A Game-Theoretic Analysis of Strictly Competitive Multiagent Scenarios

Felix Brandt ${ }^{1}$ Felix Fischer ${ }^{1}$ Paul Harrenstein ${ }^{1}$ Yoav Shoham ${ }^{2}$
${ }^{1}$ Computer Science Department University of Munich
${ }^{2}$ Computer Science Department
Stanford University

20th International Joint Conference on Artificial Intelligence

Alice, Bob, and Charlie raise hands

- Alice, Bob, and Charlie simultaneously decide whether to raise their hand or not
- Number of players that raise their hand is ...
... odd: Alice wins
...even and positive: Bob wins
...zero: Charlie wins
- What should Alice do?

Alice, Bob, and Charlie raise hands

- Alice, Bob, and Charlie simultaneously decide whether to raise their hand or not
- Number of players that raise their hand is ...
... odd: Alice wins
...even and positive: Bob wins
...zero: Charlie wins
- What should Alice do?

Outline

Ranking Games

Nash Equilibria in Ranking Games
Comparative Ratios: Nash Equilibria, Maximin Strategies, and Correlated Equilibria

Conclusions

Ranking Games

- A class of strategic (i.e., normal-form) games
- A model for strictly competitive multi-agent situations
- Parlor games
- Competitive economic scenarios
- Social choice settings
- ...
- Outcomes identified with rankings of the players
- Agents have preferences over ranks such that
- higher ranks are weakly preferred
- being first is strictly preferred over being last
- agents are indifferent w.r.t. other agents' ranks

Ranking Games

Ranking Games (More Formally)

- Definition: The rank payoff of player i is defined as a vector $r_{i}=\left(r_{i}^{1}, r_{i}^{2}, \ldots, r_{i}^{n}\right)$ such that
- $r_{i}^{k} \geq r_{i}^{k+1}$ for all $1 \leq k \leq n-1$ and
- $r_{i}^{1}>r_{i}^{n}$
- For convenience, $r_{i}^{1}=1$ and $r_{i}^{n}=0$
- Definition: A ranking game is a game where for any strategy profile $s \in S$ there is a permutation $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ of the players such that the payoff $p_{i}(s)=r_{i}^{\pi_{i}}$ for each player $i \in N$

Ranking Games (More Formally)

- Definition: The rank payoff of player i is defined as a vector $r_{i}=\left(r_{i}^{1}, r_{i}^{2}, \ldots, r_{i}^{n}\right)$ such that
- $r_{i}^{k} \geq r_{i}^{k+1}$ for all $1 \leq k \leq n-1$ and
- $r_{i}^{1}>r_{i}^{n}$
- For convenience, $r_{i}^{1}=1$ and $r_{i}^{n}=0$
- Definition: A ranking game is a game where for any strategy profile $s \in S$ there is a permutation $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ of the players such that the payoff $p_{i}(s)=r_{i}^{\pi_{i}}$ for each player $i \in N$
- Binary ranking games: $r_{i}^{k} \in\{0,1\}$ for all i, k
- Single-winner games: $r_{i}=(1,0, \ldots, 0)$ for all i

Ranking Games

Nash Equilibria

Nash Equilibria in Ranking Games

Nash Equilibria in Ranking Games

- Nash equilibrium: strategies are mutual best responses to each other
- Often very weak in ranking games (pure ones in particular)

Nash Equilibria in Ranking Games

- Nash equilibrium: strategies are mutual best responses to each other
- Often very weak in ranking games (pure ones in particular)
- Quasi-strict Nash equilibrium (Harsanyi, 1973): every best response is played with positive probability

Nash Equilibria in Ranking Games

- Do all ranking games possess quasi-strict equilibria?

