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1 Introduction

Game theory is a mathematical framework for representitegations of rational
players trying to achieve possibly contradictory goalayBts’ strategies are said
to be inNash equilibriumif no player can do better by unilaterally changing her
strategy. Nash’s famous theorem [1] guarantees the erssteinat least one such
equilibrium when players are allowed to playixed strategies.e., probabilistic
combinations of actions. If strategies are restricted terdenistic choice of ac-
tions, calledpure strategiesthe existence of an equilibrium is no longer guaran-
teed (see, e.g., [2]). Equilibria in the latter case arerretkto as pure strategy Nash
equilibria, or pure Nash equilibria in short. Complexitgugs related to pure Nash
equilibria have recently been investigated in [3]. It waswh that even for a very
restricted class of games in graphical normal form, whecé etayer is allowed to
play at most 3 different actions and her payoff depends onoat 81other players,
determining whether a given game has a pure Nash equilibsudiP-complete.
Moreover, some tractable classes of strategic games havedentified.

In this paper, we strengthen the above mentioned NP-coengss result to ap-
ply to an even more restrictive setting. To be precise, wevshat 2 actions per
player, 2-bounded neighbourhood, and 2-valued payoffiogstrsuffice to prove
NP-completeness. It should be noted that this is the besilgegesult, because
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deciding the existence of a pure Nash equilibrium beconmasaltm the case of a
single action for each player and tractable for 1-boundeghte@urhood. In fact,
we show the latter problem to be NL-complete in general, aod solvable in de-
terministic polynomial time. Interestingly, it turns odtat the number of actions
in a game with 1-bounded neighbourhood is a sensitive pdeaniRestricting the
number of actions for each player to a constant makes thégmnaoéven easier than
NL unless L= NL. In this way, we obtain a nice alternative character@abf the
deterministic-nondeterministic problem for logspacermed Turing machines in
terms of the number of actions for strategic games with Iaded neighbourhood.

2 Preliminaries

We recall some preliminaries on strategic games and ref@] for a comprehen-
sive introduction.

Definition 1 (Strategic game) A game in strategic formis a 4-tuple ¥ =
(P, (Ap) pep, (Np) pep, (Up) pep), Where P is a set oplayersand for each player
p € P, Ay is a nonempty set ofictionsavailable to p, N C P\ {p} is a set of
neighboursof p, and  : (xqupU{p}Aq) — Q is a function mapping each combi-
nation of actions for p and her neighbours to a ratiopalyofffor p.

This definition of a strategic game differs from that comnyarded in game theory

in that it explicitly represents the neighbourhood of a plags the set of other
players that potentially have an influence on her payoff. Avgas said to have
k-bounded neighbourhodtithere is a constark such thaiNp| < k for eachp

P. For anyk, games withk-bounded neighbourhood form a subclass of strategic
games.

For a particular playep, her choice to play actioa € A, deterministically is also
referred to as gure strategy For a non-empty se®’ C P of players, amction
profile for P’ is a vector containing exactly one action for each playe?’inThe
different action profiles folP correspond to the possible outcomes of gaghe
Players’ payoff functionsip naturally extend to< ,cpAp, and we will denote these
extensions by, as well. Apure (strategy) Nash equilibriudor ¢ is an action
profile where no player can increase her own payoff by unddiiechanging her
action.

Definition 2 (Pure strategy Nash equilibrium) An action profile ac x pcpAp is
called apure strategy Nash equilibriuthand only if for each player g P and
each action g € Ay,

up(a) > up((a-p,ap)),
where(aLp,a’p) denotes the action profile where player p pla)’bsamd all other
players play the same action as in a.



If the number of players is small, deciding whether a gamelage Nash equilib-
rium can simply be done by enumerating all possible actiofilps and checking if
one of them satisfies the equilibrium condition. The problaomes interesting,
though, for games that admit a compact representation vwigemumber of players
is growing. Clearly, games witkkbounded neighbourhood belong to this class.

We further assume the reader to be familiar with the basicoofplexity theory
(see, e.g., [4]). In particular we consider the well knowaiolof complexity classes

L € NL € PC NP. Here L (NL, respectively) denotes the class of all laiggsaac-
cepted by deterministic (nondeterministic, respectivielgarithmic space bounded
Turing machines, and P (NP, respectively) refers to thesathzll languages ac-
cepted by deterministic (nondeterministic, respectivpblytime bounded Turing
machines. Moreover, #P is the class of functié() for which there is a polytime
nondeterministic Turing machird such thatf (x) equals the number of accepting
computations oM on x. The class #L is defined analogously for nondeterministic
logspace Turing machines.

