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Abstract

We consider the classical model of sponsored search due to Edelman et al. and Var-
ian, and examine how robust standard position auctions are to a misspecification of the
position-dependent quality factors used by this model. We show that under both com-
plete and incomplete information a non-truthful position auction admits an efficient
equilibrium for a strictly broader range of parameter values than the Vickrey-Clarke-
Groves (VCG) mechanism, which would be truthful if the parameters were specified
correctly. Our result for complete information concerns the generalized second-price
(GSP) mechanism, and is driven by a detailed understanding of the Nash equilibrium
polytopes of the VCG mechanism and the GSP mechanism. Our result for incomplete
information concerns the generalized first-price (GFP) mechanism, and uses a surpris-
ing connection between the unique candidate equilibrium bidding functions of the VCG
mechanism and the GFP mechanism.

1 Introduction

Online advertising is the main source of revenue for technology companies such as Google or
Facebook [e.g., 2]. A particularly important form of online advertising is sponsored search,
where sponsored results are shown alongside organic results of a web search engine. After
going through a number of evolutionary steps, sponsored search converged to a system in
which ad slots for each individual search are sold through an auction (see, e.g., the article of
Edelman et al. [19] for a brief history of sponsored search). Sponsored search auctions differ
in a number of ways from the auctions traditionally studied in auction theory. A particular
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distinctive feature is the extremely high rate at which auctions are conducted, which in turn
mandates an auction design that minimizes informational and computational requirements.

The key properties of practical sponsored search auctions are captured by the canonical
model of Edelman et al. [19] and Varian [34]. In this model, n bidders interested in placing
an ad compete for k positions in which an ad could be placed. Each bidder comes with a
value vi and each position with a quality βj, where β1 ≥ β2 ≥ · · · ≥ βk. The value that
bidder i derives from position j is βj · vi.1 In order to determine an allocation of bidders
to positions along with payments the bidders have to make, each bidder i submits a bid
bi. Then bidders are ranked from high to low, so that b1 ≥ b2 ≥ · · · ≥ bn, and bidder i is
assigned position i for 1 ≤ i ≤ k. The most common pricing rule used in practice is that of
the so-called generalized second-price (GSP) mechanism, in which bidder i pays an amount
equal to βi · bi+1. An alternative, which was used in the early days of sponsored search and is
again gaining traction, is the generalized first-price (GFP) mechanism, in which bidder i pays
βi · bi. The industry standard for implementing these mechanisms is to charge advertisers
whenever a user clicks on their ads.

It is worth pointing out that this design minimizes the amount of information that bid-
ders have to transfer to the auctioneer, and the computational overhead of both bidders
and auctioneer: each bidder transfers only a single number, the allocation can be deter-
mined using a simple greedy rule, and the payments depend on the allocation and bids in a
straightforward manner.

The crucial assumption underlying the design is that bidders have single-dimensional
valuations, i.e., that values can indeed be written as βj · vi. This assumption is backed up
through extensive experiments [e.g., 34], but auction specifications also suggest that βj is
more than just the total number of clicks a position receives or, after normalization, the
click-through rate of a position [e.g., 30, 21]. Indeed, search engine providers have developed
sophisticated machine learning techniques to learn these quality factors from data [22, 29].
This has important implications for practical designs that charge users per click. For exam-
ple, to achieve a payment of βi · bi+1 as in the GSP mechanism for a position that receives
γi clicks, the search engine has to charge βi · bi+1/γj per click.

An interesting feature of the designs used in practice, the GSP mechanism and the GFP
mechanism, is their lack of truthfulness, meaning that bidders can benefit from misreporting
their bids (see the article of Edelman et al. [19] for a simple example). These designs are
thus commonly analyzed in the Nash equilibria of a complete-information environment, or
in the Bayes-Nash equilibria of an incomplete-information environment. A truthful design
does exist: the Vickrey-Clarke-Groves (VCG) mechanism would assign bidders to positions
in the same way as the GSP or GFP mechanisms, but charge bidder i their externality, which
is equal to

∑k
j=i(βj − βj+1) · bj+1. Apart perhaps from the slightly more complex payment

rule, the VCG mechanism may thus seem preferable to the GSP and GFP mechanisms in
the context of sponsored search. Indeed, most of the “common complaints” regarding the

1Edelman et al. [19, Section III] discuss a generalization of this model with bidder- as well as position-
specific effects. When the two effects are separable the bidder-specific part can be folded into the valuations,
and Edelman et al. provide evidence that near separability holds in practice.
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VCG mechanism only apply to multi-dimensional settings [3, 33], and like the GSP and GFP
mechanisms it can also be implemented in a pay-per-click fashion [35].

1.1 Model and research question

The vast majority of the literature on sponsored search auctions has focused on the case
where the quality factors β1, . . . , βk are known to the auctioneer, and has tried to understand
the equilibria that respectively arise for the GSP mechanism [e.g., 19, 34, 20, 9]) and the
GFP mechanism [e.g., 18, 12, 24, 15]). There are, however, a number of reasons why in
practice the quality factors used by the search engine may differ from the truth. Indeed,
machine learning is capable of producing very accurate estimates, but it will typically not
produce an estimate that is entirely exact. The true quality factors may also shift over
time, either in the form of slow drifts or shocks due to unforeseen events. There are, finally,
compelling reasons why a search engine may be unable to even observe the true quality
factors. Milgrom [31] provides a simple example with two types of users of a search engine
that leads to a difference between click-through rates, observed by the search engine, and
conversion rates, in which bidders are interested. In practice similar discrepancies are likely
to arise for more complicated reasons, for example when learning by the search engine takes
places on aggregate over a large set of users while each bidder is interested in targeting
only a subset of the users. A certain degree of robustness to a slight misspecification of the
quality factors, and the resulting misspecification of the bidding language, is thus a desirable
property of an auction design.

We will study this property using a stylized model that adds a small variation to the
standard model of Edelman et al. and Varian. In our model the true quality factors are
α1 ≥ α2 ≥ ... ≥ αk, so that the value of bidder i for position j is αj · vi, whereas the
auctioneer uses qualities β1 ≥ β2 ≥ ... ≥ βk when computing the payments. In the GSP
mechanism with bids b1 ≥ b2 ≥ · · · ≥ bn, for example, advertiser i would thus be assigned
position i, receive a value of αi · vi, and pay an amount equal to βi · bi+1.

2

Implicit in this model is an assumption that the bidders know the true quality factors βj

while the search engine uses imprecise estimates αj. This seems at odds with a perceived
informational asymmetry between search engine and bidders, which would place the search
engine at a clear advantage. However, as we have pointed out, practical and theoretical
evidence suggests that the true quality factors cannot in general be observed and learned
completely accurately by a search engine. Bidders on the other hand do not have explicit
access to the relative values of the positions, but they can observe their own utility and can
thus learn how to bid through repeated interaction with the mechanism. Our static model,
just as the original model of Edelman et al. [19] and Varian [34], captures the steady states
of such game-playing dynamics.

It is natural to ask how the standard position auction designs perform in the more general
model, and how they compare in terms of their robustness to a slight misspecification of the

2The arguments of Edelman et al. concerning bidder-specific effects apply in the same way to our more
general model, so there is no need to model this type of misspecification explicitly.
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Figure 1: Overview of our results. Under complete information the set of instances IGSP

for which GSP admits an efficient equilibrium is a superset of instances IVCG for which the
VCG mechanism admits an efficient equilibrium. An analog result applies to GFP and VCG
under incomplete information with symmetric distributions. A ∅ symbol indicates that the
respective mechanism may not possess an equilibrium, even when α = β.

bidding language. While the VCGmechanism ceases to be truthful, for the simple reason that
truthful bidding is no longer possible, one may hope for it to remain preferable to the GSP
and GFP mechanisms. Indeed, the VCG mechanism uses a payment rule designed to align
the interests of the bidders and the auctioneer, and it may continue to do so approximately
when the bidding language is misspecified slightly.

We will specifically compare the robustness of different auction mechanisms to a mis-
specified bidding language by characterizing for which pairs of αj and βj each mechanism
enables the existence of an efficient equilibrium. Two strong arguments exist that support
this positivist approach. First, we can think of the existence of an efficient equilibrium as a
necessary condition for a good design, in the sense that bidders should at least in principle
be able to reach an outcome in which welfare is maximized. Second, simple equilibrium
refinements such as envy-freeness imply that an efficient equilibrium will be selected if it
exists [19, 34], and experimental evidence suggests that these are the equilibria that arise in
practice [34]. We will compare the standard designs both in the complete information model
in which sponsored search auctions are typically analyzed, and in the more classical model
of auction theory in which bidders have incomplete information.

1.2 Results

We show that under both complete and incomplete information, a mechanism designed
without the requirement of truthfulness is able to support an efficient outcome in equilibrium
for a strictly larger set of values of α and β than the VCG mechanism. An overview of our
results can be found in Figure 1. Failure of the VCG mechanism to produce an efficient
outcome can in fact occur already when α is very close to β.

Complete Information We begin by considering settings with complete information, see
Section 3. In these settings the GFP mechanism may not possess an equilibrium, even when
α = β [19, 18]. We thus focus on the comparison between the VCG mechanism and the GSP
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mechanism. We show that for every instance with n bidders and k positions, and every pair
of α and β for which the VCG mechanism possesses an efficient Nash equilibrium, the GSP
mechanism does as well (Theorem 1). We also give examples that show that this inclusion
is strict (Section 3.1).

Our proof is based on a detailed understanding of the respective equilibrium polytopes
of the VCG mechanism and the GSP mechanism. We show that non-emptiness of the
equilibrium polytope of the VCG mechanism implies the existence of a specific point within
this polytope, which is then mapped to a specific point in the equilibrium polytope of the
GSP mechanism to show non-emptiness of the latter. The specific point is one that satisfies
the stronger requirement of envy-freeness, and can be reproduced with the same assignment
and payments in the GSP mechanism.

Incomplete Information In Section 4 we consider settings with incomplete information
and symmetric distributions. In these settings the GSP mechanism may not possess a Bayes-
Nash equilibrium, even when α = β [20]. We thus compare the VCG mechanism to the
GFP mechanism, and show a result analogous to that for complete information settings.
Specifically, for every symmetric instance with n bidders and k positions, and every pair of
α and β for which the VCG mechanism possesses an efficient Bayes-Nash equilibrium, the
GFP mechanism does as well (Theorem 2), and this inclusion is strict (Section 4.1).

