiles
- Number of pure strategy profiles is polynomial in $\left|C_{i}\right|$, exponential in $|N|$
- Succinct representation required to show high complexity

Games in Graphical Normal Form

- Payoff of a player depends only on strategies played by a subset of the other players
- Game $\Gamma=\left(N,\left(C_{i}\right)_{i \in N},\left(\text { neigh }_{i}\right)_{i \in N},\left(u_{i}\right)_{i \in N}\right)$
- N a set of players
- C_{i} a nonempty set of (pure) strategies for i
- neigh ${ }_{i} \subseteq N \backslash i$ the neighbourhood of i
- $u_{i}: C_{i} \times\left(\times_{j \in \text { neigh }_{i}} C_{j}\right) \rightarrow \mathbb{R}$ a payoff function for i
- 「 succinctly representable if for all i, \mid neigh $_{i} \mid$ is bounded by a constant

Complexity Results about Pure Nash Equilibria

Theorem
Deciding whether a strategic game Γ has a pure strategy Nash equilibrium is NP-complete. Hardness holds even if Γ is in GNF, and $\left|C_{i}\right| \leq 2, \mid$ neigh $_{i}\left|\leq 2,\left|\left\{u_{i}(c) \mid c \in C\right\}\right| \leq 2\right.$ for all i.

Complexity Results about Pure Nash Equilibria

Theorem
Deciding whether a strategic game Γ has a pure strategy Nash equilibrium is $N P$-complete. Hardness holds even if Γ is in $G N F$, and $\left|C_{i}\right| \leq 2, \mid$ neigh $h_{i}\left|\leq 2,\left|\left\{u_{i}(c) \mid c \in C\right\}\right| \leq 2\right.$ for all i.

Theorem
Deciding whether a strategic game Γ in GNF with \mid neigh $_{i} \mid \leq 1$ for all i has a pure strategy Nash equilibrium is NL-complete. Hardness holds even if $\left|\left\{u_{i}(c) \mid c \in C\right\}\right| \leq 2$ for all i.

Complexity Results about Pure Nash Equilibria

 TheoremDeciding whether a strategic game Γ has a pure strategy Nash equilibrium is NP-complete. Hardness holds even if Γ is in $G N F$, and $\left|C_{i}\right| \leq 2, \mid$ neigh $_{i}\left|\leq 2,\left|\left\{u_{i}(c) \mid c \in C\right\}\right| \leq 2\right.$ for all i.

Theorem
Deciding whether a strategic game Γ in GNF with \mid neigh $_{i} \mid \leq 1$ for all i has a pure strategy Nash equilibrium is NL-complete. Hardness holds even if $\left|\left\{u_{i}(c) \mid c \in C\right\}\right| \leq 2$ for all i.

Theorem

Deciding whether a strategic game Γ in GNF with \mid neigh $_{i} \mid \leq 1$ and $\left|C_{i}\right| \leq k$ for all i and some constant k has a pure strategy Nash equilibrium is L-complete. Hardness holds even if $\left|\left\{u_{i}(c) \mid c \in C\right\}\right| \leq 2$ for all i.

Thank you for your attention!