All problems investigated in this paper take strategic gaaseinputs. We therefore
need an appropriate coding functioh mapping a strategic gan¥#to a word(¥)

over a fixed alphabet. We will not go into the details of them#&én of (-), but
assume that it satisfies standard properties. In partjdil@mpayoff functions are
explicitly represented by a single table or matrix havingeatry for every action
profile a, displaying a list of payoffaip(a) for each playemp € P. If the payoff
function for each playep is represented by a separate table or matrix containing
an entryup(a) for every action profilea € X geNpU{p} Aps then the game is said to
be ingraphical normal forn{5].

3 Hard and Easy Games

The following theorem states that deciding the existenca péire Nash equilib-
rium is hard even if each player has a 2-bounded neighbodrtibealued payoff
matrices and only 2 different actions. We improve upon aneesult by [3].

Theorem 3 Deciding whether a strategic gan¥ has a pure strategy Nash equi-
librium is NP-complete. Hardness holds evef iis in graphical normal form, has
2-bounded neighbourhood ardvalued payoff matrices, and where each player is
allowed to play at mos2 different actions.

PROOF. Membershipin NP is obvious. We can guess an action proéijeand
verify in polynomial time whethea is a pure Nash equilibrium — for the latter
task we have to check whethey((a_p, &,)) < up(a) for each playep € P and for
each actioraj, € Ay,



For hardnesswe argue as follows: Recall that circuit satisfiability,. j.deciding
whether for a given Boolean circu#t with ninputs and one output there exists an
assignment such th& evaluates tdrue, is NP-complete (see, e.g., [4]). W.l.o.g,
assume that’ contains at least one input and one (internal) gate, and\iGdt
gates only occur at the input layer; for an arbitrary circalt NOT gates can be
moved to the input layer in polynomial time by successiveliappon of de Mor-
gan’s law.

We define a gam# in graphical normal form for a Boolean circut, providing
a polynomial-time reduction of satisfiability &f to the problem of finding a pure
Nash equilibrium irng. As for the players o6, there is one for each circuit input,
one for each (positive or negative) literal, and one for egate of the circuit (of
typesAND andOR). We writeR, B, P, P, andPR, to denote the respective sets of
players. The output of the circuit corresponds to a pawicplayero € P, UR, . For
each input playep € R, letNp be the empty set. For each gate plagey P, UR,,
let Ny be the set of players corresponding to the inputs of the gatehenever a
gate is connected to one of thanputs or to aNOT-gate,Ng contains the player
corresponding to the appropriate positive or negativedit€&inally, for each literal
player? € P,UP, let Ny, contain the appropriate input playee P, and the output
playero. Let the set of possible actions equyal f} for every playerp € P, in
whicht and f can be interpreted as truth values. For an action prefilet the
payoff functions be defined as follows:

For each input playdre B, her payoff functiony; is such thatj(a) = 1 regard-

less of the selected action.

For each positive literal playére P, her payoff functioru, is such that

- W(a) =1, if (i) ¢ plays the same action as the input plaiyeiN, and the output
playero playst, or (ii) ¢ playst ando playsf;

- Ug(a) = 0in all other cases.

For each negative literal playér P, her payoff functioru, is such that

- W(a) =1, if (i) £ plays the opposite of the action of the input playerN, and
the output playeo playst, or (ii) £ playst ando playsf;

- W(a) =0 in all other cases.

For each gate playgy< P,, her payoff functiorug is such that

- Ug(a) =1, if (i) g and both playera,b € Ng playt, or (ii) g playsf and at least
one ofaandb playsf;

- Ug(a) = 0in all other cases.

For each gate playgre P, her payoff functiorug is such that

- Ug(a) =1, if (i) g playst and at least one playarb € Ny playst, or (ii) g and
botha andb play f;

- Ug(a) = 0in all other cases.

Payoffs for all types of players are summarised in TablestizanWe claim thas’
is satisfiable if and only i/ has a pure Nash equilibrium.



1,0 € Ny i,0€ Ny
Ui u, | tt tf ft ff ug | it tf ft ff
ic t|1 xe t]1 1 0 1 e tlo 1 11
R fl1 P flo o 1 0 B t11 0 0 o
Table 1

Payoffs for “input”, “positive literal”, and “negative Etral”’ players, the latter two depend-
ing on the actions of the corresponding input playand the output playen.

a,be Ny a,be Ny

uy |ttt ft ff u |ttt ft ff
ge t|1 0 0 0 ge t|1 1 1 0
Ph flo 1 1 1 R flo 0o 0 1

Table 2
Payoffs for “gate” players, depending on the actions of @tag andb corresponding to
the inputs of the gate.