The proof of this result is rather intricate, and is driven by a surprising connection
between the equilibrium bids in the VCG mechanism and those in the GFP mechanism.
We begin by using a standard technique for equilibrium characterization that equates the
expected payments in an efficient equilibrium as given by Myerson [32] with the respective
payments in the two mechanisms. This yields a candidate equilibrium bidding function for
each of the two mechanisms, and each of these functions constitutes an equilibrium if and
only if it is strictly increasing almost everywhere. In the case of the VCG mechanism we
encounter an ordinary differential equation, which we solve by appealing to a combinatorial
equivalence. Even with the bidding functions for both the GFP mechanism and the VCG
mechanism at hand, it is not trivial to show that the former is increasing for a larger set of
values of α and β. To show that this is indeed the case, we exploit that the two bidding
functions can respectively be written as A(v)/B(v) and A′(v)/B′(b), where A′ and B′ are
the derivatives of A and B with respect to v.

It is known that for certain asymmetric settings the first-price auction may not possess
an efficient equilibrium [28]. Together with our result this shows that in the general case,
and with regard to efficient equilibria, neither mechanism dominates the other.

1.3 Related Work

A common aphorism in statistics, first formulated in this form by George Box [8], is that “all
models are wrong.” To Box, the interesting question was not whether a model is an exact
representation of the real world, but whether it is close enough to the truth to be useful.

The role of model misspecification and model uncertainty in mechanism design has been
highlighted by a number of authors [e.g., 6, 27, 11, 10, 23, 16, 17, 5]. We contribute to this line
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of work by investigating how robust standard position auctions are towards a misspecification
of the bidding language. We also provide an alternative to the max-min approach employed in
all of the articles given above. Other work has considered the design choice of the sponsored
search industry of using a bidding language that restricts each bidder to submit a single
number, and emphasized the advantages and possible risks associated with this choice [1, 7,
4, 31, 14]. However, none of this work enables a ranking of standard auction formats with
respect to their robustness towards misspecification as we establish it here.

Our work highlights one advantage of non-truthful mechanisms for position auctions. A
concurrent line of work has identified additional advantages of non-revelation mechanisms,
such as amenability to statistical inference [13], and guaranteed revenue in dynamic set-
tings [24] or across complete- and incomplete-information environments [15].

1.4 Open Problems

We compare standard position auction formats with respect to their ability to support an
efficient equilibrium, when position-specific quality factors may be slightly misspecified. An
interesting open question is to extend the analysis to approximately efficient equilibria in
general incomplete-information environments with asymmetric distributions, where our com-
parison via efficient equilibria remains inconclusive.

2 Preliminaries

We study the standard setting of position auctions with k positions ordered by quality
and n ≥ k bidders with unit demand and single-dimensional valuations for the positions.3

Denote by Rk
≥ = {x ∈ Rk : xj > 0, xj ≥ xj′ if j < j′} the set of k-dimensional vectors whose

entries are positive and non-increasing. Given β ∈ Rk
≥, which we assume to be common

knowledge among the bidders, the valuation of a particular bidder i can then be represented
by a scalar vi ∈ R, such that βjvi ≥ 0 is the bidder’s value for position j. We will use the
notational convention that βj = 0 when j > k.

A mechanism in this setting receives a profile b ∈ Rn of bids, assigns positions to bidders
in a one-to-one fashion, and charges each bidder a non-negative payment. It can be repre-
sented by a pair (g, p) of an allocation rule g : Rn → Sn and a payment rule p : Rn → Rn,
such that for each i ∈ {1, . . . , n}, gi(b) = j for j ∈ {1, . . . , k} means that bidder i is assigned
position j and pi(b) is the payment charged to bidder i. We will be concerned exclusively
with mechanisms that assign positions in non-increasing order of bids, and henceforth denote
by g an allocation rule that does so and breaks ties in an arbitrary but consistent manner.
The role of payments is to incentivize bids resulting in an efficient assignment, i.e., one where
positions are assigned in order of valuations and social welfare

∑n
i=1 βgi(b)vi is maximized.

In reasoning about strategic behavior we make the usual assumption of quasi-linear pref-
erences and consider two different models of information regarding the preferences of other

3The assumption that n ≥ k is without loss of generality, as in a setting with n < k bidders the k − n
lowest-valued positions would never be assigned by the mechanisms we consider.
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bidders. Under quasi-linear preferences, the utility ui(b, vi) of bidder i with value vi, in a
given mechanism and for a given bid profile b, is equal to its valuation for the position it
is assigned minus its payment, i.e., ui(b, vi) = βgi(b)vi − pi(b). In the complete information
model the values vi are common knowledge among the bidders. A bid profile b is a Nash
equilibrium of a given mechanism if no bidder has an incentive to change its bid assuming
that the other bidders don’t change their bids, i.e., if for every i ∈ N ,

ui

(
b, vi

)
= max

x∈R
ui

(
(b−i, x), vi

)
,

where (b−i, x) = (b1, . . . , bi−1, x, bi+1, . . . , bn). A Nash equilibrium b is efficient if for all
i, j ∈ {1, . . . , n}, bi > bj whenever vi > vj.

In the (symmetric) incomplete information model values vi are drawn independently
from a continuous distribution with density function f , cumulative distribution function
F , and support [0, v̄] for some finite v̄ ∈ R+ we assume to be common knowledge among
the bidders.4 Our results in addition require existence and boundedness of the first three
derivatives of F . Since valuations are independent and identically distributed, an efficient
assignment for all value profiles can only be obtained from a symmetric profile (b, . . . , b) for
some bidding function b : R → R. The quantity of interest for strategic considerations under
incomplete information is the expected utility ub

i(x, vi) of bidder i with value vi given that it
bids x ∈ R and all other bidders use bidding function b, which is given by

ub
i(x, vi) = Evj∼F,j ̸=i

[
ui

(
vi,
(
b(v1), . . . , b(vi−1), x, b(vi+1), . . . , b(vn)

))]
.

Bidding function b then is a Bayes-Nash equilibrium if no bidder has an incentive to change
its bid, i.e., if for all i ∈ {1, . . . , n} and vi ∈ [0, v̄],

ub
i(b(vi), vi) = max

x∈R
ub
i(x, vi). (1)

A Bayes-Nash equilibrium b is efficient if it is increasing almost everywhere.
A mechanism that achieves efficiency in both Nash and Bayes-Nash equilibrium is the

Vickrey-Clarke-Groves (VCG) mechanism. It uses allocation rule g and a payment rule pβ

that charges each bidder its externality on the other bidders, which is equal to the additional
utility bidders assigned lower positions would obtain by moving up one position. Denoting
by b(i) the (n−i+1)st order statistic of b, such that b(1) ≥ · · · ≥ b(n), and using the convention
that b(i) = 0 when i > n,

pβi (b) =
k∑

j=gi(b)

(βj − βj+1)b(j+1).

It is well known and not difficult to see that the VCG mechanism makes it optimal for
each bidder to bid its true valuation irrespective of the bids of others, which is a stronger

4An analytical characterization of equilibria in the case of non-identical distributions is, unfortunately,
well beyond the state of the art even for very simple settings. For a single item and two bidders with values
drawn uniformly from distinct intervals, for example, this question was posed by Vickrey [36] and answered
only recently, almost half a century later, by Kaplan and Zamir [25].
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property than those required of a Nash or Bayes-Nash equilibrium. The resulting assignment
is efficient. The resulting outcome of assignment and payments is in fact the bidder-optimal
core outcome, and we will refer to it by that name.

While computation of payments in the VCG mechanism requires knowledge of the vec-
tor β of relative values, we will be interested instead in the ability of mechanisms to support
an efficient outcome in equilibrium when only an inaccurate estimate α ∈ Rk

≥ of β is available
to the auctioneer. To this end we consider parameterized variants of the three mechanisms
that have been used and studied most extensively: the α-VCG mechanism, the α-GFP
mechanism, and the α-GSP mechanism. The three mechanisms all use allocation rule g, and
their payment rules pV, pF, and pS respectively charge a bidder its externality, its bid on the
position it is assigned, and the next-lower bid on that position. Using the convention that
αj = 0 when j > k,

pVi (b) =
k∑

j=gi(b)

(αj − αj+1)b(j+1),

pFi (b) = αgi(b)bi, and

pSi (b) = αgi(b)b(gi(b)+1).

We will sometimes drop superscripts when the mechanism we are referring to is clear from
the context.

3 Complete Information

We begin our analysis with the complete-information case. Here, when α = β, the α-
VCG mechanism has a truthful equilibrium, the α-GSP mechanism has an equilibrium that
yields the bidder-optimal core outcome [19, 34], and the α-GFP mechanism may not have
any equilibrium [12]. When α ̸= β the α-VCG mechanism loses its truthfulness, and it
makes sense to ask under what conditions the α-VCG mechanism and the α-GSP mechanism
possess an efficient equilibrium. To build intuition we first look at the special case with three
positions and three bidders, before moving on to the general case. Whereas the special case
can be analyzed by comparing the equilibrium conditions of the two mechanisms more or less
directly, and thus lends itself to the illustration of the relative strength of these conditions,
the analysis of the general case will require an additional insight.

3.1 Three Positions and Three Bidders

In the special case, valuations are given by vectors v ∈ R3 and β ∈ R3
≥ while mechanisms use

a vector α ∈ R3
≥ that may differ from β. Our goal will be to understand which combinations

of α and β allow for the existence of a bid profile b ∈ R3 that is an equilibrium and leads to
an efficient assignment. Assuming without loss of generality that v1 ≥ v2 ≥ v3 > 0, efficiency
requires that

b1 ≥ b2 ≥ b3. (2)
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For b to be an equilibrium, none of the bidders may benefit from raising or lowering their
respective bid and being assigned a different position. For the α-VCG mechanism this means
that

β1v1 − (α1 − α2)b2 − (α2 − α3)b3 ≥ β2v1 − (α2 − α3)b3, (3)

β1v1 − (α1 − α2)b2 − (α2 − α3)b3 ≥ β3v1, (4)

β2v2 − (α2 − α3)b3 ≥ β1v2 − (α1 − α2)b1 − (α2 − α3)b3, (5)

β2v2 − (α2 − α3)b3 ≥ β3v2, (6)

β3v3 ≥ β1v3 − (α1 − α2)b1 − (α2 − α3)b2, (7)

β3v3 ≥ β2v3 − (α2 − α3)b2. (8)

There is no upper bound on b1 and no lower bound on b3 except b3 ≥ 0. Hence, whenever
there is a solution, there is one in which we can increase b1 and set b3 = 0. Setting b1
to a large value and b3 = 0 satisfies (2), (5), (6), and (7). With this choice of b3, and
since β2v1 ≥ β3v1, (4) is implied by (3). The α-VCG mechanism thus possesses an efficient
equilibrium if and only if there exists a bid b2 such that

(α1 − α2)b2 ≤ (β1 − β2)v1, (9)

(α2 − α3)b2 ≥ (β2 − β3)v3. (10)

For the α-GSP mechanism the equilibrium conditions require that

β1v1 − α1b2 ≥ β2v1 − α2b3, (11)

β1v1 − α1b2 ≥ β3v1, (12)

β2v2 − α2b3 ≥ β1v2 − α1b1, (13)

β2v2 − α2b3 ≥ β3v2, (14)

β3v3 ≥ β1v3 − α1b1, (15)

β3v3 ≥ β2v3 − α2b2. (16)

There is again no upper bound on b1, and setting b1 to a large value satisfies (13) and
(15). It is, moreover, not difficult to see that (12) is implied by (11) and (14): by (14),
α2b3 ≤ (β2 − β3)v2, so (11) implies that β1v1 − α1b2 ≥ β2v1 − (β2 − β3)v2; since v1 ≥ v2, this
in turn implies (12). The α-GSP mechanism thus possesses an efficient equilibrium if and
only if there exist bids b2 ≥ b3 such that

α1b2 ≤ (β1 − β2)v1 + α2b3, (17)

α2b3 ≤ (β2 − β3)v2, (18)

α2b2 ≥ (β2 − β3)v3. (19)

To see that the constraints for the α-GSP mechanism are generally weaker than those
for the α-VCG mechanism, note that the former can be satisfied even under the additional
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restriction that b2 = b3 if there exists a bid b2 such that

(α1 − α2)b2 ≤ (β1 − β2)v1, (20)

α2b2 ≥ (β2 − β3)v3. (21)

Indeed, any such bid satisfies (17) and (19), while the smallest such bid satisfies (18) as well.
The claim now follows because (20) is identical to (9) and (21) easier to satisfy than (10).
The latter comparison will in fact be strict when α3 > 0.

