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1 Introduction

Game theory is a mathematical framework for representing interactions of rational
players trying to achieve possibly contradictory goals. Players’ strategies are said
to be inNash equilibriumif no player can do better by unilaterally changing her
strategy. Nash’s famous theorem [1] guarantees the existence of at least one such
equilibrium when players are allowed to playmixed strategies, i.e., probabilistic
combinations of actions. If strategies are restricted to deterministic choice of ac-
tions, calledpure strategies, the existence of an equilibrium is no longer guaran-
teed (see, e.g., [2]). Equilibria in the latter case are referred to as pure strategy Nash
equilibria, or pure Nash equilibria in short. Complexity issues related to pure Nash
equilibria have recently been investigated in [3]. It was shown that even for a very
restricted class of games in graphical normal form, where each player is allowed to
play at most 3 different actions and her payoff depends on at most 3 other players,
determining whether a given game has a pure Nash equilibriumis NP-complete.
Moreover, some tractable classes of strategic games have been identified.

In this paper, we strengthen the above mentioned NP-completeness result to ap-
ply to an even more restrictive setting. To be precise, we show that 2 actions per
player, 2-bounded neighbourhood, and 2-valued payoff matrices suffice to prove
NP-completeness. It should be noted that this is the best possible result, because
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deciding the existence of a pure Nash equilibrium becomes trivial in the case of a
single action for each player and tractable for 1-bounded neighbourhood. In fact,
we show the latter problem to be NL-complete in general, and thus solvable in de-
terministic polynomial time. Interestingly, it turns out that the number of actions
in a game with 1-bounded neighbourhood is a sensitive parameter: Restricting the
number of actions for each player to a constant makes the problem even easier than
NL unless L= NL. In this way, we obtain a nice alternative characterisation of the
deterministic-nondeterministic problem for logspace bounded Turing machines in
terms of the number of actions for strategic games with 1-bounded neighbourhood.

2 Preliminaries

We recall some preliminaries on strategic games and refer to[2] for a comprehen-
sive introduction.

Definition 1 (Strategic game) A game in strategic formis a 4-tuple G =
(P,(Ap)p∈P,(Np)p∈P,(up)p∈P), where P is a set ofplayersand for each player
p ∈ P, Ap is a nonempty set ofactionsavailable to p, Np ⊆ P\ {p} is a set of
neighboursof p, and up : (×q∈Np∪{p}Aq) → Q is a function mapping each combi-
nation of actions for p and her neighbours to a rationalpayoff for p.

This definition of a strategic game differs from that commonly used in game theory
in that it explicitly represents the neighbourhood of a player as the set of other
players that potentially have an influence on her payoff. A game is said to have
k-bounded neighbourhoodif there is a constantk such that|Np| ≤ k for eachp ∈
P. For anyk, games withk-bounded neighbourhood form a subclass of strategic
games.

For a particular playerp, her choice to play actiona∈ Ap deterministically is also
referred to as apure strategy. For a non-empty setP′ ⊆ P of players, anaction
profile for P′ is a vector containing exactly one action for each player inP′. The
different action profiles forP correspond to the possible outcomes of gameG .
Players’ payoff functionsup naturally extend to×p∈PAp, and we will denote these
extensions byup as well. A pure (strategy) Nash equilibriumfor G is an action
profile where no player can increase her own payoff by unilaterally changing her
action.

Definition 2 (Pure strategy Nash equilibrium) An action profile a∈ ×p∈PAp is
called apure strategy Nash equilibriumif and only if for each player p∈ P and
each action a′p ∈ Ap,

up(a) ≥ up((a−p,a
′
p)),

where(a−p,a′p) denotes the action profile where player p plays a′
p and all other

players play the same action as in a.
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If the number of players is small, deciding whether a game hasa pure Nash equilib-
rium can simply be done by enumerating all possible action profiles and checking if
one of them satisfies the equilibrium condition. The problembecomes interesting,
though, for games that admit a compact representation when the number of players
is growing. Clearly, games withk-bounded neighbourhood belong to this class.

