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1. Introduction

Machine learning is the area of computer science concerned with the de-
sign and analysis of algorithms that can learn from experience. A supervised
learning algorithm observes a training set of labeled examples, and attempts
to learn a rule that accurately predicts the labels of new examples. Following
the rise of the Internet as a computational platform, machine learning prob-
lems have become increasingly dispersed, in the sense that different parts of
the training set may be controlled by different computational or economic
entities.

1.1. Motivation

Consider an Internet search company trying to improve the performance
of their search engine by learning a ranking function from examples. The
ranking function is the heart of a modern search engine, and can be thought
of as a mapping that assigns a real-valued score to every pair of a query and
a URL. Some of the large Internet search companies currently hire Internet
users, whom we hereinafter refer to as “experts”, to manually rank such
pairs. These rankings are then pooled and used to train a ranking function.
Moreover, the experts are chosen in a way such that averaging over the
experts’ opinions and interests presumably pleases the average Internet user.

However, different experts may have different interests and a different
idea of the results a good search engine should return. For instance, take
the ambiguous query “Jaguar”, which has become folklore in search engine
designer circles. The top answer given by most search engines for this query is
the website of the luxury car manufacturer. Knowing this, an animal-loving
expert may decide to give this pair a disproportionately low score, hoping to
improve the relative rank of websites dedicated to the Panthera Onca. An
expert who is an automobile enthusiast may counter this measure by giving
automotive websites a much higher score than is appropriate. From the
search company’s perspective, this type of strategic manipulation introduces
an undesired bias in the training set.

As a second motivating example, consider the distribution process of a
large retail chain, like Spanish fashion company Zara. Store managers typi-
cally report their predicted demand to the central warehouses, where global
shipments of inventory are optimized. In recent years Zara has reengineered
its distribution process using models from operations research [1, 2]. In par-
ticular, regression learning is now employed to predict the upcoming weekly
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demand. The prediction is based on past sales data, but also on requests
by store managers. This introduces incentives for the store managers, whose
salaries depend largely on the sales in their own stores. Caro et al. believe
that “this caused store managers to frequently request quantities exceeding
their true needs, particularly when they suspected that the warehouse might
not hold enough inventory of a top-selling article to satisfy all stores. [...]
Zara might in time consider introducing formal incentives for store managers
to provide accurate forecasts, adding to its more traditional sales-related
incentives.” ([2], p. 74).

1.2. Setting and Goals

Our problem setting falls within the general boundaries of statistical re-
gression learning. Regression learning is the task of constructing a real-
valued function f based on a training set of examples, where each example
consists of an input to the function and its corresponding output. In par-
ticular, the example (x, y) suggests that f(x) should be equal to y. The
accuracy of a function f on a given input-output pair (x, y) is defined using
a loss function `. Popular choices of the loss function are the squared loss,
`(f(x), y) = (f(x) − y)2, or the absolute loss, `(f(x), y) = |f(x) − y|. We
typically assume that the training set is obtained by sampling i.i.d. from
an underlying distribution over the product space of inputs and outputs.
The overall quality of the function constructed by the learning algorithm is
defined to be its expected loss, with respect to the same distribution.

We augment this well-studied setting by introducing a set of strategic
agents. Each agent holds as private information an individual distribution
over the input space and values for the points in the support of this distribu-
tion, and measures the quality of a regression function with respect to this
data. The global goal, on the other hand, is to do well with respect to the
average of the individual points of view. A training set is obtained by elic-
iting private information from the agents, who may reveal this information
untruthfully in order to favorably influence the result of the learning process.

Mechanism design is a subfield of economics that is concerned with the
question of how to incentivize agents to truthfully report their private in-
formation, also known as their type. Given potentially non-truthful reports
from the agents, a mechanism determines a global solution, and possibly ad-
ditional monetary transfers to and from the agents. A mechanism is said to
be incentive compatible if it is always in the agents’ best interest to report
their true types, and efficient if the solution maximizes social welfare (i.e.,
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minimizes the overall loss). Our goal in this paper will be to design and ana-
lyze incentive compatible and efficient mechanisms for the regression learning
setting. It should be noted that incentive compatibility is essential for ob-
taining any learning theoretic bounds. Otherwise, all agents might reveal
untruthful information at the same time, in a coordinated or uncoordinated
way, causing the learning problem itself to be ill-defined.