The implication from left to right is seen as follows: Assuthat¥’ is satisfiable
and consider a particular satisfying assignmgnConsider further an action pro-
file a for ¢ where

e each input player plays accordinggo

e each literal player correctly reproduces the action of tbheesponding input
player (positive literals playing the same action as thgut, negative ones play-
ing the opposite action), and

e each gate player correctly implements the truth functiothefrespective gate
depending on the inputs, i.e., actions of her neighbours.

Observe that following the definition &f, and sincep is a satisfying assignment,
playero will play t. In this case each player receives a payoff of 1, and since 1 is
the maximum payoffa is a Nash equilibrium fo .

Conversely, it remains to be shown that every pure Nash ibquin of ¢ cor-
responds to a satisfying assignment4f\We exploit the following properties of
action profiles fors:

P1: A profile where all “literal” playerd € P,U P playt ando plays f cannot be
a pure Nash equilibrium. Since no negations occur abovatthallplayers, any
gate playeg € P, UR, with Ny C (PUPx) who is not playing can improve her
payoff by switching tat. By induction over the structure of the gate this holds
for all gate playerg € P, UPR,, and foro in particular. This is a contradiction.

P.: A profile whereo plays f cannot be a pure Nash equilibrium.dfplays f,
any literal player not playingcan improve her payoff by playirtg This contra-
dictsP;.

Ps: A profile whereo playst and any literal playef € P;U P plays an action that



does not correctly implement the value of the correspondipgt cannot be a
Nash equilibrium. In this casé,could change her action to increase her payoff,
which is a contradiction.

P4: A profile in which some gate playgre P, UPR, plays an action that does not
correctly implement the Boolean function of the correspogdate cannot be a
Nash equilibrium. In this case,could change her action to increase her payoff,
which is a contradiction.

Ps: A profile where the input players do not play a satisfyingigrement buto
playst cannot be a Nash equilibrium. Assuming such an equilibriang, due
to Py, all gate players would have to play according to the Boofaantion they
implement. Thus, because the assignment is not satisfylaggro could change
her action tof to increase her payoff. This is a contradiction.

By combining propertie®; to Ps, we conclude that the only action profiles fér
that are pure Nash equilibria are those corresponding ishgag assignments of
the Boolean circui%’. Thus, there is a one-to-one correspondence betweerysatisf
ing assignments ¢#” and pure Nash equilibria .

Further observe that the payoff matrices in Tables 1 and beamonstructed from
a particular circuit in polynomial time, that each playetjrhas at most two neigh-
bours and two different actions, and that there are only tigandt payoff val-
ues. O

This proof also shows the following corollary.

Corollary 4 Computing the number of pure Nash equilibria of a strategimg¥
is #P-complete, even ¥ is in graphical normal form, hag-bounded neighbour-
hood and2-valued payoff matrices, and each player is allowed to plagnast2
different actions. O

Obviously, when reducing the number of different actionggp@yer to a single one,
or considering single-valued payoff matrices, decidingthler a game has a pure
Nash equilibrium becomes trivial. Hence, the only intargstase that remains are
games with 1-bounded neighbourhood. The interaction amplaygrs of a strategic
game¥ can be represented as a direcie@raction graph ¢¥) = (P.E), where
the vertices correspond to the playergofand(p,q) € E if and only if g is a neigh-
bour ofp, i.e.,q € Np. Observe that for a gani€ with k-bounded neighbourhood,
each node o65(¢) has an outdegree of at mdstlt is thus easy to see that for a
strategic gamé with 1-bounded neighbourhoo@(%¥) is a forest of “trycles” (we
use this neologism to denote trees to which at noostcycle has been attached).
Formally, such drycle is either (1) a rooted tree with edge orientation toward the
root or (2) a rooted tree with edge orientation toward the sowl an additional
edge from the designated root to soatkernode in the tree. The following lemma
states that the existence of a pure Nash equilibrium in gegfiagame whose inter-
action graph is a trycle only depends on the interaction @fllayers in the cycle.



We omit the straightforward proof.

Lemma5 Let ¥ = (P,(Np)per, (Ap)pep, (Up)pep) be a strategic game such
that G(¢) is atrycle. Then,% has a pure strategy Nash equilibrium if and only
if the game¥’ obtained from# by restricting the set of players to those in the
unique cycle of @7), i.e.,9" = (P, (Np) pep, (Ap) pep’, (Up) pep) With P = {p €
P|there is a path from pto p in &) }, has a pure strategy Nash equilibriumt

We are now ready to classify the complexity of the pure Nashlibégium problem
for strategic games with 1-bounded neighbourhood.

