Computational Aspects of Covering in Dominance Graphs

Felix Brandt Felix Fischer

Institut für Informatik
Ludwig-Maximilians-Universität München

22nd Conference on Artificial Intelligence

Outline

Preliminaries: Dominance Graphs and Choice Sets

Choice Sets Based on Covering

Computing The Choice Sets

Some Set-Theoretic Relationships

Dominance Graphs and Choice Sets

- Various problems in AI and MASs can be cast as finding "most desirable" alternatives according to a binary relation
- Valid arguments
- Socially preferred candidates
- Winners of a competition
- Optimal strategies in a symmetric two-player zero-sum game
- Feasible coalitions
- Can be viewed as a (directed) dominance graph
- Maximality not well-defined in the presence of cycles (termed Condorcet cycles in social choice)
- Various solution concepts (or choice sets) take over the role of maximality
- This talk: choice sets based on covering

Some Notation

- Finite set A of alternatives
- Asymmetric and irreflexive dominance relation $>\subseteq A \times A$
- $a>b$ means that a "is strictly better than" b or "beats" b in a pairwise comparison
- We do not assume completeness or transitivity of $>$ but allow for ties and cycles
- Tournament: a complete dominance relation
- Choice set: a function $f:(A,>) \rightarrow 2^{A}$

Some Notation

- Finite set A of alternatives
- Asymmetric and irreflexive dominance relation $>\subseteq A \times A$
- $a>b$ means that a "is strictly better than" b or "beats" b in a pairwise comparison
- We do not assume completeness or transitivity of $>$ but allow for ties and cycles
- Tournament: a complete dominance relation
- Choice set: a function $f:(A,>) \rightarrow 2^{A}$
- Alternative view: adjacency game $\Gamma(A,>)=(\{0,1\}, A, p)$ where

$$
p(a, b)= \begin{cases}(1,-1) & \text { if } a>b \\ (-1,1) & \text { if } b>a \\ (0,0) & \text { otherwise }\end{cases}
$$

Covering Relations

- Each covering relation: a subrelation of the original dominance relation $>$

Covering Relations

- Each covering relation: a subrelation of the original dominance relation $>$
- Upward covering: $x C_{u} y$ if $x>y$ and for all $z \in A, z>x$ implies $z>y$

Covering Relations

- Each covering relation: a subrelation of the original dominance relation $>$
- Upward covering: $x C_{u} y$ if $x>y$ and for all $z \in A, z>x$ implies $z>y$
- Downward covering: $x C_{d} y$ if $x>y$ and for all $z \in A, y>z$ implies $x>z$

Covering Relations

- Each covering relation: a subrelation of the original dominance relation $>$
- Upward covering: $x C_{u} y$ if $x>y$ and for all $z \in A, z>x$ implies $z>y$
- Downward covering: $x C_{d} y$ if $x>y$ and for all $z \in A, y>z$ implies $x>z$
- Bidirectional covering: $x C_{b} y$ if $x C_{u} y$ and $x C_{d} y$

Covering Relations

- Each covering relation: a subrelation of the original dominance relation $>$
- Upward covering: $x C_{u} y$ if $x>y$ and for all $z \in A, z>x$ implies $z>y$
- Downward covering: $x C_{d} y$ if $x>y$ and for all $z \in A, y>z$ implies $x>z$
- Bidirectional covering: $x C_{b} y$ if $x C_{u} y$ and $x C_{d} y$
- Tournaments: All three notions of covering coincide

Uncovered Sets

- Covering relations are transitive
- Uncovered set: maximal elements under the respective covering relation

Uncovered Sets

- Covering relations are transitive
- Uncovered set: maximal elements under the respective covering relation

- $U C_{u}(A)$

Uncovered Sets

- Covering relations are transitive
- Uncovered set: maximal elements under the respective covering relation

- $U C_{u}(A)=\{a, c, e\}$

Uncovered Sets

- Covering relations are transitive
- Uncovered set: maximal elements under the respective covering relation

- $U C_{u}(A)=\{a, c, e\}$
- $U C_{d}(A)$

Uncovered Sets

- Covering relations are transitive
- Uncovered set: maximal elements under the respective covering relation