1.3. Results

We begin our investigation by considering a restricted setting where each
agent is only interested in a single point of the input space. Quite surprisingly,
it turns out that a specific choice of `, namely the absolute loss function, leads
to excellent game-theoretic properties: an algorithm which simply finds an
empirical risk minimizer on the training set is group strategyproof, meaning
that no coalition of agents is motivated to lie. Like in all of our incentive
compatibility results, truthfulness holds with respect to dominant strategies,
i.e., regardless of the other agents’ actions. In a sense, this is the strongest
incentive property that could possibly be obtained. We also show that even
much weaker truthfulness results cannot be obtained for a wide range of other
loss functions, including the popular squared loss.

In the more general case where agents are interested in non-degenerate
distributions, achieving incentive compatibility requires more sophisticated
mechanisms. We show that the well-known VCG mechanism does very well:
with probability 1− δ, no agent can gain more than ε by lying, where both ε
and δ can be made arbitrarily small by increasing the size of the training set.
This result holds for any choice of loss function `.

We also study what happens when payments are disallowed. In this set-
ting, we obtain limited positive results for the absolute loss function and for
restricted yet interesting function classes. In particular, we present a mech-
anism which is approximately group strategyproof as above and 3-efficient
in the sense that the solution provides a 3-approximation to optimal social
welfare. We complement these results with a matching lower bound and
provide strong evidence that no approximately incentive compatible and ap-
proximately efficient mechanism exists for more expressive functions classes.

1.4. Related Work

To the best of our knowledge, this paper is the first to study incentives in a
general machine learning framework. Previous work in machine learning has
investigated the related problem of learning in the presence of inconsistent
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and noisy training data, where the noise can be either random [3, 4] or ad-
versarial [5, 6]. Barreno et al. [7] consider a specific situation where machine
learning is used as a component of a computer security system, and account
for the possibility that the training data is subject to a strategic attack in-
tended to infiltrate the secured system. In contrast to these approaches, we
do not attempt to design algorithms that can tolerate noise, but instead focus
on designing algorithms that discourage the strategic addition of noise.

Most closely related to our work is that of Perote and Perote-Peña [8].
The authors essentially study the setting where each agent controls one point
of the input space, in a framework that is not learning-theoretic. In addition,
they only consider linear regression, and the input space is restricted to be
the real line. For that setting, the authors put forward a class of truthful
estimators. Rather than looking at the approximation properties of said
estimators, they are instead shown to be Pareto-optimal, i.e., there exist no
regression lines that are weakly better for all agents, and strictly better for
at least one agent.

Our work is also related to the area of algorithmic mechanism design,
introduced in the seminal work of Nisan and Ronen [9]. Algorithmic mecha-
nism design studies algorithmic problems in a game-theoretic setting where
the different participants cannot be assumed to follow the algorithm but
rather act in a selfish way. It has turned out that the main challenge of algo-
rithmic mechanism design is the inherent incompatibility of generic truthful
mechanisms with approximation schemes for hard algorithmic problems. As
a consequence, most of the current work in algorithmic mechanism design fo-
cuses on dedicated mechanisms for hard problems (see, e.g., [10, 11]). What
distinguishes our setting from that of algorithmic mechanism design is the
need for generalization to achieve globally satisfactory results on the basis
of a small number of samples. Due to the dynamic and uncertain nature of
the domain, inputs are usually assumed to be drawn from some underlying
fixed distribution. The goal then is to design algorithms that, with high
probability, perform well on samples drawn from the same distribution.