Theorem 6 Deciding whether a strategic gangéwith 1-bounded neighbourhood
has a pure strategy Nash equilibrium is NL-complete. Hasdreolds even ¥ is
in graphical normal form and hag-valued payoff matrices.

PROOF. Membershign NL is seen as follows: Le¥ be a strategic game with
1-bounded neighbourhood. By combining the above observain G(¢) and
Lemma 5, it is sufficient to reduce each trycle in the forest fpossibly empty) cy-
cle. This can be done in deterministic logspace, since eatbxof the interaction
graphG(¥) has outdegree at most 1. We thus end up with a forest of cydles.
can now guess an action profile for each cycle independanthgi following way.
We start at an arbitrary (deterministically computed) nimdée cycle and guess an
action for the player corresponding to this node. We theretsee the cycle back-
wards, guessing an action for each player and checking wh#irs action is the
best response w.r.t. the action of the next player. The ctemipn ends when the
initially chosen node has been reached, accepting if angibthe initially cho-
sen action equals the action guessed in the last step ofaversal. Note that the
backwards traversal can be done in deterministic logardispace; in addition, we
only need to maintain a constant number of pointers. Thieswole process can
be performed on a logspace bounded Turing machine. If fdr epcle an individ-
ual pure Nash equilibrium exists, then the original stratggme also has a pure
Nash equilibrium.

It remains to show NLlhardnessFor this, we reduce thet-reachability problem
in directed graphs, i.e., deciding whether for a given deégraphG = (V,E),
with E CV xV, and two designated verticeg € V there exists a path fromto t

in G (see, e.g., [4]), to finding a pure Nash equilibrium in a ganiteé W-bounded
neighbourhood. W.l.0.g., assume that Y1)} {1,2,...,n} withn> 4, (2)s=1
andt = n, (3) for each node with 1 <i < n— 1 there exists at least one edge
leavingi, and (4) theonly edge leavingn is a self-loop.

We then define a gané in graphical normal form for a directed grag The
set of players of7 is given byP = {p1, p2,..., pn—1}, Nneighbourhood is given by
Np, = {Pn—1} andNp, = {pt—1} for 2 <t < n—1. The set of possible actions,
which is the same for all players, is given bg; | 1 <i,j < n}, in whicha;j can



be interpreted as selection of (the possibly non-existedpe(i, j) in graphG.
Let a denote an action profile, then the payoff functions are ddfasefollows:

e Playerp;’s payoff functionu; is such that
- uy(a) = 1if (i) p1 playsay; for somei with (1,i) € E and py_1 playsaj, for
somej, or (ii) p1 playsann and pn_1 plays an actiomjx such thak # n;
- uz(a) = 0in all other cases.
e For each playep; € P with 2 <t < n-—1, her payoff functiony closely resem-
bles the transition matrix db; more precisely,
- w(a) = 1if p; playsajk for somej with (j,k) € E andp,_1 playsa;j for somei;
- u(a) = 0in all other cases.

We claim that there is a path from node 1 to nade graphG if and only if game¥
has a pure Nash equilibrium.

The implication from left to right is seen as follows: Assuthat in G there exists

a path 1=i4,ip,...,inp = n of lengthn (a shorter path can be extended by virtue
of the self-loop at node). Consider further an action profikefor &4 where each
playerp, with 1<t < n—1, plays actiorg;; . ,. In this case, each player receives
a payoff of 1, and since 1 is the maximum payaffs a Nash equilibrium o¥.

Conversely, it remains to be shown that every Nash equilibfior 4 corresponds
to a path linking nodes 1 andin G. We exploit the following properties of action
profiles for¥:

P.: A profile where playemp; with 2 <t <n-—1 playsay, andp;_1 playsa;j for
somej # k cannot be a Nash equilibrium. In this capgwould get a payoff of
0, and by construction there exists an alternative a@jpmvith (k. ¢) € E with
payoff 1 (because every node has outdegree at least 1). Hermasuld change
her action to increase her payoff, which is a contradiction.

P,: A profile wherep, with 1 <t < n—2 playsaj, for some 1<i < nand some;
witht+1 < j <n-—1 doesnotplay a,, cannot be a Nash equilibrium. W.l.o.g.,
assume thaf is the smallest such number. In this capg,could improve her
payoff by playingann, which is a contradiction.