- $U C_{u}(A)=\{a, c, e\}$
- $U C_{d}(A)=\{b, d, f\}$

Uncovered Sets

- Covering relations are transitive
- Uncovered set: maximal elements under the respective covering relation

- $U C_{u}(A)=\{a, c, e\}$
- $U C_{d}(A)=\{b, d, f\}$
- $U C_{b}(A)=\{a, b, c, d, e, f\}$

Uncovered Sets

- Covering relations are transitive
- Uncovered set: maximal elements under the respective covering relation

- $U C_{u}(A)=\{a, c, e\}$
- $U C_{d}(A)=\{b, d, f\}$
- $U C_{b}(A)=\{a, b, c, d, e, f\}$
- Computation very easy and parallelizable

Uncovered Sets

- Covering relations are transitive
- Uncovered set: maximal elements under the respective covering relation

- $U C_{u}(A)=\{a, c, e\}$
- $U C_{d}(A)=\{b, d, f\}$
- $U C_{b}(A)=\{a, b, c, d, e, f\}$

- Computation very easy and parallelizable
- Not idempotent, can be iterated to obtain smaller choice sets

Covering Sets

- Again consider a covering relation C
- $B \subseteq A$ is a covering set under C if
(i) $U C_{C}(B)=B$, and
(ii) for all $x \in A \backslash B, x \notin U C_{C}(B \cup\{x\})$
- Properties (i) and (ii) are called internal and external stability

Covering Sets

- Again consider a covering relation C
- $B \subseteq A$ is a covering set under C if
(i) $U C_{C}(B)=B$, and
(ii) for all $x \in A \backslash B, x \notin U C_{C}(B \cup\{x\})$
- Properties (i) and (ii) are called internal and external stability
- Minimal covering set (MC): a covering set that is minimal w.r.t. set inclusion
- There exists a unique bidirectional MC (Dutta, 1988; Dutta \& Laslier, 1999; Peris \& Subiza, 1999)
- Axiomatization: smallest Condorcet choice set satisfying SSP, γ^{*}, and CDP (Peris \& Subiza, 1999)
- Positive foundation (in tournaments): coincides with Shapley's weak saddle of the adjacency game (Duggan \& LeBreton, 1996)

Minimal Covering Sets

- Minimal upward and downward covering sets need not be unique

Minimal Covering Sets

- Minimal upward and downward covering sets need not be unique
- Downward covering set may not exist

Minimal Covering Sets

- Minimal upward and downward covering sets need not be unique
- Downward covering set may not exist
- Theorem: There always exists a minimal upward covering set
- Proof idea: show (by induction) that $U C_{u}^{k}(A)$ is externally stable for every k

Computing Minimal Covering Sets

- Theorem: MC can be computed in polynomial time.

Computing Minimal Covering Sets

- Theorem: MC can be computed in polynomial time.
- Proof sketch
- Assume (for now) that some $E S(B) \subseteq M C(B)$ can be found efficiently

Computing Minimal Covering Sets

- Theorem: MC can be computed in polynomial time.
- Proof sketch
- Assume (for now) that some $E S(B) \subseteq M C(B)$ can be found efficiently
- procedure $M C(A,>)$

$$
B \leftarrow E S(A)
$$

loop
$A^{\prime} \leftarrow\{a \in A \backslash B \mid a$ uncovered in $B \cup\{a\}\}$
if $A^{\prime}=\emptyset$ then return B end if
$B \leftarrow B \cup E S\left(A^{\prime}\right)$
end loop

Computing Minimal Covering Sets

- Theorem: MC can be computed in polynomial time.
- Proof sketch
- Assume (for now) that some $E S(B) \subseteq M C(B)$ can be found efficiently
- procedure $M C(A,>)$

$$
B \leftarrow E S(A)
$$

loop
$A^{\prime} \leftarrow\{a \in A \backslash B \mid a$ uncovered in $B \cup\{a\}\}$
if $A^{\prime}=\emptyset$ then return B end if
$B \leftarrow B \cup E S\left(A^{\prime}\right)$
end loop

- Show that $B \subseteq M C(A)$ at any time (by induction on $|B|$)
- For this, show that every element of $M C\left(A^{\prime}\right)$ has to be part of every superset of B that is covering for A
- The rest is a case analysis