More distantly related to our work is research which applies machine
learning techniques in game theory and mechanism design. Balcan et al.
[12], for instance, use techniques from sample complexity to reduce mech-
anism design problems to standard algorithmic problems. Another line of
research puts forward that machine learning can be used to predict con-
sumer behavior, or find a concise description for collective decision making.
Work along this line includes the learnability of choice functions and choice
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correspondences [13, 14].

1.5. Structure of the Paper

In the following section, we introduce the necessary concepts from mecha-
nism design. In Section 3, we give a general exposition of regression learning
and introduce our model of regression learning with multiple agents. We then
examine three settings of increasing generality: in Section 4, we consider the
case where the distribution of each agent puts all of the weight on a single
point of the input space; in Section 5, we then move to the more general
setting where the distribution of each agent is a discrete distribution sup-
ported on a finite set of points; we finally investigate arbitrary distributions
in Section 6, leveraging the results of the previous sections. In Section 7, we
discuss our results and give some directions for future research.

2. Preliminaries

A mechanism design problem (see, e.g., [15]) is given by a set N =
{1, 2, . . . , n} of agents that interact to select one element from a set A of
alternatives. Agent i ∈ N is associated with a type θi from a set Θi of
possible types, corresponding to the private information held by this agent.
We write θ = (θ1, θ2, . . . , θn) for a profile of types for the different agents
and Θ =

∏
i∈N Θi for the set of possible type profiles. θ−i ∈ Θ−i is used

to denote a profile of types for all agents but i. Furthermore, agent i ∈ N
employs preferences over A, represented by a real-valued valuation function
vi : A × Θi → R. In this paper, we only consider settings of private values
where an agent’s preferences depend exclusively on his type.

A social choice function is a function f : Θ→ A. One desirable property
of social choice functions is efficiency. A social choice function f is called
α-efficient if for all θ ∈ Θ,

α ·
∑
i∈N

vi(f(θ), θi) ≥ max
a∈A

∑
i∈N

vi(a, θi) .

We say that a social choice function is efficient if it is 1-efficient and approx-
imately efficient if it is α-efficient for some α.

Agents’ types, and thus the input to f , are private, and agents may
strategically report information that does not agree with their true type in
order to increase their payoff at the expense of social welfare. The goal of
mechanism design is to provide incentives to the agents to report their true
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types and enable the computation of a socially optimal solution. In order to
achieve this, it may sometimes be necessary to tax or subsidize the different
agents based on their revealed type. This is done by means of a payment
function p : Θ→ Rn. Intuitively, pi(θ) represents a payment from agent i to
the mechanism if the revealed types are θ.

As this definition indicates, we will restrict our attention to the class
of direct revelation mechanisms, where all agents simultaneously announce
their types within a single round. We will see momentarily that this does not
imply a restriction in expressiveness with respect to the problems studied in
this paper. Formally, a (direct revelation) mechanism is a pair (f, p) of a
social choice function f and a payment function p. A mechanism (f, p) will
be called α-efficient if f is α-efficient.

Game-theoretic reasoning, more specifically a model of strict incomplete
information games, is used to analyze how agents interact with a mechanism,
a desirable criterion being stability according to some game-theoretic solution
concept. Each agent i ∈ N has a true type θi ∈ Θi, and reveals some type
θ̂i ∈ Θi. Agents have no information, not even distributional, about the types
of the other agents. A strategy is a function mapping true types to revealed
types, and an outcome is chosen according to the profile of revealed types.
The payoff of an agent thus depends on his true type and the revealed types
of all the agents.

Let ε ≥ 0. A mechanism f is said to be ε-group strategyproof (in dominant
strategy equilibrium) if for any coalition C ⊆ N of the agents, the only way
that all members of C can gain at least ε by jointly deviating from the profile θ
of true types is for all of them to gain exactly ε. More formally, consider θ̂ ∈ Θ
such that θ̂j = θj whenever j /∈ C. Then, ε-group strategyproofness requires
that if for all i ∈ C,

vi(f(θ̂), θi)− pi(θ̂) ≥ vi(f(θ), θi)− pi(θ) + ε ,

then for all i ∈ C,

vi(f(θ̂), θi)− pi(θ̂) = vi(f(θ), θi)− pi(θ) + ε .

