A Game-Theoretic Analysis of Strictly Competitive Multiagent Scenarios

Felix Brandt¹ Felix Fischer¹ Paul Harrenstein¹ Yoav Shoham²

> ¹Computer Science Department University of Munich

²Computer Science Department Stanford University

20th International Joint Conference on Artificial Intelligence

Alice, Bob, and Charlie raise hands

- Alice, Bob, and Charlie simultaneously decide whether to raise their hand or not
- Number of players that raise their hand is ...
 - ... odd: Alice wins
 - ... even and positive: Bob wins
 - ... zero: Charlie wins
- What should Alice do?

Alice, Bob, and Charlie raise hands

- Alice, Bob, and Charlie simultaneously decide whether to raise their hand or not
- Number of players that raise their hand is ...
 - ... odd: Alice wins
 - ... even and positive: Bob wins
 - ... zero: Charlie wins
- What should Alice do?

Outline

Ranking Games

Nash Equilibria in Ranking Games

Comparative Ratios: Nash Equilibria, Maximin Strategies, and Correlated Equilibria

Conclusions

Ranking Games

- A class of strategic (*i.e.*, normal-form) games
- A model for strictly competitive multi-agent situations
 - Parlor games
 - Competitive economic scenarios
 - Social choice settings
 - ▶ ...
- Outcomes identified with rankings of the players
- Agents have preferences over ranks such that
 - higher ranks are weakly preferred
 - being first is strictly preferred over being last
 - agents are indifferent w.r.t. other agents' ranks

Ranking Games Nash Equilibria Comparative Ratios Conclusions

Ranking Games (More Formally)

- Definition: The *rank payoff* of player *i* is defined as a vector $r_i = (r_i^1, r_i^2, ..., r_i^n)$ such that
 - $r_{i}^{k} \geq r_{i}^{k+1}$ for all $1 \leq k \leq n-1$ and

$$r_i^1 > r_i^n$$

- For convenience, $r_i^1 = 1$ and $r_i^n = 0$
- Definition: A ranking game is a game where for any strategy profile s ∈ S there is a permutation (π₁, π₂,..., π_n) of the players such that the payoff p_i(s) = r_i^{π_i} for each player i ∈ N

Ranking Games Nash Equilibria Comparative Ratios Conclusions

Ranking Games (More Formally)

- Definition: The *rank payoff* of player *i* is defined as a vector $r_i = (r_i^1, r_i^2, ..., r_i^n)$ such that
 - $r_{i}^{k} \geq r_{i}^{k+1}$ for all $1 \leq k \leq n-1$ and

$$r_{i}^{1} > r_{i}^{n}$$

- For convenience, $r_i^1 = 1$ and $r_i^n = 0$
- Definition: A ranking game is a game where for any strategy profile s ∈ S there is a permutation (π₁, π₂,..., π_n) of the players such that the payoff p_i(s) = r_i^{π_i} for each player i ∈ N
- Binary ranking games: $r_i^k \in \{0, 1\}$ for all i, k
- Single-winner games: $r_i = (1, 0, ..., 0)$ for all i

- Nash equilibrium: strategies are mutual best responses to each other
- Often very weak in ranking games (pure ones in particular)

- Nash equilibrium: strategies are mutual best responses to each other
- Often very weak in ranking games (pure ones in particular)
- Quasi-strict Nash equilibrium (Harsanyi, 1973): every best response is played with positive probability

Do all ranking games possess quasi-strict equilibria?

Do all ranking games possess quasi-strict equilibria? No

Do all ranking games possess quasi-strict equilibria? No

- It seems as if all single-winner games possess a non-pure equilibrium. Proven for:
 - Two-player ranking games (using a result by Norde, 1999)
 - 2 × 2 × 2 single-winner games (nice combinatorial argument)
 - Single-winner games where at least two players have a positive security level

The Price of Cautiousness

Nash equilibrium, quasi-strict Nash equilibrium

Conclusions

The Price of Cautiousness

- Nash equilibrium, quasi-strict Nash equilibrium
- Security level (maximin): guaranteed minimum payoff

Conclusions

The Price of Cautiousness

- Nash equilibrium, quasi-strict Nash equilibrium
- Security level (maximin): guaranteed minimum payoff
- How much worse can a player be off when playing maximin instead of a Nash equilibrium?
- Price of cautiousness: Ratio between minimum payoff in a Nash equilibrium and (strictly positive) security level

The Price of Cautiousness in Ranking Games

Consider a game with at least 3 players, a player with k actions and strictly positive security level

- General ranking games: unbounded (involves taking limits)
- ▶ Binary ranking games: k (also w.r.t. quasi-strict equilibria)
 - Positive security level, hence for every opponent action profile there is some action that guarantees positive payoff, *i.e.*, payoff 1 in binary ranking games
 - Randomization over all k actions guarantees payoff 1/k

The Price of Cautiousness in Ranking Games

Consider a game with at least 3 players, a player with k actions and strictly positive security level

- General ranking games: unbounded (involves taking limits)
- ▶ Binary ranking games: k (also w.r.t. quasi-strict equilibria)
 - Positive security level, hence for every opponent action profile there is some action that guarantees positive payoff, *i.e.*, payoff 1 in binary ranking games
 - Randomization over all k actions guarantees payoff 1/k
 - Lower bound

The Price of Cautiousness in Ranking Games

Consider a game with at least 3 players, a player with k actions and strictly positive security level

- General ranking games: unbounded (involves taking limits)
- ▶ Binary ranking games: k (also w.r.t. quasi-strict equilibria)
 - Positive security level, hence for every opponent action profile there is some action that guarantees positive payoff, *i.e.*, payoff 1 in binary ranking games
 - Randomization over all k actions guarantees payoff 1/k
 - Lower bound

► Single-winner games, w.r.t. quasi-strict equilibria: k - 1

The Value of Correlation

 Correlated equilibrium: actions drawn according to joint distribution, no player can gain by deviating

The Value of Correlation

- Correlated equilibrium: actions drawn according to joint distribution, no player can gain by deviating
- Value of correlation (Ashlagi et al., 2005): By how much can correlation improve social welfare?
 - Mediation value: Ratio between maximum social welfare in correlated vs. Nash equilibrium
 - Enforcement value: Ratio of maximum social welfare in any outcome vs. correlated equilibrium

The Value of Correlation in Ranking Games

Consider a game with n players

- Symmetric rank payoffs: identical social welfare in every outcome, both mediation and enforcement value are 1
- Mediation value: n 1
 - Upper bound is trivial
 - Lower bound

► Enforcement value: n − 1

Conclusions

- Ranking games: a model for strict competitiveness in the multi-agent case
- Nash equilibrium solutions: often very weak
- Maximin
 - Guarantees a certain payoff against indifferent (even irrational) opponents
 - Limited price of cautiousness (if there are few actions)
- Correlated equilibrium
 - Substantial increase in social welfare possible in scenarios with many players and asymmetric preferences over ranks
- Computational aspect
 - Maximin strategies and correlated equilibria computable in polynomial time
 - Nash equilibria just as hard to compute as in general games (Brandt et al., 2006)

Thank you for your attention!

Brandt, Fischer, Harrenstein, Shoham

Strictly Competitive Multiagent Scenarios