On the Complexity of Finding Pure Nash Equilibria in Strategic Games

Felix Fischer¹ Markus Holzer² Stefan Katzenbeisser²

¹Institut für Informatik, Universität München

²Institut für Informatik, Technische Universität München

16th December 2005

Strategic Games

- Game $\Gamma = (N, (C_i)_{i \in N}, (u_i)_{i \in N})$
 - N a set of players
 - C_i a nonempty set of (pure) strategies for player i
 - $u_i: C \to \mathbb{R}$ a payoff function for player *i* and (pure) strategy profiles $C = \times_{j \in \mathbb{N}} C_j$
- Examples: prisoners' dilemma, matching pennies

Nash Equilibrium

- Mixed strategy profile σ ∈ ×_{i∈N}Δ(C_i), where Δ(C_i) is a probability distribution over C_i
- Strategy profile (σ_{-i}, τ_i) where the *i*th component is τ_i ∈ Δ(C_i) and all other components are as in σ
- σ is a Nash equilibrium if the following holds for every player i ∈ N and every τ_i ∈ Δ(C_i):

$$u_i(\sigma) \geq u_i(\sigma_{-i}, \tau_i)$$

Equivalently:

if $\sigma_i(c_i) > 0$, then $c_i \in \arg \max_{d_i \in C_i} u_i(\sigma_{-i}, [d_i])$, where $[d_i] \in \Delta(C_i)$ puts probability 1 on d_i

General existence theorem (Nash 1951): Any finite game
Γ has at least one equilibrium in ×_{i∈N}Δ(C_i)

Complexity of Finding Nash Equilibria

- ► Mixed strategies: PPAD complete for |N| ≥ 2 (Chen and Deng, 2005)
- Pure Nash equilibria can be found by enumeration of pure strategy profiles
- ► Number of pure strategy profiles is polynomial in |C_i|, exponential in |N|
- Succinct representation required to show high complexity

Games in Graphical Normal Form

- Payoff of a player depends only on strategies played by a subset of the other players
- Game $\Gamma = (N, (C_i)_{i \in N}, (neigh_i)_{i \in N}, (u_i)_{i \in N})$
 - N a set of players
 - C_i a nonempty set of (pure) strategies for i
 - $neigh_i \subseteq N \setminus i$ the *neighbourhood* of *i*
 - $u_i: C_i \times (\times_{j \in neigh_i} C_j) \to \mathbb{R}$ a payoff function for i
- Γ succinctly representable if for all i, |neigh_i| is bounded by a constant

Complexity Results about Pure Nash Equilibria

Theorem

Deciding whether a strategic game Γ has a pure strategy Nash equilibrium is NP-complete. Hardness holds even if Γ is in GNF, and $|C_i| \leq 2$, $|neigh_i| \leq 2$, $|\{u_i(c)|c \in C\}| \leq 2$ for all i.

Complexity Results about Pure Nash Equilibria

Theorem

Deciding whether a strategic game Γ has a pure strategy Nash equilibrium is NP-complete. Hardness holds even if Γ is in GNF, and $|C_i| \leq 2$, $|neigh_i| \leq 2$, $|\{u_i(c)|c \in C\}| \leq 2$ for all i.

Theorem

Deciding whether a strategic game Γ in GNF with $|neigh_i| \leq 1$ for all *i* has a pure strategy Nash equilibrium is NL-complete. Hardness holds even if $|\{u_i(c)|c \in C\}| \leq 2$ for all *i*.

Complexity Results about Pure Nash Equilibria

Theorem

Deciding whether a strategic game Γ has a pure strategy Nash equilibrium is NP-complete. Hardness holds even if Γ is in GNF, and $|C_i| \leq 2$, $|neigh_i| \leq 2$, $|\{u_i(c)|c \in C\}| \leq 2$ for all i.

Theorem

Deciding whether a strategic game Γ in GNF with $|neigh_i| \leq 1$ for all *i* has a pure strategy Nash equilibrium is NL-complete. Hardness holds even if $|\{u_i(c)|c \in C\}| \leq 2$ for all *i*.

Theorem

Deciding whether a strategic game Γ in GNF with $|neigh_i| \leq 1$ and $|C_i| \leq k$ for all *i* and some constant *k* has a pure strategy Nash equilibrium is L-complete. Hardness holds even if $|\{u_i(c)|c \in C\}| \leq 2$ for all *i*.

Thank you for your attention!