We further assume the reader to be familiar with the basics ofcomplexity theory
(see, e.g., [4]). In particular we consider the well known chain of complexity classes
L ⊆ NL ⊆ P⊆ NP. Here L (NL, respectively) denotes the class of all languages ac-
cepted by deterministic (nondeterministic, respectively) logarithmic space bounded
Turing machines, and P (NP, respectively) refers to the class of all languages ac-
cepted by deterministic (nondeterministic, respectively) polytime bounded Turing
machines. Moreover, #P is the class of functionsf (x) for which there is a polytime
nondeterministic Turing machineM such thatf (x) equals the number of accepting
computations ofM on x. The class #L is defined analogously for nondeterministic
logspace Turing machines.

All problems investigated in this paper take strategic games as inputs. We therefore
need an appropriate coding function〈·〉 mapping a strategic gameG to a word〈G 〉
over a fixed alphabet. We will not go into the details of the definition of 〈·〉, but
assume that it satisfies standard properties. In particular, the payoff functions are
explicitly represented by a single table or matrix having anentry for every action
profile a, displaying a list of payoffsup(a) for each playerp ∈ P. If the payoff
function for each playerp is represented by a separate table or matrix containing
an entryup(a) for every action profilea ∈ ×q∈Np∪{p}Ap, then the game is said to
be ingraphical normal form[5].

3 Hard and Easy Games

The following theorem states that deciding the existence ofa pure Nash equilib-
rium is hard even if each player has a 2-bounded neighbourhood, 2-valued payoff
matrices and only 2 different actions. We improve upon a recent result by [3].

Theorem 3 Deciding whether a strategic gameG has a pure strategy Nash equi-
librium is NP-complete. Hardness holds even ifG is in graphical normal form, has
2-bounded neighbourhood and2-valued payoff matrices, and where each player is
allowed to play at most2 different actions.

PROOF. Membershipin NP is obvious. We can guess an action profilea, and
verify in polynomial time whethera is a pure Nash equilibrium — for the latter
task we have to check whetherup((a−p,a′p))≤ up(a) for each playerp∈ P and for
each actiona′p ∈ Ap.
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For hardnesswe argue as follows: Recall that circuit satisfiability, i.e., deciding
whether for a given Boolean circuitC with n inputs and one output there exists an
assignment such thatC evaluates totrue, is NP-complete (see, e.g., [4]). W.l.o.g,
assume thatC contains at least one input and one (internal) gate, and thatNOT
gates only occur at the input layer; for an arbitrary circuit, all NOT gates can be
moved to the input layer in polynomial time by successive application of de Mor-
gan’s law.

We define a gameG in graphical normal form for a Boolean circuitC , providing
a polynomial-time reduction of satisfiability ofC to the problem of finding a pure
Nash equilibrium inG . As for the players ofG, there is one for each circuit input,
one for each (positive or negative) literal, and one for eachgate of the circuit (of
typesAND andOR). We writePi, Px, Px̄, P∧, andP∨ to denote the respective sets of
players. The output of the circuit corresponds to a particular playero∈ P∧∪P∨. For
each input playerp∈ Pi, let Np be the empty set. For each gate playerg∈ P∧∪P∨,
let Ng be the set of players corresponding to the inputs of the gate —whenever a
gate is connected to one of then inputs or to aNOT-gate,Ng contains the player
corresponding to the appropriate positive or negative literal. Finally, for each literal
playerℓ ∈ Px∪Px̄, let Nℓ contain the appropriate input playeri ∈ Pi and the output
player o. Let the set of possible actions equal{t, f} for every playerp ∈ P, in
which t and f can be interpreted as truth values. For an action profilea, let the
payoff functions be defined as follows:

• For each input playeri ∈ Pi, her payoff functionui is such thatui(a) = 1 regard-
less of the selected action.