Ps: A profile wherepn_1 playsay with ¢ # n cannot be a pure Nash equilibrium.
In this casep; could improve her payoff by playing,,. This contradict$>.

Ps: A profile wherep; playsajj with i # 1 cannot be a pure Nash equilibrium.
We distinguish two different cases. In cgse 1 playsax, for somek, p; could
improve her payoff by playingyj, which is a contradiction. If insteagh_1
plays ax, for some/? # n, p1 could improve her payoff by playingn,. This
contradictd,.

By combining propertie®; to P4, we conclude that the only action profiles that are
pure Nash equilibria fo¢ are those where

e p; plays an actiomy; with (1,i) € E,



e each pairp._1 and p; of players with 2<t < n— 2 play actionsa;; and aj,
respectively, for some £ i, j,k < n, with (j,k) € E, and
e playerp,_; plays an actiomy, with (k,n) € E.

Thus, there is a one-to-one correspondence of paths froe htmh in G and pure
Nash equilibria of9.

Further observe that the payoff matrices can be constructed a particular
graphG in logarithmic space, that each player has at most one neighand that
there are only two distinct payoff values™

An immediate consequence of the above proof is given next.

Corollary 7 Computing the number of pure Nash equilibria of a strategiong
with 1-bounded neighbourhood is #L-complete, even if the game ggaphical
normal form. O

Observe that in the hardness part of the proof of Theoreme@uimber of actions
of game¥ is polynomially bounded in the number of nodes of gra&hlf the
number of actions is bounded by a constant, the complexitjgoiding whethe
has a pure Nash equilibrium can be improved to L-completenes

Theorem 8 Deciding whether a strategic gangéwith 1-bounded neighbourhood
and aconstant number of actiortsas a pure strategy Nash equilibrium is L-
complete under NEreductions. Hardness holds evergfis in graphical normal
form and ha-valued payoff matrices.

PROOF. The proof formembershipn L follows similar lines as the membership
proof for Theorem 6, with the following difference: Becaulse number of actions
is a constant, deterministic logspace is enough to determvimether a strategic
game whose interaction graph is a (forest of) cycle(s) has@ldash equilibrium;
a Turing machine can write down all best response actiona fmarticular player
by running backwards through the cycle and updating thmétion step by step.

Hardnesscan be shown by means of a straightforward reduction fromsttie
reachability problem for directed graphs of outdegree anthé problem under
consideration. We define a garefor a graphG of this kind, where now each
player in%¢ corresponds to a node {& (for simplicity, we use names for players
and nodes interchangeably), neighbourhood iis given by neighbourhood i®,
and the actions are frodt, f }. Additionally, playert has playes as a neighbour.
Let a be an action profile fo¢, then the payoff functions are defined as follows:

e Playert’s payoff function is such that
- W (a) = 1if t plays theoppositeaction ofs;
- (a) =0in all other cases.



e The payoff function of any playegp # t who has a neighbowy# t is such that
- Up(a) = 1if p plays the same ag
- Up(a) = 0in all other cases.

e For any other player, the payoff function is such thgta) = 1 regardless of the
action.

It is easily verified that this reduction can be computed in'N&irther% doesnot

have a pure Nash equilibrium if and onlytifs reachable frons in G (since both
nodes are in the same tree and, by construction, on a cyatee Seterministic
logspace is closed under complement, this completes tlué. pral

The proof even shows that the problem remains L-completeifhtimber of actions
per player is a slowly growing function.

Corollary 9 Deciding whether a strategic gargéwith 1-bounded neighbourhood
andloglogn+ O(1) actions has a pure strategy Nash equilibrium is L-complete
under NC reductions. Hardness holds ever#fis in graphical normal form and
has2-valued payoff matrices.

PROOF. To see this, observe that in the logspace algorithm destiibihe proof
of Theorem 8, we can still write down all possible best resgsnwithin the space
bound. O

By combining Theorems 6 and 8, we obtain an alternative cheraation of the
deterministic-nondeterministic problem for logspacermed Turing machines.

Corollary 10 The following statements are equivalent:

(1) L=NL.

(2) Deciding whether a strategic gan¥ with 1-bounded neighbourhood has
a pure strategy Nash equilibrium can be done in deterministgarithmic
space.

(3) For each strategic gam# with 1-bounded neighbourhood, we can construct
in deterministic logarithmic space a strategic gaffiewith 1-bounded neigh-
bourhood and aconstaninumber of actions such that has a pure strategy
Nash equilibrium if and only i’ has a pure strategy Nash equilibrium3
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