A mechanism is called ε-strategyproof if the above is satisfied for any C ⊆ N
such that |C| = 1. We then say that a mechanism is (group) strategyproof if it
is 0-(group) strategyproof. In other words, group strategyproofness requires
that if some member of an arbitrary coalition of agents strictly gains from
a joint deviation by the coalition, then some other member must strictly

7



lose. A social choice function will sometimes be referred to as a mechanism
(without payments) if the distinction is obvious from the context. A social
choice function f is then called (group) strategyproof if the mechanism (f, p0)
is (group) strategyproof, where p0 is the constant zero function.

Strategyproofness is sometimes defined in a way that includes individual
rationality, and the term incentive compatibility is then reserved for the above
property that agents cannot gain by revealing their types untruthfully. We do
not make such a distinction in this paper but rather use the terms incentive
compatibility, truthfulness, and strategyproofness interchangeably. We note
two things, however. First, individual rationality is trivially satisfied in our
case by any mechanism without payments, as will become apparent later.
Secondly, it is not immediately clear how to achieve individual rationality
for mechanisms with payments.

If we say that a mechanism is not strategyproof, we mean it is not strat-
egyproof in the weaker solution concept of (ex-post) Nash equilibrium, i.e.,
there exists a strategy profile under which some agent can gain from un-
truthful revelation, even if all other agents are assumed to reveal their types
truthfully. Due to the well-known revelation principle, only direct mecha-
nisms need to be considered in order to answer the question of whether there
exists a mechanism that is incentive compatible in dominant strategy or Nash
equilibrium.

We conclude this section with a general mechanism due to Vickrey [16],
Clarke [17], and Groves [18]. This mechanism starts from an efficient so-
cial choice function f and computes each agent’s payment according to the
social welfare of the other agents, thus aligning his interests with that of so-
ciety. Formally, a mechanism (f, p) is called Vickrey-Clarke-Groves (VCG)
mechanism if f is efficient and there exist functions hi : Θ−i → R such that

pi(θ) = hi(θ−i)−
∑
j 6=i

vj(f(θ), θj) .

VCG mechanisms are strategyproof [18] but in general not group strate-
gyproof. The latter is due to the fact that in some cases the members of
a coalition can influence each others’ payments such that all of them gain.
Interestingly, all mechanisms with unrestricted type spaces that are efficient
and strategyproof (in dominant strategy equilibrium) are VCG mechanisms.
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3. The Model

In this section we formalize the regression learning problem described in
the introduction and cast it in the framework of game theory. Some of the
definitions are illustrated by relating them to the Internet search example
presented in Section 1.

We focus on the task of learning a real-valued function over an input
space X . In the Internet search example, X would be the set of all query-
URL pairs, and our task would be to learn the ranking function of a search
engine. Let N = {1, . . . , n} be a set of agents, which in our running example
would be the set of all experts. For each agent i ∈ N , let oi be a function
from X to R and let ρi be a probability distribution over X . Intuitively, oi is
what agent i thinks to be the correct real-valued function, while ρi captures
the relative importance that agent i assigns to different parts of X . In the
Internet search example, oi would be the optimal ranking function according
to agent i, and ρi would be a distribution over query-URL pairs that assigns
higher weight to queries from that agent’s areas of interest.

Let F be a class of functions, where every f ∈ F is a function from X to
the real line. We call F the hypothesis space of our problem, and restrict the
output of the learning algorithm to functions in F . We evaluate the accuracy
of each f ∈ F using a loss function ` : R×R→ R+. For a particular input-
output pair (x, y), we interpret `(f(x), y) as the penalty associated with
predicting the output value f(x) when the true output is known to be y.
As mentioned in the introduction, common choices of ` are the squared loss,
`(α, β) = (α− β)2, and the absolute loss, `(α, β) = |α− β|. The accuracy of
a hypothesis f ∈ F is defined to be the average loss of f over the entire input
space. Formally, define the risk associated by agent i with the function f as

Ri(f) = Ex∼ρi
[
`(f(x), oi(x))

]
.