When α3 = 0 there is no strict separation and the two mechanisms are in fact identical,
but this is a viable design choice only in the absence of a fourth bidder, when the payment
for the last position is always zero. When there is a fourth bidder, then for both mechanisms
α3 > 0 becomes a necessary condition for the existence of an efficient equilibrium and the
separation between the mechanisms is strict. A formal treatment of the case with three
positions and four bidders is given in Appendix A. This treatment also suggests that the
analysis becomes significantly more difficult as the number of positions and bidders increases
and can no longer be solved by a straightforward comparison of the respective equilibrium
conditions.

To further illustrate the separation between the two mechanisms, note that when βi ̸= βj

and αi ̸= αj for all i ̸= j, (9) and (10) can be satisfied if and only if

α2 ≥
α1(β2 − β3)v3 + α3(β1 − β2)v1

(β1 − β2)v1 + (β2 − β3)v3
,

and (17), (18), and (19) if and only if

α2 ≥
α1(β2 − β3)v3

(β1 − β2)v1 + (β2 − β3)v3
.

We compare these bounds in Figure 2. The figure suggests that only an underestimation of β
is problematic, while efficient equilibria are preserved by both mechanisms when α ≥ β. The
analysis in Appendix A shows that this, also, is an artifact of the case with three positions
and three bidders and ceases to hold when there is an additional bidder.

Intuition for the reasons underlying the separation can be gained by considering the upper
and lower bounds on the bid b2 of the second bidder in an efficient equilibrium when β2 is
fixed and α2 varies. Figure 3 shows an illustration for parameters on the dotted line of
Figure 2. Bid b2 is subject to an upper bound because it contributes to the payment for
the first position and setting it too high would mean that the first bidder would prefer the
second position to the first. The upper bound is imposed by (3) for the α-VCG mechanism
and by (11) for the α-GSP mechanism. While the former constraint depends on b3, this
dependence affects the first and second position in the same way and cancels out. The upper
bound is thus the same for both mechanism, and is shown in gray in Figure 3. A lower
bound applies to b2 because it determines the hypothetical payment of the third bidder if
that bidder were to bid above b2 and thus be assigned the second position. The lower bound
is imposed by (8) for the α-VCG mechanism and by (16) for the α-GSP mechanism. The
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β3
v1+(1−β3)v3
β3v1+(1−β3)v3

1

1

α3 = β3

β2

α
2

α-GSP

α-VCG

Figure 2: Comparison of the α-GSP and α-VCG mechanisms under complete information,
for a setting with three positions and three bidders where β1 = α1 = 1 and 0 < β3 = α3 < 1.
The hatched areas indicate the combinations of α2 and β2 for which the two mechanisms
respectively possess an efficient equilibrium. The dotted line illustrates the performance of
the mechanisms for a particular value of β2. When v1 = 10, v3 = 6, and α3 = β3 = 0.3,
this line would lie at β2 = 0.8 and would intersect the curve for the α-GSP mechanism at
α2 = 0.6 and that for the α-VCG mechanism at α2 = 0.72. Any point on the dotted line
between these two intersection points corresponds to a value of α2 for which the α-GSP
mechanism possesses an efficient equilibrium and the α-VCG mechanism does not.

hypothetical payment is higher in the α-GSP mechanism and prevents the third bidder from
bidding above b2 also for smaller values of b2. As a consequence, the α-GSP mechanism
still possesses an efficient equilibrium for smaller values of α2. The same general intuition
applies in settings with arbitrary numbers of bidders and positions when they are viewed
from the perspective of a particular bidder, but the interactions among the different bids
quickly make it impractical to establish equilibrium existence by comparing the equilibrium
conditions directly.

3.2 The General Case

We proceed to show that superiority of the α-GSP mechanism over the α-VCG mechanism
in preserving efficient equilibria holds in general. The following result establishes a weak su-
periority for arbitrary numbers of bidders and positions and arbitrary valuations. Examples
in which only the α-GSP mechanism preserves an efficient equilibrium are straightforward
to construct, and indeed we have already done so for a specific setting.

Theorem 1. Let α, β ∈ Rk
≥, v ∈ Rn. Then the α-GSP mechanism possesses an efficient

Nash equilibrium for valuations given by β and v whenever the α-VCG mechanism does.
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α3 = β3 1

v3

v1

α2

b 2
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α-VCG

Figure 3: Comparison of the α-GSP and α-VCG mechanisms for parameters on the dotted
line of Figure 2. The hatched areas indicate, for each of the two mechanisms, possible bids
b2 of the second bidder in an efficient equilibrium. When v1 = 10, v3 = 6, α3 = β3 = 0.3, and
β2 = 0.8, the upper bound intersects the lower bound for the α-GSP mechanism at α2 = 0.6
and the lower bound for the α-VCG mechanism at α2 = 0.72. The dotted lines indicate the
values of v1 and v3 and thus the possible range of values of v2.

Rather than by comparing the equilibrium conditions of the two mechanisms directly,
as we have done in the special case, we prove the theorem by appealing to the stronger
requirement of envy-freeness, which has played a significant role also in earlier work on VCG
and GSP position auctions [34, 19]. We will see that in the α-VCG mechanism existence of
an efficient equilibrium implies existence of an efficient envy-free equilibrium, which in turn
implies existence of an efficient envy-free equilibrium, and thus of an efficient equilibrium,
in the α-GSP mechanism.

The first implication, from existence of an efficient Nash equilibrium in the α-VCG mech-
anism to existence of an efficient bid profile satisfying envy-freeness, is shown in Lemma 1.
Here, bid profile b is called envy-free if no bidder prefers a different position to the one it is
currently assigned at the current payment for the former, i.e., if for all i ∈ {1, . . . , n},

βgi(b)vi − pi(b) = maxj∈{1,...,n} βgj(b)vi − pj(b). (22)

For both the α-VCG mechanism and the α-GSP mechanism, envy-freeness implies the equi-
librium condition because the current payment is a lower bound on the actual payment of the
bidder if by either mechanism it was assigned that position. Moreover, and in contrast to the
equilibrium condition, envy-freeness can be viewed as a requirement that depends only on
the allocation and payments and not on the underlying mechanism. We can thus complete
the proof by establishing the existence of a mapping from bid profiles in the α-VCG mecha-
nism to bid profiles in α-GSP mechanism that preserves allocation and payments, which we
do in Lemma 2.

12



Assume without loss of generality that v1 ≥ v2 ≥ · · · ≥ vn and that in an efficient
allocation, for 1 ≤ i ≤ min{n, k}, bidder i is assigned position i. Specializing and rearranging
(1), a bid profile b with b1 ≥ · · · ≥ bn is a Nash equilibrium of the α-VCG mechanism if for
all i, j ∈ {1, . . . , n},

(αj − αj+1)bj ≥ (βj − βi)vi −
i−1∑

t=j+1

(αt − αt+1)bt if j < i, (23)

(αi − αi+1)bi+1 ≤ (βi − βj)vi −
j−1∑

t=i+1

(αt − αt+1)bt+1 if j > i. (24)

These conditions constrain the utility of bidder i if instead of position i it was assigned a
position j that is respectively above or below i. Note that in the latter case the payment of
bidder i for position j is equal to the current payment for this position, where in the former
case it may be higher. Specializing (22), a bid profile b with b1 ≥ · · · ≥ bn is envy-free if for
all i, j ∈ {1, . . . , n}, in addition to (24) and instead of (23),5

(αj − αj+1)bj+1 ≥ (βj − βi)vi −
i−1∑

t=j+1

(αt − αt+1)bt+1 if j < i. (25)

Envy-freeness is a stronger requirement than that of being an equilibrium, but we will
see that it comes for free in the sense that existence of an efficient equilibrium automatically
implies existence of an efficient equilibrium satisfying envy-freeness.

Lemma 1. Let α, β ∈ Rk
≥ and v ∈ Rn

≥, and assume that the α-VCG mechanism possesses
an efficient equilibrium. Then the α-VCG mechanism possesses an efficient equilibrium that
is envy-free.

Proof. We will show existence and envy-freeness of a particular type of efficient equilibrium
that we will call bidder-pessimal, in which each of the bids b2, . . . , bn is maximal among all
efficient equilibria.6

First note that (23) only imposes lower bounds on the bids and remains satisfied when
bids are increased. For (24), the case where j = i+ 1 implies all other cases, because

(βi − βj)vi −
j−1∑

t=i+1

(αt − αt+1)bt+1 ≥ (βi − βj)vi −
j−1∑

t=i+1

(βt − βt+1)vt

≥ (βi − βj)vi −
j−1∑

t=i+1

(βt − βt+1)vi

= (βi − βi+1)vi,

5Condition (25) is, unlike (23), symmetric to (24). Varian [34] therefore refers to bid profiles satisfying (25)
and (24) as symmetric equilibria.

6In the case where α = β, the truthful equilibrium of the α-VCG mechanism is bidder-optimal among all
envy-free outcomes, i.e., its bids and payments are minimal [26].