• For each positive literal playerℓ ∈ Px, her payoff functionuℓ is such that
· uℓ(a) = 1, if (i) ℓ plays the same action as the input playeri ∈Nℓ and the output

playero playst, or (ii) ℓ playst ando playsf ;
· uℓ(a) = 0 in all other cases.

• For each negative literal playerℓ ∈ Px̄, her payoff functionuℓ is such that
· uℓ(a) = 1, if (i) ℓ plays the opposite of the action of the input playeri ∈ Nℓ and

the output playero playst, or (ii) ℓ playst ando plays f ;
· uℓ(a) = 0 in all other cases.

• For each gate playerg∈ P∧, her payoff functionug is such that
· ug(a) = 1, if (i) g and both playersa,b∈ Ng play t, or (ii) g plays f and at least

one ofa andb plays f ;
· ug(a) = 0 in all other cases.

• For each gate playerg∈ P∨, her payoff functionug is such that
· ug(a) = 1, if (i) g playst and at least one playera,b∈ Ng playst, or (ii) g and

botha andb play f ;
· ug(a) = 0 in all other cases.

Payoffs for all types of players are summarised in Tables 1 and 2. We claim thatC
is satisfiable if and only ifG has a pure Nash equilibrium.
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ui

i ∈
Pi

t 1

f 1

i,o∈ Nx

ux tt tf ft ff

x∈
Px

t 1 1 0 1

f 0 0 1 0

i,o∈ Nx

ux̄ tt tf ft ff

x∈
Px̄

t 0 1 1 1

f 1 0 0 0
Table 1
Payoffs for “input”, “positive literal”, and “negative literal” players, the latter two depend-
ing on the actions of the corresponding input playeri and the output playero.

a,b∈ Ng

u∧ tt tf ft ff

g∈
P∧

t 1 0 0 0

f 0 1 1 1

a,b∈ Ng

u∨ tt tf ft ff

g∈
P∨

t 1 1 1 0

f 0 0 0 1
Table 2
Payoffs for “gate” players, depending on the actions of playersa andb corresponding to
the inputs of the gate.

The implication from left to right is seen as follows: AssumethatC is satisfiable
and consider a particular satisfying assignmentφ . Consider further an action pro-
file a for G where

• each input player plays according toφ ,
• each literal player correctly reproduces the action of the corresponding input

player (positive literals playing the same action as their input, negative ones play-
ing the opposite action), and

• each gate player correctly implements the truth function ofthe respective gate
depending on the inputs, i.e., actions of her neighbours.

Observe that following the definition ofG , and sinceφ is a satisfying assignment,
playero will play t. In this case each player receives a payoff of 1, and since 1 is
the maximum payoff,a is a Nash equilibrium forG .

Conversely, it remains to be shown that every pure Nash equilibrium of G cor-
responds to a satisfying assignment ofC . We exploit the following properties of
action profiles forG :

P1: A profile where all “literal” playersℓ ∈ Px∪Px̄ play t ando plays f cannot be
a pure Nash equilibrium. Since no negations occur above the literal players, any
gate playerg∈ P∧∪P∨ with Ng ⊆ (Px∪Px̄) who is not playingt can improve her
payoff by switching tot. By induction over the structure of the gate this holds
for all gate playersg∈ P∧∪P∨, and foro in particular. This is a contradiction.

P2: A profile whereo plays f cannot be a pure Nash equilibrium. Ifo plays f ,
any literal player not playingt can improve her payoff by playingt. This contra-
dictsP1.

P3: A profile whereo playst and any literal playerℓ ∈ Px∪Px̄ plays an action that
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does not correctly implement the value of the correspondinginput cannot be a
Nash equilibrium. In this case,ℓ could change her action to increase her payoff,
which is a contradiction.

P4: A profile in which some gate playerg∈ P∧∪P∨ plays an action that does not
correctly implement the Boolean function of the corresponding gate cannot be a
Nash equilibrium. In this case,g could change her action to increase her payoff,
which is a contradiction.