Clearly, this subjective definition of hypothesis accuracy allows for different
agents to have significantly different valuations of different functions in F ,
and it is quite possible that we will not be able to please all of the agents
simultaneously. Instead, our goal is to satisfy the agents in N on average.
Define J to be a random variable distributed uniformly over the elements
of N . Now define the global risk of a function f to be the average risk with
respect to all of the agents, namely

RN(f) = E [RJ(f)] .
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We are now ready to state our learning-theoretic goal formally: we would
like to find a hypothesis in F that attains a global risk as close as possible
to inff∈F RN(F ).

Even if N is small, we still have no explicit way of calculating RN(f).
Instead, we use an empirical estimate of the risk as a proxy to the risk
itself. For each i ∈ N , we randomly sample m points independently from the
distribution ρi and request their respective labels from agent i. In this way,
we obtain the labeled training set S̃i = {(xi,j, ỹi,j)}mj=1. Agent i may label

the points in S̃i however he sees fit, and we therefore say that agent i controls
(the labels of) these points. We usually denote agent i’s “true” training set
by Si = {(xij, yij)}mj=1, where yij = oi(xij). After receiving labels from all

agents in N , we define the global training set to be the multiset S̃ =
⊎
i∈N S̃i.

The elicited training set S̃ is presented to a regression learning algorithm,
which in return constructs a hypothesis f̃ ∈ F . Each agent can influence f̃
by modifying the labels he controls. This observation brings us to the game-
theoretic aspect of our setting. For all i ∈ N , agent i’s private information,
or type, is a vector of true labels yij = oi(xij), j = 1, . . . ,m. The sampled
points xij, j = 1, . . . ,m, are exogenously given and assumed to be common
knowledge. The strategy space of each agent then consists of all possible
values for the labels he controls. In other words, agent i reports a labeled
training set S̃i. We sometimes use S̃−i as a shorthand for S̃ \ S̃i, the strategy
profile of all agents except agent i. The space of possible outcomes is the
hypothesis space F , and the utility of agent i for an outcome f̃ is deter-
mined by his risk Ri(f̃). More precisely, agent i chooses ỹi1, . . . , ỹim so as
to minimize Ri(f). We follow the usual game-theoretic assumption that he
does this with full knowledge of the inner workings of our regression learning
algorithm, and name the resulting game the learning game.

Notice that under the above formalism, a regression learning algorithm
is in fact a social choice function, which maps the types of the agents to a
hypothesis. One of the simplest and most popular regression learning tech-
niques is empirical risk minimization (ERM). The empirical risk associated
with a hypothesis f , with respect to a sample S, is denoted by R̂(f, S) and
defined to be the average loss attained by f on the examples in S, i.e.,

R̂(f, S) =
1

|S|
∑

(x,y)∈S

`(f(x), y) .

An ERM algorithm finds the empirical risk minimizer f̂ within F . More
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formally,
f̂ = argmin

f∈F
R̂(f, S) .

A large part of this paper will be dedicated to ERM algorithms. For some
choices of loss function and hypothesis class, it may occur that the global
minimizer of the empirical risk is not unique, and we must define an appro-
priate tie-breaking mechanism.

Since our strategy is to use R̂(f, S̃) as a surrogate for RN(f), we need
R̂(f, S̃) to be an unbiased estimator of RN(f). A particular situation in which
this can be achieved is when all agents i ∈ N truthfully report ỹij = oi(xij)
for all j. It is important to note that truthfulness need not come at the
expense of the overall solution quality. This can be seen by a variation of
the well-known revelation principle already mentioned in Section 2. Assume
that for a given mechanism and given true inputs there is an equilibrium in
which some agents report their inputs untruthfully, and which leads to an
outcome that is strictly better than any outcome achievable by an incentive
compatible mechanism. Then we can design a new mechanism that, given
the true inputs, simulates the agents’ lies and yields the exact same output
in equilibrium.