13



where the first inequality holds because, by the fact that b is an efficient equilibrium and
hence by (24), (αt − αt+1)bt+1 ≤ (βt − βt+1)vt when i + 1 ≤ t ≤ j − 1, and the second
inequality because, by efficiency, vt ≤ vi for all such t. Bid bi, for i ∈ {2, . . . , n}, thus is
subject to only two upper bounds, bi ≤ bi−1 by efficiency and (αi−1 −αi)bi ≤ (βi−1 − βi)vi−1

by (24). Increasing each of these bids as much as possible yields a bid profile b such for all
i ∈ {2, . . . , n},

bi =

{
min

(
bi−1,

(βi−1−βi)vi−1

αi−1−αi

)
if αi−1 ̸= αi,

bi−1 otherwise.
(26)

We now claim that b satisfies (25) and begin by showing this for the special case where
j = i− 1, which requires that for all i ∈ {2, . . . , n},

(αi−1 − αi)bi ≥ (βi−1 − βi)vi. (27)

By (26) it suffices to distinguish two cases. If αi−1 ̸= αi and bi = (βi−1−βi)vi−1/(αi−1−αi),
then

(αi−1 − αi)bi = (βi−1 − βi)vi−1 ≥ (βi−1 − βi)vi,

where the inequality holds because vi ≥ vi+1. If instead bi = bi−1, then

(αi−1 − αi)bi = (αi−1 − αi)bi−1 ≥ (βi−1 − βi)vi,

where the inequality holds by (23).
For the general case let i, j ∈ {1, . . . , n} with j < i. Then

(βj − βi)vi −
i−1∑

t=j+1

(αt − αt+1)bt+1 ≤ (βj − βi)vi −
i−1∑

t=j+1

(βt − βt+1)vt+1

≤ (βj − βi)vi −
i−1∑

t=j+1

(βt − βt+1)vi

= (βj − βj+1)vi

≤ (βj − βj+1)vj+1

≤ (αj − αj+1)bj+1,

where the first and last inequality hold because, by (27), (αt − αt+1)bt+1 ≥ (βt − βt+1)vt+1

for t = j + 1, . . . , i − 1 and (βj − βj+1)vj+1 ≤ (αj − αj+1)bj+1, and the second and third
inequality because vt+1 ≥ vi when t+ 1 ≤ i and vi ≤ vj when j < i.7

7In extending the claim from the special to the general case we have in fact shown that, subject to
efficiency, local envy-freeness with regard to the position directly above implies envy-freeness with regard
to all higher positions. Similar results have appeared in prior work [e.g., 34, Fact 5], but only for the case
where α = β.
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We proceed to show that any bid profile in the α-VCG mechanism can be mapped to a
bid profile that in the α-GSP mechanism yields the same allocation and payments. Applying
this mapping to an efficient envy-free bid profile like the one identified by Lemma 1, and
noting that envy-freeness implies the equilibrium condition, then shows Theorem 1.

Lemma 2. Let α, β ∈ Rk
≥ and v, b ∈ Rn

≥. Let b
S ∈ Rn such that for all i ∈ {1, . . . , n},

bSi =


bS2 if i = 1,

pVi−1(b)

αi−1
if i ∈ {2, . . . , k + 1} and αi−1 > 0,

0 otherwise.

Then bS1 ≥ · · · ≥ bSn and for all i ∈ {1, . . . , n}, pSi (bS) = pVi (b).

Proof. Note that bS1 = bS2 . Let j = min{i : αi = 0} and note that bSi = 0 when i > j. For
the first part of the claim it thus suffices to show that bSi ≥ bSi+1 for i = 2, . . . , j − 1, which
we do in two steps. First, for all i ∈ {2, . . . , j},

bSi =
pVi−1

αi−1

=

∑k
t=i−1(αt − αt+1)bt+1

αi−1

≤
∑k

t=i−1(αt − αt+1)bi

αi−1

=
(αi−1 − αk+1)bi

αi−1

= bi, (28)

where the first two equalities respectively hold by definition of bSi and pVi−1, the inequality
because b1 ≥ · · · ≥ bn, and the last equality because, by convention, αk+1 = 0. Then, for all
i ∈ {2, . . . , j − 1},

bSi =
pVi−1

αi−1

=
(αi−1 − αi)bi + pVi

αi−1

=
(αi−1 − αi)bi + αib

S
i+1

αi−1

≥ (αi−1 − αi)b
S
i+1 + αib

S
i+1

αi−1

= bSi+1,

where the first and third equalities hold by definition of bSi , the second equality exploits the
recursive nature of the definition of pVi−1, and the inequality uses that bi ≥ bi+1 and that,
by (28), bi+1 ≥ bSi+1.

The second part of the claim is satisfied for i < j because pSi = αib
S
i+1 = αip

V
i /αi = pVi ,

and for i ≥ j because αi = 0 for all i ≥ j and thus pSi = pVi = 0.

The above analysis in fact shows that any envy-free equilibrium of the α-VCG mechanism
is preserved by the α-GSP mechanism. Since the bidder-optimal core outcome is envy-
free [26], we thus have the following.

Corollary 1. Let α, β ∈ Rk
≥, v ∈ Rn. Then the α-GSP mechanism obtains the bidder-

optimal core outcome in a Nash equilibrium for valuations given by β and v whenever the
α-VCG mechanism does.
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4 Incomplete Information

We now turn to incomplete-information environments, where bidders only possess probabilis-
tic information regarding one another’s valuations. When α = β, the α-VCG mechanism of
course maintains its truthful dominant-strategy equilibrium. The α-GSP mechanism may
fail to possess an efficient equilibrium even when α = β and the bidders have identically
distributed valuations.8 When α = β and valuations are identically distributed then α-GFP
possesses a unique Bayes-Nash equilibrium, and this equilibrium is efficient [12].

Given these results it is natural to ask how successful the α-VCG and α-GFP mecha-
nisms are in maintaining an efficient equilibrium outcome when α ̸= β and valuations are
distributed identically. We show that, perhaps surprisingly, the non-truthful mechanism is
again more robust, for arbitrary values of α and β and independent and identically dis-
tributed valuations according to any distribution satisfying mild technical conditions. Our
analysis uses Myerson’s classical characterization of possible equilibrium bids to identify,
for either of the two mechanisms, conditions on α and β that are necessary and sufficient
for equilibrium existence. The conditions for the α-VCG mechanism turn out to be more
demanding. Just as we did for complete-information environments, we begin by considering
a special case, this time with two positions, three bidders, and valuations drawn uniformly
at random from the unit interval. The special case is used to build intuition, and introduce
the necessary machinery, for the general result.

It is known that the first-price auction may not possess an efficient equilibrium in certain
asymmetric settings [28]. Together with our result this shows that in the general case,
when valuations are not necessarily identically distributed, neither mechanism dominates
the other.

4.1 Two Positions and Three Bidders

Let v1, v2, v3 be drawn independently from the uniform distribution on [0, 1]. Let α, β ∈ R2
≥

with α2, β2 > 0, and assume without loss of generality that α1 = β1 = 1. Our goal will
again be to characterize the values of α and β for which given mechanisms of interest,
in this case the α-GFP and α-VCG mechanisms, admit an efficient equilibrium. Behavior
under incomplete information can be described by a profile of bidding functions, one for each
bidder, that map the bidder’s value to its bid. It is clear that in a symmetric setting like ours
efficient outcomes can only result from symmetric bidding functions, so we will be interested
in functions bF : R → R that yield an efficient equilibrium in the α-GFP mechanism and
functions bV : R → R that achieve the same in the α-VCG mechanism.

The standard technique for equilibrium analysis under incomplete information uses a
seminal result of Myerson that characterizes the expected allocation and payments in equi-
librium in terms of the allocation probabilities induced by a mechanism and bidders’ bidding

8Gomes and Sweeney [20] gave a characterization of those values of α that enable equilibrium existence
in this case. The result can be strengthened in our setting to show that for some values of β no choice of α
leads to an efficient equilibrium.
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functions. The result was originally formulated for truthful mechanisms, but equivalent con-
ditions exist for arbitrary bidding functions that instead of being in equilibrium provide a
best response among values in their range. The latter is obviously a necessary condition for
equilibrium, and can be turned into a sufficient condition by arguing that no better response
exists outside the range. For our setting and notation we have the following result.

Lemma 3 (Myerson [32]). Consider a position auction for an environment with n bidders, k
positions, and β ∈ Rk

≥. Assume that bidders use a bidding function b with range X, and that
a bidder with value v is consequently assigned position s ∈ {1, . . . , k} with probability Ps(v).
Then u(b(v), v) = maxx∈X u(x, v) for all v ∈ [0, v̄] if and only if the following holds:

(a) the expected allocation
∑k

s=1 Ps(v)βs is non-decreasing in v, and

(b) the payment function p satisfies

E[p(v)] = p(0) +
k∑

s=1

βs

∫ v

0

dPs(z)

dz
z dz. (29)

All mechanisms we consider set p(0) = 0 and use an efficient allocation rule, for which

Ps(v) =

(
n− 1

s− 1

)
(1− F (v))s−1(F (v))n−s

and (a) is satisfied. Together with our assumptions on F , efficiency mandates further that b
must increase almost everywhere.

In the special case with two positions and three bidders with values distributed uniformly
on the unit interval we have that P1(v) = F 2(v) = v2 and P2(v) =

(
2
1

)
F (v)(1−F (v)) = 2v(1−

v), payments in any efficient equilibrium can thus be described by a function pE : R → R
satisfying

E[pE(v)] = β1

∫ v

0

dP1(z)

dz
z dz + β2

∫ v

0

dP2(z)

dz
z dz

=
2

3
β1v

3 + β2v
2 − 4

3
β2v

3. (30)

A candidate equilibrium bidding function for the α-GFP mechanism can now be obtained
by writing the expected payment in terms of bidding function bF , equating the resulting
expression with (30), and solving for bF . In the α-GFP mechanism a bidder with value v
that is allocated position s pays αsb

F (v), its expected payment therefore satisfies

E[pF (v)] = P1(v)α1b
F (v) + P2(v)α2b

F (v)

= (α1v
2 + 2α2v − 2α2v

2)bF (v). (31)

By Lemma 3 the expressions in (30) and (31) must be the same. Equating them yields

bF (v) =
2/3 · v3 − 4/3 · β2v

3 + β2v
2

v2 − 2α2v2 + 2α2v
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when v > 0, and we can set bF (0) = 0 for convenience.9 Bidding below bF (0) = 0 is
impossible, bidding above bF (v̄) is dominated,10 and bF satisfies the second condition of
Lemma 3 by construction. The α-GFP mechanism thus has an efficient equilibrium if and
only if bF is increasing almost everywhere. Taking the derivative we obtain

dbF (v)

dv
=

(4
3
v − 8

3
β2v + β2)(v − 2α2v + 2α2)

(v − 2α2v + 2α2)2
− (1− 2α2)(

2
3
v2 − 4

3
β2v

2 + β2v)

(v − 2α2v + 2α2)2
.

The sign of this expression is determined by the sign of its numerator, and it turns out
that the numerator is positive at 0 and, depending on the value of β2, either non-decreasing
everywhere on [0, 1] or decreasing everywhere on [0, 1]. Indeed, dbF (v)/dv|v=0 = β2/(2α2) >
0, and the derivative of the numerator, (4/3− 8/3β2)(v− 2α2v+2α2), is non-negative when
β2 ≤ 1/2 and negative when β2 > 1/2. In the case where β2 > 1/2 we need that

dbF (v)

dv

∣∣∣∣
v=1

=

(
4

3
− 5

3
β2

)
− (1− 2α2)

(
2

3
− 1

3
β2

)
≥ 0,

which holds when

α2 ≥
2β2 − 1

2− β2

.