P5: A profile where the input players do not play a satisfying assignment buto
playst cannot be a Nash equilibrium. Assuming such an equilibrium,and due
to P4, all gate players would have to play according to the Booleanfunction they
implement. Thus, because the assignment is not satisfying,playerocould change
her action tof to increase her payoff. This is a contradiction.

By combining propertiesP1 to P5, we conclude that the only action profiles forG

that are pure Nash equilibria are those corresponding to satisfying assignments of
the Boolean circuitC . Thus, there is a one-to-one correspondence between satisfy-
ing assignments ofC and pure Nash equilibria ofG .

Further observe that the payoff matrices in Tables 1 and 2 canbe constructed from
a particular circuit in polynomial time, that each player inG has at most two neigh-
bours and two different actions, and that there are only two distinct payoff val-
ues. 2

This proof also shows the following corollary.

Corollary 4 Computing the number of pure Nash equilibria of a strategic gameG

is #P-complete, even ifG is in graphical normal form, has2-bounded neighbour-
hood and2-valued payoff matrices, and each player is allowed to play at most2
different actions. 2

Obviously, when reducing the number of different actions per player to a single one,
or considering single-valued payoff matrices, deciding whether a game has a pure
Nash equilibrium becomes trivial. Hence, the only interesting case that remains are
games with 1-bounded neighbourhood. The interaction amongplayers of a strategic
gameG can be represented as a directedinteraction graph G(G ) = (P,E), where
the vertices correspond to the players ofG , and(p,q)∈E if and only if q is a neigh-
bour of p, i.e.,q∈ Np. Observe that for a gameG with k-bounded neighbourhood,
each node ofG(G ) has an outdegree of at mostk. It is thus easy to see that for a
strategic gameG with 1-bounded neighbourhood,G(G ) is a forest of “trycles” (we
use this neologism to denote trees to which at mostonecycle has been attached).
Formally, such atrycle is either (1) a rooted tree with edge orientation toward the
root or (2) a rooted tree with edge orientation toward the root and an additional
edge from the designated root to someothernode in the tree. The following lemma
states that the existence of a pure Nash equilibrium in a strategic game whose inter-
action graph is a trycle only depends on the interaction of the players in the cycle.
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We omit the straightforward proof.

Lemma 5 Let G = (P,(Np)p∈P,(Ap)p∈P,(up)p∈P) be a strategic game such
that G(G ) is a trycle. Then,G has a pure strategy Nash equilibrium if and only
if the gameG ′ obtained fromG by restricting the set of players to those in the
unique cycle of G(G ), i.e.,G ′ = (P′,(Np)p∈P′,(Ap)p∈P′,(up)p∈P′) with P′ = { p∈
P | there is a path from p to p in G(G )}, has a pure strategy Nash equilibrium.2

We are now ready to classify the complexity of the pure Nash equilibrium problem
for strategic games with 1-bounded neighbourhood.

Theorem 6 Deciding whether a strategic gameG with 1-bounded neighbourhood
has a pure strategy Nash equilibrium is NL-complete. Hardness holds even ifG is
in graphical normal form and has2-valued payoff matrices.

PROOF. Membershipin NL is seen as follows: LetG be a strategic game with
1-bounded neighbourhood. By combining the above observation on G(G ) and
Lemma 5, it is sufficient to reduce each trycle in the forest toa (possibly empty) cy-
cle. This can be done in deterministic logspace, since each vertex of the interaction
graphG(G ) has outdegree at most 1. We thus end up with a forest of cycles.We
can now guess an action profile for each cycle independently in the following way.
We start at an arbitrary (deterministically computed) nodein the cycle and guess an
action for the player corresponding to this node. We then traverse the cycle back-
wards, guessing an action for each player and checking whether this action is the
best response w.r.t. the action of the next player. The computation ends when the
initially chosen node has been reached, accepting if and only if the initially cho-
sen action equals the action guessed in the last step of the traversal. Note that the
backwards traversal can be done in deterministic logarithmic space; in addition, we
only need to maintain a constant number of pointers. Thus, the whole process can
be performed on a logspace bounded Turing machine. If for each cycle an individ-
ual pure Nash equilibrium exists, then the original strategic gameG also has a pure
Nash equilibrium.

