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Preliminaries Covering Computing Choice Sets Some Relationships

Dominance Graphs and Choice Sets

I Various problems in AI and MASs can be cast as finding
“most desirable” alternatives according to a binary relation

I Valid arguments
I Socially preferred candidates
I Winners of a competition
I Optimal strategies in a symmetric two-player zero-sum game
I Feasible coalitions

I Can be viewed as a (directed) dominance graph
I Maximality not well-defined in the presence of cycles (termed

Condorcet cycles in social choice)
I Various solution concepts (or choice sets) take over the role of

maximality
I This talk: choice sets based on covering

Brandt, Fischer Computational Aspects of Covering in Dominance Graphs 3
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Some Notation

I Finite set A of alternatives
I Asymmetric and irreflexive dominance relation �⊆ A × A
I a � b means that a “is strictly better than” b or “beats” b in a

pairwise comparison
I We do not assume completeness or transitivity of � but allow

for ties and cycles
I Tournament: a complete dominance relation
I Choice set: a function f : (A ,�)→ 2A

I Alternative view: adjacency game Γ(A ,�) = ({0, 1},A , p)
where

p(a, b) =


(1,−1) if a � b

(−1, 1) if b � a

(0, 0) otherwise
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Preliminaries Covering Computing Choice Sets Some Relationships

Covering Relations

x

y

I Each covering relation: a subrelation
of the original dominance relation �

I Upward covering: xCuy if x � y and
for all z ∈ A , z � x implies z � y

I Downward covering: xCdy if x � y and
for all z ∈ A , y � z implies x � z

I Bidirectional covering: xCby if xCuy
and xCdy

I Tournaments: All three notions of covering coincide
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Uncovered Sets

I Covering relations are transitive
I Uncovered set: maximal elements under the respective

covering relation

f

a b c

d

e

I UCu(A)

= {a, c, e}

I UCd(A)

= {b , d, f }

I UCb(A) = {a, b , c, d, e, f }

a

b

c

I Computation very easy and parallelizable
I Not idempotent, can be iterated to obtain smaller choice sets
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Covering Sets

I Again consider a covering relation C
I B ⊆ A is a covering set under C if

(i) UCC(B) = B, and
(ii) for all x ∈ A \ B, x < UCC(B ∪ {x})

I Properties (i) and (ii) are called internal and external stability

I Minimal covering set (MC): a covering set that is minimal w.r.t.
set inclusion

I There exists a unique bidirectional MC (Dutta, 1988; Dutta &
Laslier, 1999; Peris & Subiza, 1999)

I Axiomatization: smallest Condorcet choice set satisfying SSP,
γ∗, and CDP (Peris & Subiza, 1999)

I Positive foundation (in tournaments): coincides with Shapley’s
weak saddle of the adjacency game (Duggan & LeBreton,
1996)
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Minimal Covering Sets

a

b

c

d

a

b c

d

ef
I Minimal upward and downward covering sets need not be

unique

I Downward covering set may not exist
I Theorem: There always exists a minimal upward covering set
I Proof idea: show (by induction) that UCk

u(A) is externally
stable for every k
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Computing Minimal Covering Sets

I Theorem: MC can be computed in polynomial time.

I Proof sketch
I Assume (for now) that some ES(B) ⊆ MC(B) can be found

efficiently

I procedure MC(A ,�)
B ← ES(A)
loop

A ′ ← { a ∈ A \ B | a uncovered in B ∪ {a} }
if A ′ = ∅ then return B end if
B ← B ∪ ES(A ′)

end loop
I Show that B ⊆ MC(A) at any time (by induction on |B |)
I For this, show that every element of MC(A ′) has to be part of

every superset of B that is covering for A
I The rest is a case analysis
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The Missing Link

I Essential set ES(A): set of alternatives in the support of
some Nash equilibrium of Γ(A ,�)

I ES(A) ⊆ MC(A) (Dutta & Laslier, 1999)

I Theorem: ES(A) can be computed in polynomial time.
I Proof sketch:
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I Theorem: ES(A) can be computed in polynomial time.
I Proof sketch:

I Show that ES(A) coincides with support of the unique
quasi-strict equilibrium of Γ(A ,�)

I Construct a linear program for finding a quasi-strict
equilibrium in symmetric zero-sum games

I LP can be solved in polynomial time (Khachiyan, 1979)
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procedure ES(A ,�)
maximize ε
subject to

∑
j∈A sj ·mij ≤ 0 ∀i ∈ A∑
j∈A sj = 1

sj ≥ 0 ∀j ∈ A

si −
∑

j∈A sj ·mij − ε ≥ 0 ∀i ∈ A
return { a ∈ A | sa > 0 }
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Unidirectional Covering

I Minimal upward or downward covering sets can be more
discriminating than MC

I Theorem: Deciding whether
I an alternative is contained in some minimal upward covering

set
I an alternative is contained in some minimal downward

covering set
I there exists a downward covering set

is NP-hard
I Proof idea: reductions from SAT
I We have some mild evidence that the first two problems are

actually ΘP
2 -complete (like Kemeny, Dodgson, and Young)
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Relationships

I For every C, MCC(A) ⊆ UC∞C (A)
I UCu(A) and UCd(A) can have an empty intersection
I MC(A) is upward and downward covering
I There may be additional upward or downward covering sets

not intersecting with MC

I V ⊆ A is a (von Neumann-Morgenstern) stable set if
(i) a � b for no a, b ∈ V and
(ii) for all a < V there is some b ∈ V with b � a.

I Theorem: Every stable set is a minimal upward covering set
I a ∈ A is in the Banks set of A if there exists X ⊆ A such

that � is complete and transitive on X with maximal element a
and there is no b ∈ A such that b � x for all x ∈ X

I Theorem: The Banks set intersects with every downward
covering set
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Relationships With Even More Choice Sets
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Conclusion

I Finding desirable elements according to a binary relation is an
important problem in AI and MASs

I Choice sets take over the role of maximal elements if the
relation is not transitive

I Choice sets based on covering relations: uncovered set,
minimal covering set

I The minimal (bidirectional) covering set has nice properties
and can be computed efficiently

I Minimal upward or downward covering sets may not be
unique and deciding membership is NP-hard

I Upward and downward covering sets are related to stable sets
and the Banks set, respectively
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Thank you for your attention!
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