We conclude that the α-GFP mechanism possesses an efficient equilibrium if and only if
β2 ≤ 1/2 or α2 ≥ (2β2 − 1)/(2− β2).

Analogously, in the α-VCG mechanism, the payment of a bidder with value v satisfies

E[pV (v)] = P1(v)

[
(α1 − α2)

∫ v

0

2t

v2
bV (t) dt+ α2

∫ v

0

2(v − t)

v2
bV (t) dt

]
+ P2(v)α2

∫ v

0

1

v
bV (t) dt

= (2α1 − 4α2)

∫ v

0

tbV (t) dt+ 2α2

∫ v

0

bV (t) dt, (32)

where 2t/v2 = 2F (t)f(t)/F (v)2 and 2(v − t)/v2 = 2F (v − t)f(t)/F (v)2 are the densities
of the second and third highest values given that the bidder’s value v is the highest, and
1/v = f(t)/F (v) is the density of the third highest value given that v is the second highest.
By Lemma 3 the expressions in (30) and (32) must again be the same. Taking the derivatives
of both and solving for bV (v) yields

bV (v) =
2v2 − 4β2v

2 + 2β2v

2v − 4α2v + 2α2

when v < 1, and we can extend bV appropriately when v = 1.11 By the same argument
as before, the α-VCG mechanism has an efficient equilibrium if and only if bV is increasing

9Application of l’Hospital’s rule shows that limv→0 b
F (v) = 0, so this choice makes bF increasing.

10Since equilibrium bidding functions must be increasing almost everywhere, bidding above bF (v̄) would
not increase the probability of winning, and it would also not lead to a lower payment.

11We have assumed that α2 > 0, so the denominator vanishes only when v = α2 = 1. If β2 < 1, then
limv→1 b

V (v) = ∞. If β2 = 1, application of l’Hospital’s rule shows that limv→1 b
V (v) = 1.
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almost everywhere. Taking the derivative we obtain

dbV (v)

dv
=

(4v − 8β2v + 2β2)(2v − 4α2v + 2α2)

(2v − 4α2v + 2α2)2
− (2− 4α2)(2v

2 − 4β2v
2 + 2β2v)

(2v − 4α2v + 2α2)2
.

When α2 < 1 the sign of this expression is determined by its numerator, which is positive
at 0 and, depending on the value of β2, either non-decreasing everywhere on [0, 1] or de-
creasing everywhere on [0, 1]. Indeed, dbF (v)/dv|v=0 = β2/α2 > 0, and the derivative of the
numerator, (4 − 8β2)(2v − 4α2v + 2α2), is non-negative when β2 ≤ 1/2 and negative when
β2 > 1/2. When β2 > 1/2 we need that

dbV (v)

dv

∣∣∣∣
v=1

=
(4− 6β2)(2− 2α2)− (2− 4α2)(2− 2β2)

(2− 2α2)2
≥ 0,

which for α2 < 1 holds when

α2 ≥ 2− 1

β2

.

When α2 = 1 the above reasoning still applies as long as v < 1, so bV (v) is increasing almost
everywhere when

lim
v→1

dbV (v)

dv
≥ 0.

This is indeed the case, as limv→1 db
V (v)/dv = ∞ when β2 < 1, and limv→1 db

V (v)/dv = 1
when β2 = 1 by applying l’Hospital’s rule twice. We conclude that the α-VCG mechanism
possesses an efficient equilibrium if and only if β2 ≤ 1/2 or α2 ≥ 2− 1/β2.

It is now not hard to see that the equilibrium condition for the α-GFP mechanism is
easier to satisfy than that for the α-VCG mechanism. In fact, for the α-VCG mechanism,
efficient equilibria may cease to exist even when α2 is very close to β2. When β2 = 0.8, for
example, any value of α2 ≥ 0.5 would suffice for the α-GFP mechanism, while the α-VCG
mechanism would require that α2 ≥ 0.75. An illustration is provided in Figure 4.

Analogously to the complete-information case, intuition can be gained by considering
candidate equilibrium bids for the two mechanisms when β2 is fixed and α2 varies. Figure 5
shows an illustration for parameters on the dotted line of Figure 4. The bidding function
for the α-GFP mechanism satisfies bF (0) = 0 and bF (1) = 2/5 and is concave for all values
of α2. The bidding function for the α-VCG mechanism satisfies bV (1/2) = 1/2, and is
convex when α2 ≥ β2 and concave when α2 ≤ β2. If α2 is decreased, bids in the α-GFP
mechanism increase for all values, whereas bids in the α-VCG mechanism increase for values
below 1/2 and decrease for values above 1/2. To explain this behavior, we recall that by
Myerson’s characterization expected payments in equilibrium have to remain the same as α2

changes. In the α-GFP mechanism, where the payment of each bidder is the product of that
bidder’s bid and an appropriate entry of α or zero, a decrease in α2 must be compensated
through higher bids by bidders likely to be assigned the second position. In the α-VCG
mechanism, where payments depend on the bids of bidders assigned lower positions and
these bids are weighted by gaps between entries of α, decreasing α2 simultaneously increases
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Figure 4: Comparison of the α-GFP and α-VCG mechanisms under incomplete information,
for a setting with two positions, three bidders, and valuations drawn independently and
uniformly from [0, 1]. The hatched areas indicate the combinations of α2 and β2 for which
the mechanisms respectively possess an efficient equilibrium, when α1 = β1 = 1. The dotted
line at β2 = 0.8 intersects the curve for the α-GFP mechanism at α2 = 0.5 and that for the
α-VCG mechanism at α2 = 0.75. For all points between the intersection points the α-GFP
mechanism has an efficient equilibrium and the α-VCG mechanism does not.

the gap between α1 and α2 and decreases the gap between α2 and zero. Holding everything
else fixed, this would increase the payment for the first position and decrease the payment
for the second position. To counter this, bidders with higher value, who are more likely to
receive the second position, have to bid less aggressively, while those with lower value have
to bid more aggressively. For both mechanisms the change in bidding behavior ultimately
breaks monotonicity of the bidding function and thus existence of an efficient equilibrium.
However, the effect in the α-GFP mechanism turns out to be weaker than the combination
of effects in the α-VCG mechanism, and equilibrium existence is preserved for smaller values
of α2 in the former.

4.2 The General Case with Identical Distributions

We proceed to establish a weak superiority for any number of positions and bidders and arbi-
trary symmetric valuation distributions, and note that examples showing a strict separation
are straightforward to construct and have indeed been given for a specific setting.

Theorem 2. Let α, β ∈ Rk
≥. Let v ∈ Rn, with components drawn independently from a

continuous distribution with bounded support. Then the α-GFP mechanism possesses an
efficient Bayes-Nash equilibrium for valuations given by β and v whenever the α-VCG mech-
anism does.
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Figure 5: Candidate bidding functions for the α-GFP and α-VCG mechanisms in a setting
with three bidders with values distributed uniformly on [0, 1] and two positions with α1 =
β1 = 1, β2 = 0.8, and α2 ∈ {0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1} shaded from light to dark.
The function for the α-GFP mechanism is increasing almost everywhere when α2 ≥ 0.5, the
function for the α-VCG mechanism when α2 ≥ 0.75.

To obtain this general result we will follow the same basic strategy as in the special case,
but will have to overcome two major difficulties on the way.

The first difficulty concerns the equilibrium bidding function for the α-VCG mechanism.
Whereas deriving a bidding function for the α-GFP mechanism remains relatively straight-
forward even for an arbitrary number of positions and arbitrary valuation distributions, the
situation becomes significantly more complex for the α-VCG mechanism due to the depen-
dence of its payment rule on the bids for all lower positions. Specifically, when equating
the two expressions for the expected payment in equilibrium, (30) and (32) in the special
case, and taking derivatives on both sides, the integrand in the latter no longer depends only
on t, the variable of integration. Instead, the conditional densities of the values of bidders
assigned lower positions introduce a dependence on v. When taking the derivative one would
expect to obtain a differential equation, and a closed form solution to this differential equa-
tion would be required to continue with the rest of the argument. We take a different route
and use a rather surprising combinatorial equivalence to obtain an alternative expression for
the expected payment that only depends on t.

A second difficulty arises when trying to show that bF is increasing for a wider range of
values of α and β than bV . In the special case we could argue directly about the derivatives
of the bidding functions, but this type of argument becomes infeasible rather quickly when
increasing the number of positions or moving to general value distributions. The key insight
that will allow us to generalize the result is that there exist functions A : R → R and
B : R → R such that bF (v) = A(v)/B(v) and bV (v) = A′(v)/B′(v), where A′ and B′

respectively denote the derivatives of A and B. This relationship is easily verified for (30)
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and (32) but continues to hold in general. We use it to show that at the minimum value of v
for which dbF (v)/dv is non-positive, should such a value exist, dbV (v)/dv is non-positive as
well.

Candidate equilibrium bidding functions We begin by deriving candidate equilibrium
bidding functions for the two mechanisms. Due to the more complicated structure of the
payments, the case of the α-VCG mechanism is significantly more challenging.

Lemma 4. Let α, β ∈ Rk
≥ with αk > 0 and βk > 0. Suppose valuations are drawn from

a distribution with support [0, v̄], probability density function f , and cumulative distribution
function F . Then, an efficient equilibrium of the α-GFP mechanism must use a bidding
function bF with

bF (v) =

∑k
s=1 βs

∫ v

0
dPs(t)

dt
t dt∑k

s=1 αsPs(v)
.

If bF is increasing almost everywhere, it constitutes the unique efficient equilibrium. Other-
wise no efficient equilibrium exists.

Proof. Since efficient equilibria must be symmetric, we can write an efficient equilibrium of
the α-GFP mechanism in terms of a bidding function bF : [0, v̄] → R≥0. A bidder with
value v who is allocated position s then pays αsb

F (v), and we have that

E
[
pF (v)

]
=

k∑
s=1

αsPs(v)b
F (v). (33)

The expected payment in an efficient equilibrium is given by Lemma 3, and by equating (33)
with (29) and solving for bF (v) we obtain

bF (v) =

∑k
s=1 βs

∫ v

0
dPs(t)

dt
t dt∑k

s=1 αsPs(v)
.

Bidding below bF (0) = 0 is impossible and bidding above bF (v̄) is dominated, so the claim
follows from Lemma 3.