It remains to show NL-hardness. For this, we reduce thes-t-reachability problem
in directed graphs, i.e., deciding whether for a given directed graphG = (V,E),
with E ⊆V ×V, and two designated verticess, t ∈V there exists a path froms to t
in G (see, e.g., [4]), to finding a pure Nash equilibrium in a game with 1-bounded
neighbourhood. W.l.o.g., assume that (1)V = {1,2, . . . ,n} with n ≥ 4, (2) s = 1
and t = n, (3) for each nodei with 1 ≤ i ≤ n− 1 there exists at least one edge
leavingi, and (4) theonlyedge leavingn is a self-loop.

We then define a gameG in graphical normal form for a directed graphG. The
set of players ofG is given byP = {p1, p2, . . . , pn−1}, neighbourhood is given by
Np1 = {pn−1} and Npt = {pt−1} for 2 ≤ t ≤ n− 1. The set of possible actions,
which is the same for all players, is given by{ai j | 1≤ i, j ≤ n}, in whichai j can
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be interpreted as selection of (the possibly non-existing)edge(i, j) in graphG.
Let a denote an action profile, then the payoff functions are defined as follows:

• Playerp1’s payoff functionu1 is such that
· u1(a) = 1 if (i) p1 playsa1i for somei with (1, i) ∈ E and pn−1 playsa jn for

somej, or (ii) p1 playsann andpn−1 plays an actiona jk such thatk 6= n;
· u1(a) = 0 in all other cases.

• For each playerpt ∈ P with 2≤ t ≤ n−1, her payoff functionut closely resem-
bles the transition matrix ofG; more precisely,
· ut(a)= 1 if pt playsa jk for somej with ( j,k)∈E andpt−1 playsai j for somei;
· ut(a) = 0 in all other cases.

We claim that there is a path from node 1 to noden in graphG if and only if gameG
has a pure Nash equilibrium.

The implication from left to right is seen as follows: Assumethat inG there exists
a path 1= i1, i2, . . . , in = n of lengthn (a shorter path can be extended by virtue
of the self-loop at noden). Consider further an action profilea for G where each
playerpt , with 1≤ t ≤ n−1, plays actionait it+1. In this case, each player receives
a payoff of 1, and since 1 is the maximum payoff,a is a Nash equilibrium ofG .

Conversely, it remains to be shown that every Nash equilibrium forG corresponds
to a path linking nodes 1 andn in G. We exploit the following properties of action
profiles forG :

P1: A profile where playerpt with 2 ≤ t ≤ n−1 playsakℓ and pt−1 playsai j for
some j 6= k cannot be a Nash equilibrium. In this case,pt would get a payoff of
0, and by construction there exists an alternative actionakℓ with (k, ℓ) ∈ E with
payoff 1 (because every node has outdegree at least 1). Hence, pt could change
her action to increase her payoff, which is a contradiction.

P2: A profile wherept with 1≤ t ≤ n−2 playsain for some 1≤ i ≤ n and somep j

with t +1≤ j ≤ n−1 doesnot play ann cannot be a Nash equilibrium. W.l.o.g.,
assume thatj is the smallest such number. In this case,p j could improve her
payoff by playingann, which is a contradiction.

P3: A profile wherepn−1 playsakℓ with ℓ 6= n cannot be a pure Nash equilibrium.
In this case,p1 could improve her payoff by playingann. This contradictsP2.

P4: A profile wherep1 playsai j with i 6= 1 cannot be a pure Nash equilibrium.
We distinguish two different cases. In casepn−1 playsakn for somek, p1 could
improve her payoff by playinga1 j , which is a contradiction. If insteadpn−1

plays akℓ for someℓ 6= n, p1 could improve her payoff by playingann. This
contradictsP2.