The Missing Link

- Essential set $E S(A)$: set of alternatives in the support of some Nash equilibrium of $\Gamma(A,>)$
- $E S(A) \subseteq M C(A)$ (Dutta \& Laslier, 1999)

The Missing Link

- Essential set $E S(A)$: set of alternatives in the support of some Nash equilibrium of $\Gamma(A,>)$
- $E S(A) \subseteq M C(A)$ (Dutta \& Laslier, 1999)
- Theorem: $E S(A)$ can be computed in polynomial time.
- Proof sketch:
- Show that $E S(A)$ coincides with support of the unique quasi-strict equilibrium of $\Gamma(A,>)$
- Construct a linear program for finding a quasi-strict equilibrium in symmetric zero-sum games
- LP can be solved in polynomial time (Khachiyan, 1979)

The Missing Link

- Essential set $E S(A)$: set of alternatives in the support of some Nash equilibrium of $\Gamma(A,>)$
- $E S(A) \subseteq M C(A)$ (Dutta \& Laslier, 1999)
- Theorem: $E S(A)$ can be computed in polynomial time.
- Proof sketch:
procedure $E S(A,>)$
maximize ε
subject to $\sum_{j \in A} s_{j} \cdot m_{i j} \leq 0 \quad \forall i \in A$
$\sum_{j \in A} s_{j}=1$
$s_{j} \geq 0 \quad \forall j \in A$
$s_{i}-\sum_{j \in A} s_{j} \cdot m_{i j}-\varepsilon \geq 0 \quad \forall i \in A$
return $\left\{a \in A \mid s_{a}>0\right\}$

Unidirectional Covering

- Minimal upward or downward covering sets can be more discriminating than MC
- Theorem: Deciding whether
- an alternative is contained in some minimal upward covering set
- an alternative is contained in some minimal downward covering set
- there exists a downward covering set is NP-hard
- Proof idea: reductions from SAT
- We have some mild evidence that the first two problems are actually Θ_{2}^{P}-complete (like Kemeny, Dodgson, and Young)

Relationships

- For every $C, M C_{C}(A) \subseteq U C_{C}^{\infty}(A)$
- $U C_{u}(A)$ and $U C_{d}(A)$ can have an empty intersection
- $M C(A)$ is upward and downward covering
- There may be additional upward or downward covering sets not intersecting with MC

Relationships With Even More Choice Sets

- For every $C, M C_{C}(A) \subseteq U C_{C}^{\infty}(A)$
- $U C_{u}(A)$ and $U C_{d}(A)$ can have an empty intersection
- $M C(A)$ is upward and downward covering
- There may be additional upward or downward covering sets not intersecting with MC
- $V \subseteq A$ is a (von Neumann-Morgenstern) stable set if
(i) $a>b$ for no $a, b \in V$ and
(ii) for all $a \notin V$ there is some $b \in V$ with $b>a$.
- Theorem: Every stable set is a minimal upward covering set

Relationships With Even More Choice Sets

- For every $C, M C_{C}(A) \subseteq U C_{C}^{\infty}(A)$
- $U C_{u}(A)$ and $U C_{d}(A)$ can have an empty intersection
- $M C(A)$ is upward and downward covering
- There may be additional upward or downward covering sets not intersecting with MC
- $V \subseteq A$ is a (von Neumann-Morgenstern) stable set if
(i) $a>b$ for no $a, b \in V$ and
(ii) for all $a \notin V$ there is some $b \in V$ with $b>a$.
- Theorem: Every stable set is a minimal upward covering set
- $a \in A$ is in the Banks set of A if there exists $X \subseteq A$ such that $>$ is complete and transitive on X with maximal element a and there is no $b \in A$ such that $b>x$ for all $x \in X$
- Theorem: The Banks set intersects with every downward covering set

Conclusion

- Finding desirable elements according to a binary relation is an important problem in AI and MASs
- Choice sets take over the role of maximal elements if the relation is not transitive
- Choice sets based on covering relations: uncovered set, minimal covering set
- The minimal (bidirectional) covering set has nice properties and can be computed efficiently
- Minimal upward or downward covering sets may not be unique and deciding membership is NP-hard
- Upward and downward covering sets are related to stable sets and the Banks set, respectively

Thank you for your attention!