Lemma 5. Let α, β ∈ Rk
≥ with αk > 0 and βk > 0. Suppose valuations are drawn from

a distribution with support [0, v̄], probability density function f , and cumulative distribution
function F . Then, an efficient equilibrium of the α-VCG mechanism must use a bidding
function bV with

bV (v) =

∑k
s=1 βs

dPs(v)
dv

v∑k
s=1 αs

dPs(v)
dv

.

If bV is increasing almost everywhere, it constitutes the unique efficient equilibrium. Other-
wise no efficient equilibrium exists.
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Proof. Efficiency again requires symmetry, so any efficient equilibrium of the α-VCG mech-
anism can be described by a bidding function bV : [0, v̄] → R≥0.

Denote by pV (v) the payment in the α-VCG mechanism of a bidder with value v, and by
pVs (v) the same payment under the condition that the bidder has the s-highest value overall.
These quantities are random variables that depend on the values of n− 1 other bidders, and
we have that

E[pV (v)] =
k∑

s=1

Ps(v) · E[pVs (v)], (34)

where, as before, Ps(v) is the probability that v is the s-highest of n values drawn indepen-
dently from F . The conditional payment pVs (v) depends on the conditional densities of the
valuations of bidders assigned lower positions, and on their resulting bids. For s ∈ {1, . . . , k}
and ℓ ∈ {s, . . . , k}, denote by

Iℓ,s(v, t) =
(n− s)f(t)

(
n−s−1
n−ℓ−1

)
F (t)n−ℓ−1(F (v)− F (t))ℓ−s

F (v)n−s

the density at t of the (ℓ + 1)-highest of n values drawn independently from F , under the
condition that the s-highest value is equal to v. Then

E[pVs (v)] =
k∑

ℓ=s

(αℓ − αℓ+1) ·
∫ v

0

Iℓ,s(v, t) b
V (t) dt,

and by substituting into (34), exchanging the order of summation and integration, and
grouping by coefficients of αs, we obtain

E[pV (v)] =
k∑

s=1

Ps(v)
k∑

ℓ=s

(αℓ − αℓ+1)

∫ v

0

Iℓ,s(v, t) b
V (t) dt

=

∫ v

0

k∑
s=1

αs

[ s∑
ℓ=1

Pℓ(v) · Is,ℓ(v, t)−
s−1∑
ℓ=1

Pℓ(v) · Is−1,ℓ(v, t)

]
bV (t) dt. (35)

Note that the roles of s and ℓ have been reversed, such that s ≥ ℓ henceforth. We now recall
that

Pℓ(v) =

(
n− 1

ℓ− 1

)
(1− F (v))ℓ−1F (v)n−ℓ

and consider each of the two sums inside the parentheses in turn.
Denoting

Jℓ,s =

(
n− 1

ℓ− 1

)(
n− ℓ− 1

n− s− 1

)
(n− ℓ),
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we have that

s∑
ℓ=1

Pℓ(v) · Is,ℓ(v, t) =
s∑

ℓ=1

Jℓ,s · (1− F (v))ℓ−1f(t)F (t)n−s−1(F (v)− F (t))s−ℓ

=
∑
1≤ℓ≤s

0≤x≤ℓ−1
0≤y≤s−ℓ

Jℓ,s

(
ℓ− 1

x

)(
s− ℓ

y

)
(−1)ℓ+y−x−1f(t)F (v)s−x−y−1F (t)n+y−s−1,

where the second equality holds because by the binomial theorem

(1− F (v))ℓ−1 =
ℓ−1∑
x=0

(
ℓ− 1

x

)
(−F (v))ℓ−x−1 and

(F (v)− F (t))s−ℓ =
s−ℓ∑
y=0

(
s− ℓ

y

)
F (v)s−ℓ−y(−F (t))y.

We claim that the terms with x+ y < s− 1 cancel out, i.e., that∑
1≤ℓ≤s

0≤x≤ℓ−1
0≤y≤s−ℓ
x+y<s−1

Jℓ,s

(
ℓ− 1

x

)(
s− ℓ

y

)
(−1)ℓ+y−x−1f(t)F (v)s−x−y−1F (t)n+y−s−1

=
∑

0≤z≤s−2
0≤y≤z

z−y+1≤ℓ≤s−y

Jℓ,s

(
ℓ− 1

z − y

)(
s− ℓ

y

)
(−1)ℓ+2y−z−1F (v)s−z−1f(t)F (t)n+y−s−1 = 0.

Indeed, the first equality follows by setting z = x + y and observing that in both sums ℓ
takes exactly the values between x + 1 = z − y + 1 and s − y. The second equality holds
because for any z and y with 0 ≤ z ≤ s− 2 and 0 ≤ y ≤ z,

s−y∑
ℓ=z−y+1

Jℓ,s

(
ℓ− 1

z − y

)(
s− ℓ

y

)
(−1)ℓ+2y−z−1

=

s−y∑
ℓ=z−y+1

(
n− 1

ℓ− 1

)(
n− ℓ− 1

n− s− 1

)
(n− ℓ)

(
ℓ− 1

z − y

)(
s− ℓ

y

)
(−1)ℓ+2y−z−1

=
(n− 1)!

(n− s− 1)!(z − y)!y!

s−y∑
ℓ=z−y+1

(−1)ℓ+2y−z−1

(ℓ− z + y − 1)!(s− ℓ− y)!

=
(n− 1)!

(n− s− 1)!(z − y)!y!

m∑
j=0

(−1)j+y

j!(m− j)!

=
(n− 1)!(−1)y

(n− s− 1)!(z − y)!y!m!

m∑
j=0

(−1)j
(
m

j

)
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=
(n− 1)!(−1)y

(n− s− 1)!(z − y)!y!m!
(1 + (−1))m = 0, (36)

where the third equality follows by setting j = ℓ− z+ y− 1 and m = s− z− 1 and the fifth
equality holds by the binomial theorem. Thus, actually,

s∑
ℓ=1

Pℓ(v) · Is,ℓ(v, t) =
∑
1≤ℓ≤s

0≤x≤ℓ−1
0≤y≤s−ℓ
x+y=s−1

Jℓ,s

(
ℓ− 1

x

)(
s− ℓ

y

)
(−1)ℓ+y−x−1f(t)F (v)s−x−y−1F (t)n+y−s−1

=
s∑

ℓ=1

Jℓ,s

(
ℓ− 1

ℓ− 1

)(
s− ℓ

s− ℓ

)
(−1)s−ℓf(t)F (v)0F (t)n−ℓ−1

=
s∑

ℓ=1

Jℓ,s · (−1)s−ℓF (t)n−ℓ−1f(t)

=
s∑

ℓ=1

(
n− 1

s− 1

)
(n− s)

(
s− 1

ℓ− 1

)
(−1)s−ℓF (t)n−ℓ−1f(t)

=
s−1∑
ℓ=0

(
n− 1

s− 1

)
(n− s)

(
s− 1

ℓ

)
(−1)s−ℓ−1F (t)n−ℓ−2f(t)

=

(
n− 1

s− 1

)
(1− F (t))s−1(n− s)F (t)n−s−1f(t), (37)

where the third equality holds because

Jℓ,s =

(
n− 1

ℓ− 1

)(
n− ℓ− 1

n− s− 1

)
(n− ℓ) =

(n− 1)!

(n− ℓ)!(l − 1)!

(n− ℓ− 1)!

(s− ℓ)!(n− s− 1)!
(n− ℓ)

=
(n− 1)!

(l − 1)!(s− ℓ)!(n− s− 1)!
=

(n− 1)!

(n− s)!(s− 1)!

(s− 1)!

(s− ℓ)!(ℓ− 1)!
(n− s)

=

(
n− 1

s− 1

)(
s− 1

ℓ− 1

)
(n− s)

and the fifth equality because by the binomial theorem

s−1∑
ℓ=0

(
s− 1

ℓ

)
(−1)s−ℓ−1F (t)s−ℓ−1 = (1− F (t))s−1.
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Analogously, for the second term in the parentheses of (35),

s−1∑
ℓ=1

Pℓ(v) · Is−1,ℓ(v, t)

=
s−1∑
ℓ=1

Jℓ,s−1 · (1− F (v))ℓ−1f(t)F (t)n−s(F (v)− F (t))s−ℓ−1

=
∑

1≤ℓ≤s−1
0≤x≤ℓ−1

0≤y≤s−ℓ−1

Jℓ,s−1 ·
(
ℓ− 1

x

)(
s− ℓ− 1

y

)
(−1)ℓ+y−x−1f(t)F (v)s−x−y−2F (t)n+y−s,

where the second equality holds because by the binomial theorem

(1− F (v))ℓ−1 =
ℓ−1∑
x=0

(
ℓ− 1

x

)
(−F (v))ℓ−x−1 and

(F (v)− F (t))s−ℓ−1 =
s−ℓ−1∑
y=0

(
s− ℓ− 1

y

)
F (v)s−ℓ−y−1(−F (t))y.

We claim that the terms with x+ y < s− 2 cancel out, i.e., that∑
1≤ℓ≤s−1
0≤x≤ℓ−1

0≤y≤s−ℓ−1
x+y<s−2

Jℓ,s−1

(
ℓ− 1

x

)(
s− ℓ− 1

y

)
(−1)ℓ+y−x−1f(t)F (v)s−x−y−2F (t)n+y−s

=
∑

0≤z≤s−3
0≤y≤z

z−y+1≤ℓ≤s−y−1

Jℓ,s−1

(
ℓ− 1

z − y

)(
s− ℓ− 1

y

)
(−1)ℓ+2y−z−1f(t)F (v)s−z−2F (t)n+y−s = 0.

Indeed, the first equality follows by setting z = x + y and observing that in both sums ℓ
takes exactly the values between x+1 = z− y+1 and s− y− 1. The second equality holds
because for any z and y with 0 ≤ z ≤ s− 3 and 0 ≤ y ≤ z,

s−y−1∑
ℓ=z−y+1

Jℓ,s−1

(
ℓ− 1

z − y

)(
s− ℓ− 1

y

)
(−1)ℓ+2y−z−1 =

r−y∑
ℓ=z−y+1

Jℓ,r

(
ℓ− 1

z − y

)(
r − ℓ

y

)
(−1)ℓ+2y−z−1 = 0,

where the first equality follows by setting r = s − 1 and the second equality holds by (36).
Thus, actually,

s−1∑
ℓ=1

Pℓ(v) · Is−1,ℓ(v, t) =
∑

1≤ℓ≤s−1
0≤x≤ℓ−1

0≤y≤s−ℓ−1
x+y=s−2

Jℓ,s−1

(
ℓ− 1

x

)(
s− ℓ− 1

y

)
(−1)ℓ+y−x−1f(t)F (v)s−x−y−2F (t)n+y−s

=
s−1∑
ℓ=1

Jℓ,s−1

(
ℓ− 1

ℓ− 1

)(
s− ℓ− 1

s− ℓ− 1

)
(−1)s−ℓ−1f(t)F (v)0F (t)n−ℓ−1
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=
s−1∑
ℓ=1

Jℓ,s−1 · (−1)s−ℓ−1F (t)n−ℓ−1f(t)

=
s−1∑
ℓ=1

(
n− 1

s− 1

)
(s− 1)

(
s− 2

ℓ− 1

)
(−1)s−ℓ−1F (t)n−ℓ−1f(t)

=
s−2∑
ℓ=0

(
n− 1

s− 1

)
(s− 1)

(
s− 2

ℓ

)
(−1)s−ℓ−2F (t)n−ℓ−2f(t)

=

(
n− 1

s− 1

)
(1− F (t))s−2(s− 1)F (t)n−sf(t), (38)

where the third equality holds because

Jℓ,s−1 =

(
n− 1

ℓ− 1

)(
n− ℓ− 1

n− s

)
(n− ℓ) =

(n− 1)!