By combining propertiesP1 to P4, we conclude that the only action profiles that are
pure Nash equilibria forG are those where

• p1 plays an actiona1i with (1, i) ∈ E,
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• each pairpt−1 and pt of players with 2≤ t ≤ n− 2 play actionsai j and a jk,
respectively, for some 1≤ i, j,k≤ n, with ( j,k) ∈ E, and

• playerpn−1 plays an actionakn with (k,n) ∈ E.

Thus, there is a one-to-one correspondence of paths from node 1 ton in G and pure
Nash equilibria ofG .

Further observe that the payoff matrices can be constructedfrom a particular
graphG in logarithmic space, that each player has at most one neighbour, and that
there are only two distinct payoff values.2

An immediate consequence of the above proof is given next.

Corollary 7 Computing the number of pure Nash equilibria of a strategic game
with 1-bounded neighbourhood is #L-complete, even if the game is in graphical
normal form. 2

Observe that in the hardness part of the proof of Theorem 6, the number of actions
of gameG is polynomially bounded in the number of nodes of graphG. If the
number of actions is bounded by a constant, the complexity ofdeciding whetherG
has a pure Nash equilibrium can be improved to L-completeness.

Theorem 8 Deciding whether a strategic gameG with 1-bounded neighbourhood
and a constant number of actionshas a pure strategy Nash equilibrium is L-
complete under NC1 reductions. Hardness holds even ifG is in graphical normal
form and has2-valued payoff matrices.

PROOF. The proof formembershipin L follows similar lines as the membership
proof for Theorem 6, with the following difference: Becausethe number of actions
is a constant, deterministic logspace is enough to determine whether a strategic
game whose interaction graph is a (forest of) cycle(s) has a pure Nash equilibrium;
a Turing machine can write down all best response actions fora particular player
by running backwards through the cycle and updating this information step by step.

Hardnesscan be shown by means of a straightforward reduction from thes-t-
reachability problem for directed graphs of outdegree one to the problem under
consideration. We define a gameG for a graphG of this kind, where now each
player inG corresponds to a node inG (for simplicity, we use names for players
and nodes interchangeably), neighbourhood inG is given by neighbourhood inG,
and the actions are from{t, f}. Additionally, playert has players as a neighbour.
Let a be an action profile forG , then the payoff functions are defined as follows:

• Playert ’s payoff function is such that
· ut(a) = 1 if t plays theoppositeaction ofs;
· ut(a) = 0 in all other cases.
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• The payoff function of any playerp 6= t who has a neighbourq 6= t is such that
· up(a) = 1 if p plays the same asq;
· up(a) = 0 in all other cases.

• For any other player, the payoff function is such thatup(a) = 1 regardless of the
action.

It is easily verified that this reduction can be computed in NC1. Further,G doesnot
have a pure Nash equilibrium if and only ift is reachable froms in G (since both
nodes are in the same tree and, by construction, on a cycle). Since deterministic
logspace is closed under complement, this completes the proof. 2

The proof even shows that the problem remains L-complete if the number of actions
per player is a slowly growing function.

Corollary 9 Deciding whether a strategic gameG with 1-bounded neighbourhood
and loglogn+ O(1) actions has a pure strategy Nash equilibrium is L-complete
under NC1 reductions. Hardness holds even ifG is in graphical normal form and
has2-valued payoff matrices.

PROOF. To see this, observe that in the logspace algorithm described in the proof
of Theorem 8, we can still write down all possible best responses within the space
bound. 2

By combining Theorems 6 and 8, we obtain an alternative characterisation of the
deterministic-nondeterministic problem for logspace bounded Turing machines.

Corollary 10 The following statements are equivalent:

(1) L = NL.
(2) Deciding whether a strategic gameG with 1-bounded neighbourhood has

a pure strategy Nash equilibrium can be done in deterministic logarithmic
space.

(3) For each strategic gameG with 1-bounded neighbourhood, we can construct
in deterministic logarithmic space a strategic gameG ′ with 1-bounded neigh-
bourhood and aconstantnumber of actions such thatG has a pure strategy
Nash equilibrium if and only ifG ′ has a pure strategy Nash equilibrium.2
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