Nash Equilibria in Ranking Games

- Do all ranking games possess quasi-strict equilibria? No

Nash Equilibria in Ranking Games

- Do all ranking games possess quasi-strict equilibria? No

- It seems as if all single-winner games possess a non-pure equilibrium. Proven for:
- Two-player ranking games (using a result by Norde, 1999)
- $2 \times 2 \times 2$ single-winner games (nice combinatorial argument)
- Single-winner games where at least two players have a positive security level

The Price of Cautiousness

- Nash equilibrium, quasi-strict Nash equilibrium

The Price of Cautiousness

- Nash equilibrium, quasi-strict Nash equilibrium
- Security level (maximin): guaranteed minimum payoff

The Price of Cautiousness

- Nash equilibrium, quasi-strict Nash equilibrium
- Security level (maximin): guaranteed minimum payoff
- How much worse can a player be off when playing maximin instead of a Nash equilibrium?
- Price of cautiousness: Ratio between minimum payoff in a Nash equilibrium and (strictly positive) security level

The Price of Cautiousness in Ranking Games

Consider a game with at least 3 players, a player with k actions and strictly positive security level

- General ranking games: unbounded (involves taking limits)
- Binary ranking games: k (also w.r.t. quasi-strict equilibria)
- Positive security level, hence for every opponent action profile there is some action that guarantees positive payoff, i.e., payoff 1 in binary ranking games
- Randomization over all k actions guarantees payoff $1 / k$

The Price of Cautiousness in Ranking Games

Consider a game with at least 3 players, a player with k actions and strictly positive security level

- General ranking games: unbounded (involves taking limits)
- Binary ranking games: k (also w.r.t. quasi-strict equilibria)
- Positive security level, hence for every opponent action profile there is some action that guarantees positive payoff, i.e., payoff 1 in binary ranking games
- Randomization over all k actions guarantees payoff $1 / k$
- Lower bound

$\frac{1}{2}$	2	1
	1	
	1	2

The Price of Cautiousness in Ranking Games

Consider a game with at least 3 players, a player with k actions and strictly positive security level

- General ranking games: unbounded (involves taking limits)
- Binary ranking games: k (also w.r.t. quasi-strict equilibria)
- Positive security level, hence for every opponent action profile there is some action that guarantees positive payoff, i.e., payoff 1 in binary ranking games
- Randomization over all k actions guarantees payoff $1 / k$
- Lower bound

$\frac{1}{2}$	2	1
$\frac{1}{2}$	1	2

- Single-winner games, w.r.t. quasi-strict equilibria: k - 1

The Value of Correlation

- Correlated equilibrium: actions drawn according to joint distribution, no player can gain by deviating

The Value of Correlation

- Correlated equilibrium: actions drawn according to joint distribution, no player can gain by deviating
- Value of correlation (Ashlagi et al., 2005): By how much can correlation improve social welfare?
- Mediation value: Ratio between maximum social welfare in correlated vs. Nash equilibrium
- Enforcement value: Ratio of maximum social welfare in any outcome vs. correlated equilibrium

The Value of Correlation in Ranking Games

Consider a game with n players

- Symmetric rank payoffs: identical social welfare in every outcome, both mediation and enforcement value are 1
- Mediation value: $n-1$
- Upper bound is trivial
- Lower bound

$:(1,1,0)$	$(1,0,0)$
$(0,1,0)$	$\cdots \cdots \cdots, 1, \ldots$

$(0,1,1):$	$(0,1,0)$
$(1,0,0)$	$\cdots \cdots, 1,0)$

$(1,0,0)$	$(0,0,1)!$
$(0,0,1)$	$(1,0,0)!$

- Enforcement value: $n-1$

Conclusions

- Ranking games: a model for strict competitiveness in the multi-agent case
- Nash equilibrium solutions: often very weak
- Maximin
- Guarantees a certain payoff against indifferent (even irrational) opponents
- Limited price of cautiousness (if there are few actions)
- Correlated equilibrium
- Substantial increase in social welfare possible in scenarios with many players and asymmetric preferences over ranks
- Computational aspect
- Maximin strategies and correlated equilibria computable in polynomial time
- Nash equilibria just as hard to compute as in general games (Brandt et al., 2006)

Thank you for your attention!