(n− ℓ)!(l − 1)!

(n− ℓ− 1)!

(s− ℓ− 1)!(n− s)!
(n− ℓ)

=
(n− 1)!

(l − 1)!(s− ℓ− 1)!(n− s)!
=

(n− 1)!

(n− s)!(s− 1)!

(s− 2)!

(s− ℓ− 1)!(ℓ− 1)!
(s− 1)

=

(
n− 1

s− 1

)(
s− 2

ℓ− 1

)
(s− 1)

and the fifth equality because by the binomial theorem

s−2∑
ℓ=0

(
s− 2

ℓ

)
(−1)s−ℓ−2F (t)s−ℓ−2 = (1− F (t))s−2.

By substituting (37) and (38) into (35), we conclude that

E
[
pV (v)

]
=

∫ v

0

k∑
s=1

αs

((
n− 1

s− 1

)
(1− F (t))s−1(n− s)F (t)n−s−1f(t)−(
n− 1

s− 1

)
(1− F (t))s−2(s− 1)F (t)n−sf(t)

)
bV (t) dt

=
k∑

s=1

αs

∫ v

0

dPs(t)

dt
bV (t) dt. (39)

The expected payment in an efficient equilibrium is again given by Lemma 3. We can
thus equate (39) with (29), take derivatives on both sides, and solve for bV (v) to obtain

bV (v) =

∑k
s=1 βs

dPs(v)
dv

v∑k
s=1 αs

dPs(v)
dv

.

Bidding below bV (0) = 0 is impossible and bidding above bV (v̄) is dominated, so the claim
follows from Lemma 3.
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Figure 6: Possible forms of the derivative of the candidate equilibrium bidding function bF

when the α-GFP mechanism does not possess an equilibrium. Both the derivative and the
second derivative are non-negative at zero, so if the former is non-positive anywhere on (0, v̄]
there must be a value v∗ > 0 where it either touches or cuts the x-axis from above.

Comparison of the candidate bidding functions Even with the candidate bidding
functions bF and bV in hand, the cases where the α-GFP and α-VCG mechanisms respectively
admit an efficient equilibrium seem difficult to compare. What will ultimately drive the
proof of Theorem 2 is a rather curious relationship between the two bidding functions that
is straightforward to verify given Lemma 4 and Lemma 5: the numerator of bV is equal to
the derivative of the numerator of bF , and the denominator of bV is equal to the derivative
of the denominator of bF .

Corollary 2. Let bF : R → R and bV : R → R be the candidate equilibrium bidding functions
for the α-GFP and α-VCG mechanisms as defined in Lemma 4 and Lemma 5. Then

bF (v) =
A(v)

B(v)
and bV (v) =

A′(v)

B′(v)
,

where A(v) =
∑k

s=1 βs

∫ v

0
dPs(t)

dt
t dt and B(v) =

∑k
s=1 αsPs(v).

To show that the α-GFP mechanism possesses an efficient equilibrium whenever the α-
VCG mechanism does we recall that equilibrium existence is equivalent to a bidding function
that is increasing almost everywhere. We will show that whenever the α-GFP mechanism
fails to satisfy this property, then the α-VCG mechanism will fail to satisfy this property as
well.

We first consider the candidate bidding function for the α-GFP mechanism and show
that at v = 0, either its derivative is positive or both its derivative and second derivative
are non-negative. Failure to possess an equilibrium thus implies existence of a value v∗ > 0
where the derivative cuts the x-axis from above, or of a set of such values with positive
measure where it touches the x-axis. The situation is illustrated in Figure 6.
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We show the claimed behavior at v = 0 using Lemmas 6 and 7 below. Recall that
we can assume without loss of generality that n ≥ k. If n > k, Lemma 6 implies that
dbF (v)/dv |v=0> 0. If n = k, Lemma 6 implies that dbF (v)/dv |v=0= 0, and Lemma 7 shows
that d2bF (v)/dv2 |v=0≥ 0.

Lemma 6. Let bF : R → R be the candidate equilibrium bidding function for the α-GFP
mechanisms as defined in Lemma 4. Then,

dbF (v)

dv

∣∣∣∣
v=0

=
n− k

n− k + 1
· βk

αk

.

Proof. By Corollary 2, bF (v) = A(v)/B(v) with A(v) =
∑k

s=1 βs

∫ v

0
dPs(t)

dt
t dt and B(v) =∑k

s=1 αsPs(v). Writing the derivative as a limit of difference quotients, applying l’Hospital’s
rule to each of the two resulting terms, and respectively substituting x for 2δ and δ we obtain

dbF (v)

dv

∣∣∣∣
v=0

= lim
δ→0

(
A(2δ)/B(2δ)− A(δ)/B(δ)

δ

)
= lim

δ→0

A(2δ)

δ ·B(2δ)
− lim

δ→0

A(δ)

δ ·B(δ)

= lim
δ→0

A′(2δ) · 2
δ ·B′(2δ) · 2 +B(2δ)

− lim
δ→0

A′(δ)

δ ·B′(δ) +B(δ)

= lim
x→0

(∑k
s=1 βs

dPs(x)
dx

· x
)
· 2(∑k

s=1 αs
dPs(x)

dx
· x
)
+
(∑k

s=1 αsPs(x)
) −

lim
x→0

(∑k
s=1 βs

dPs(x)
dx

· x
)

(∑k
s=1 αs

dPs(x)
dx

· x
)
+
(∑k

s=1 αsPs(x)
) .

To analyze these limits we extend by 1 = (F (x)n−k−1 · x)−1/(F (x)n−k−1 · x)−1, factor
(F (x)n−k−1 · x)−1 into the numerator and denominator, and consider each of the terms
in the numerator and denominator in turn.

Using γ as a placeholder for α or β and replacing Ps(x) by its definition,∑k
s=1 γs · dPs(x)

dx
· x

F n−k−1(x) · x =
k∑

s=1

γs

[(
n− 1

s− 1

)
(n− s)F k−s(x)(1− F (x))s−1f(x)

−
(
n− 1

s− 1

)
(s− 1)F k−s+1(x)(1− F (x))s−2f(x)

]
=

k∑
s=1

s−1∑
ℓ=0

γs(−1)ℓ
(
n− 1

s− 1

)
(n− s)

(
s− 1

ℓ

)
F (x)k−s+ℓf(x)

−
k∑

s=1

s−2∑
ℓ=0

γs(−1)ℓ
(
n− 1

s− 1

)
(s− 1)

(
s− 2

ℓ

)
F (x)k−s+ℓ+1f(v).
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Similarly, ∑k
s=1 αsPs(x)

F n−k−1(x) · x =
1

x
·

k∑
s=1

αs

(
n− 1

s− 1

)
F (x)k−s+1(1− F (x))s−1

=
F (x)

x
·

k∑
s=1

s−1∑
ℓ=0

αs(−1)ℓ
(
n− 1

s− 1

)(
s− 1

ℓ

)
F (x)k−s+ℓ.

Since limx→0 F (x)d = 0 for d > 0, the only terms that survive in the limit are those where
the exponent of F (x) is zero. For s ∈ {1, . . . , k} and ℓ ∈ {0, . . . , s − 1}, k − s + ℓ = 0 only
if s = k and ℓ = 0. For s ∈ {1, . . . , k} and ℓ ∈ {0, . . . , s− 2}, k − s+ ℓ− 1 ̸= 0. Using that
limx→0 F (x)/x = f(0), we thus obtain

dbF (v)

dv

∣∣∣∣
v=0

=
βk

(
n−1
k−1

)
(n− k)f(0) · 2

αk

(
n−1
k−1

)
(n− k)f(0) + αk

(
n−1
k−1

)
f(0)

−
βk

(
n−1
k−1

)
(n− k)f(0)

αk

(
n−1
k−1

)
(n− k)f(0) + αk

(
n−1
k−1

)
f(0)

=
2(n− k)βk

(n− k + 1)αk

− (n− k)βk

(n− k + 1)αk

=
n− k

n− k + 1
· βk

αk

as claimed.

Lemma 7. Let bF : R → R be the candidate equilibrium bidding function for the α-GFP
mechanisms as defined in Lemma 4. Then, for n = k,

d2bF (v)

dv2

∣∣∣∣
v=0

≥ 0.

Proof. By Corollary 2, bF (v) = A(v)/B(v) with A(v) =
∑k

s=1 βs

∫ v

0
dPs(t)

dt
t dt and B(v) =∑k

s=1 αsPs(v). For n = k, by Lemma 6,

dbF (v)

dv

∣∣∣∣
v=0

=
A′(v)B(v)− A(v)B′(v)

B(v)2

∣∣∣∣
v=0

= 0.

Since

B(0) =
k∑

s=1

αsPs(0) ≥ αkPk(0) = αk(1− F (0))n−1 = αk > 0,

this implies that (
A′(v)B(v)− A(v)B′(v)

)∣∣∣
v=0
= 0.

Thus

d2bF (v)

dv2

∣∣∣∣
v=0

=
(A′′(v)B(v)− A(v)B′′(v))B(v)2 − (A′(v)B(v)

B(v)4

∣∣∣∣
v=0

− A(v)B′(v))2B(v)B′(v)

B(v)4

∣∣∣∣
v=0

=
A′′(v)B(v)− A(v)B′′(v)

B(v)2

∣∣∣∣
v=0

.
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We have already seen that B(0) > 0. Moreover, A(0) = 0 by the definition of A and
B′′(0) < ∞ by assumption on the value distributions, so it suffices to show that

A′′(0) =

(
k∑

s=1

βs
d2Ps(v)

dv2
· v +

k∑
s=1

βs
dPs(v)

dv

)∣∣∣∣∣
v=0

≥ 0.

Also by assumptions on the value distributions, d2Ps(v)/dv
2 < ∞ for all v, so the first term

vanishes. The second term is

k∑
s=1

βs
dPs(v)

dv

∣∣∣∣∣
v=0

=
k∑

s=1

βs

((
n− 1

s− 1

)
(n− s)F (v)n−s−1(1− F (v))s−1f(v)

−
(
n− 1

s− 1

)
(s− 1)F (v)n−s(1− F (v))s−2f(v)

)∣∣∣∣
v=0

= βk−1(k − 1)f(0)− βk(k − 1)f(0) ≥ 0,

where we have used the definition of Ps(v) and the fact that the only non-zero terms are
those where the exponent of F (v) is zero. Since βk−1 ≥ bk and f(0) > 0, this shows the
claim.

To complete the proof of Theorem 2 we exploit the relationship between the bidding
functions of the α-GFP and α-VCG mechanisms established by Corollary 2, and show that
the latter inherits its behaviour at values v∗ from the former.

Proof of Theorem 2. Assume that the α-GFP mechanism does not possess an efficient equi-
librium, and recall that this implies the existence of a set of values with positive measure
where the candidate bidding function bF is not strictly increasing.

By Lemmas 6 and 7, there must thus exist a set of values v∗ > 0 with positive measure
where

dbF (v)

dv

∣∣∣∣
v=v∗
= 0 and

d2bF (v)

dv2

∣∣∣∣
v=v∗
≤ 0,

or one such value where the equality holds and the inequality is strict.
For an arbitrary value v,

dbF (v)

dv
=

A′(v)B(v)−B′(v)A(v)

(B(v))2
= 0

requires that

A′(v)B(v)−B′(v)A(v) = 0. (40)

Assuming (40),

d2bF (v)

dv2
=

A′′(v)B(v)−B′′(v)A(v)

(B(v))2
≤ 0
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requires that

A′′(v)B(v)−B′′(v)A(v) ≤ 0, (41)

Consider any v∗ > 0, and observe that A(v∗) > 0 and A′(v∗) > 0. For v = v∗ we can thus

rewrite (40) as B(v∗) = B′(v∗)A(v∗)
A′(v)

, and substitute this into (41) to obtain

A′′(v∗)
B′(v∗)A(v∗)

A′(v∗)
−B′′(v∗)A(v∗) ≤ 0.

Dividing by A(v∗) > 0 and multiplying by A′(v∗) > 0 yields

A′′(v∗)B′(v∗)− A′(v∗)B′′(v∗) ≤ 0,

and thus

dbV (v)

dv

∣∣∣∣
v=v∗
=

A′′(v∗)B′(v∗)− A′(v∗)B′′(v∗)

(B′(v∗))2
≤ 0.

It is, moreover, easily verified that the inequality holds strictly when d2bF (v)/dv2|v=v∗ < 0.

There thus exists a set of values v∗ with positive measure where dbV (v)
dv

≤ 0, and the claim
follows.

A Complete Information, Three Positions, and Four

Bidders

Assume without loss of generality that v1 ≥ v2 ≥ v3 ≥ v4 > 0, and in addition that
β1 > β2 > β3 > 0. Efficiency then requires that

b1 ≥ b2 ≥ b3 ≥ b4. (42)

For b to be an equilibrium, none of the bidders may benefit from raising or lowering their
respective bid and being assigned a different position, which for the α-VCG mechanism
means that

β1v1 − (α1 − α2)b2 − (α2 − α3)b3 − α3b4 ≥ β2v1 − (α2 − α3)b3 − α3b4, (43)

β1v1 − (α1 − α2)b2 − (α2 − α3)b3 − α3b4 ≥ β3v1 − α3b4, (44)

β1v1 − (α1 − α2)b2 − (α2 − α3)b3 − α3b4 ≥ 0, (45)

β2v2 − (α2 − α3)b3 − α3b4 ≥ β1v2 − (α1 − α2)b1 − (α2 − α3)b3 − α3b4, (46)

β2v2 − (α2 − α3)b3 − α3b4 ≥ β3v2 − α3b4, (47)

β2v2 − (α2 − α3)b3 − α3b4 ≥ 0, (48)

β3v3 − α3b4 ≥ β1v3 − (α1 − α2)b1 − (α2 − α3)b2 − α3b4, (49)
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β3v3 − α3b4 ≥ β2v3 − (α2 − α3)b2 − α3b4, (50)

β3v3 − α3b4 ≥ 0, (51)

0 ≥ β1v4 − (α1 − α2)b1 − (α2 − α3)b2 − α3b3, (52)

0 ≥ β2v4 − (α2 − α3)b2 − α3b3, (53)

0 ≥ β3v4 − α3b3. (54)

By (46), (α1 − α2)b1 ≥ (β1 − β2)v2 and thus α1 > α2. By (50), (α2 − α3)b2 ≥ (β2 − β3)v3
and thus α2 > α3. By (54), α3b3 ≥ β3v4 and thus α3 > 0. There are no upper bounds on b1
and no lower bounds on b4 except b4 ≥ 0, and setting b1 to a large value and b4 = 0 satisfies
(46), (49), (51), and (52). It is furthermore easy to see that (45) is implied by (44) and
that (48) is implied by (47). Since (β1 − β3)v1 − (α2 − α3)b3 ≥ (β1 − β3)v1 − (β2 − β3)v2 ≥
(β1 − β3)v1 − (β2 − β3)v1 = (β1 − β2)v1, where the first inequality holds because, by (47),
(α2−α3)b3 ≤ (β2−β3)v2, and the second inequality because v1 ≥ v2, (44) is implied by (43).
Since β2v4 −α3b3 ≤ β2v4 − β3v4 = (β2 − β3)v4 ≤ (β2 − β3)v3, where the first inequality holds
because, by (54), α3b3 ≥ β3v4, and the second inequality because v3 ≥ v4, (53) is implied by
(50). Since α1 − α2 > 0, α2 − α3 > 0, and α3 > 0, we can rewrite the remaining constraints
(43), (47), (50), and (54) as upper and lower bounds on b3 and b4 and conclude that the
α-VCG mechanism possesses an efficient equilibrium if and only if there exist bids b2 and
b3 such that

(β1 − β2)v1
α1 − α2

≥ b2 ≥ max

{
(β2 − β3)v3
α2 − α3

, b3

}
,

(β2 − β3)v2
α2 − α3

≥ b3 ≥
β3v4
α3

.

(55)

Analogously, for the α-GSP mechanism, the equilibrium conditions require that

β1v1 − α1b2 ≥ β2v1 − α2b3, (56)

β1v1 − α1b2 ≥ β3v1 − α3b4, (57)

β1v1 − α1b2 ≥ 0, (58)

β2v2 − α2b3 ≥ β1v2 − α1b1, (59)

β2v2 − α2b3 ≥ β3v2 − α3b4, (60)

β2v2 − α2b3 ≥ 0, (61)

β3v3 − α3b4 ≥ β1v3 − α1b1, (62)

β3v3 − α3b4 ≥ β2v3 − α2b2, (63)

β3v3 − α3b4 ≥ 0, (64)

0 ≥ β1v4 − α1b1, (65)

0 ≥ β2v4 − α2b2, (66)

0 ≥ β3v4 − α3b3. (67)

For (65), (66), (67) it must be the case that α1 > 0, α2 > 0, and α3 > 0, which is weaker than
the corresponding condition for the α-VCG mechanism. There are again no upper bounds
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on b1, and setting it to a large value satisfies (59), (62), and (65). Since β3v1 − α3b4 ≥
β3v2−α3b4 ≥ β3v3−α3b4 ≥ 0, where the first two inequalities hold because v1 ≥ v2 ≥ v3 and
the third inequality by (64), (58) is implied by (57) and (61) by (60). Since β2v1 − α2b3 ≥
β2v1− (β2−β3)v2−α3b4 ≥ β2v1− (β2−β3)v1−α3b4 = β3v1−α3b4, where the first inequality
holds because, by (60), α2b3 ≤ (β2−β3)v2+α3b4, and the second inequality because v1 ≥ v2,
(57) is implied by (56). Since α1 > 0, α2 > 0, and α3 > 0, we can rewrite the remaining
constraints (56), (60), (63), (64), (66), and (67) as upper and lower bounds on b2, b3, and
b4 and conclude that the α-GSP mechanism possesses an efficient equilibrium if and only if
there exist bids b2, b3, and b4 such that

(β1 − β2)v1 + α2b3
α1

≥ b2 ≥ max

{
(β2 − β3)v3 + α3b4

α2

,
β2v4
α2

, b3

}
,

(β2 − β3)v2 + α3b4
α2

≥ b3 ≥ max

{
β3v4
α3

, b4

}
,

β3v3
α3

≥ b4.

(68)

It is not immediately obvious when these constraints can be satisfied, and why they should
in fact be easier to satisfy than the constraints for the α-VCG mechanism. That b2 and b3
are each subject to more than one lower bound, and that b4 affects both the lower bound
on b2 and the upper bound on b3, seems particularly unpleasant.

In Section 3.2 we established that, even in the general case with an arbitrary number
of positions and bidders, the α-GSP mechanism possesses an efficient Nash equilibrium
whenever the α-VCGmechanism does. This is achieved by considering a particular, maximal,
solution to the constraints for the α-VCG mechanism and mapping it to a solution to the
constraints for the α-GSP mechanism. Instead of repeating the argument here, we show
strict superiority of the α-GSP mechanism by focusing on the case where β1 = α1 = 1,
β3 = α3, and v3 = v4. By specializing (55) and (68), which requires some work and in the
case of the α-VCG mechanism involves showing that one of the resulting lower bounds is
always stronger than the other, we see that the α-VCG mechanism possesses an efficient
equilibrium if and only if

β3(1− β2)v1 + (β2 − β3)v3
(1− β2)v1 + (β2 − β3)v3

≤ α2 ≤
(β2 − β3)v2 + β3v3

v3
,

and the α-GSP mechanism if and only if

β2v3
(1− β2)v1 + β2v3

≤ α2 ≤
(β2 − β3)v2 + β3v3

v3
.

The upper bounds are identical in both cases, and it is not difficult to see that the lower
bound for the α-GSP mechanism is easier to satisfy than that for the α-VCG mechanism.
We compare the bounds in Figure 7, and note that existence of an efficient equilibrium may
fail due to over- as well as underestimation of the relative values of the positions.
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α3 = β3
β3v1

β3v1+(1−β3)v3
1

1

β3v2+(1−β3)v3
v2

β2

α
2

α-GSP

α-VCG

Figure 7: Comparison of the α-GSP and α-VCG mechanisms under complete information, for
a setting with three positions and four bidders where β1 = α1 = 1, β3 = α3, and v3 = v4. The
hatched areas indicate the combinations of α2 and β2 for which the mechanisms respectively
possess an efficient equilibrium. The common upper bound on these areas always starts
at the origin and reaches α2 = 1 at β2 = (β3v2 + (1 − β3)v3)/v2. The lower bounds for
both mechanisms end at the top-right corner. That for the α-GSP mechanism meets the
horizontal axis at β2 = β3v1/(β3v1 + (1 − β3)v3), whereas that for the α-VCG mechanism
starts at the origin and curves more strongly toward the bottom-right corner as v3 decreases.
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