4. Degenerate Distributions

We begin our study by focusing on a special case, where each agent is
only interested in a single point of the input space. Even this simple setting
has interesting applications. Consider for example the problem of allocating
tasks among service providers, e.g., messages to routers, jobs to remote pro-
cessors, or reservations of bandwidth to Internet providers. Machine learning
techniques are used to obtain a global picture of the capacities, which in turn
are private information of the respective providers. Regression learning pro-
vides an appropriate model in this context, as each provider is interested in
an allocation that is as close as possible to its capacity: more tasks mean
more revenue, but an overload is clearly undesirable.

A concrete economic motivation for this setting is given by Perote and
Perote-Peña [8]. The authors consider a monopolist trade union in some
sector that has to set a common hourly wage for its members. The union
collects information about the hours of work in each firm versus the firm’s
expected profitability, and accordingly sets a single sectorial wage per hour.
The hours of work are public information, but the expected profitability
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is private. Workers that are more profitable might have an incentive to
exaggerate their profitability in order to increase the hourly common wage.

More formally, the distribution ρi of agent i is now assumed to be degen-
erate, and the sample Si becomes a singleton. Let S = {(xi, yi)}ni=1 denote
the set of true input-output pairs, where now yi = oi(xi), and Si = {(xi, yi)}
is the single example controlled by agent i. Each agent selects an output
value ỹi, and the reported (possibly untruthful) training set S̃ = {(xi, ỹi)}ni=1

is presented to a regression learning algorithm. The algorithm constructs a
hypothesis f̃ and agent i’s cost is the loss

Ri(f̃) = Ex∼ρi
[
`(f̃(x), oi(x))

]
= `(f̃(xi), yi)

on the point he controls, where ` is a predefined loss function. Within this
setting, we examine the game-theoretic properties of ERM.

As noted above, an ERM algorithm takes as input a loss function ` and a
training set S, and outputs the hypothesis that minimizes the empirical risk
on S according to `. Throughout this section, we write f̂ = ERM(F , `, S) as
shorthand for arg minf∈F R̂(f, `, S). We restrict our discussion to loss func-
tions of the form `(α, β) = µ(|α− β|), where µ : R+ → R is a monotonically
increasing convex function, and to the case where F is a convex set of func-
tions. These assumptions enable us to cast ERM as a convex optimization
problem, which are typically tractable. Most choices of ` and F that do
not satisfy the above constraints may not allow for computationally efficient
learning, and are therefore less interesting.

We prove two main theorems: if µ is a linear function, then ERM is group
strategyproof; if on the other hand µ grows faster than any linear function,
and given minimal conditions on F , ERM is not strategyproof.

4.1. ERM with the Absolute Loss

In this section, we focus on the absolute loss function. Indeed, let ` denote
the absolute loss, `(a, b) = |a − b|, and let F be a convex hypothesis class.
Because ` is only weakly convex, there may be multiple hypotheses in F that
globally minimize the empirical risk and we must add a tie-breaking step to
our ERM algorithm. Concretely, consider the following two-step procedure:

1. Empirical risk minimization: calculate

r = min
f∈F

R̂(f, S).
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2. Tie-breaking: return

f̃ = argmin
f∈F : R̂(f,S)=r

‖f‖,

where ‖f‖2 =
∫
f 2(x) dx.

Our assumption that F is a convex set implies that the set of empirical risk
minimizers {f ∈ F : R̂(f, S) = r} is also convex. The function ‖f‖ is a
strictly convex function and therefore the output of the tie-breaking step is
uniquely defined.

For example, imagine that X is the unit ball in Rn and that F is the set
of homogeneous linear functions, of the form f(x) = 〈w,x〉, where w ∈ Rn.
In this case, Step 1 above can be restated as the following linear program:

min
ξ∈Rm,w∈Rn

1

m

m∑
i=1

ξi s.t. ∀i 〈w,xi〉 − yi ≤ ξi and yi − 〈w,xi〉 ≤ ξi .

The tie-breaking step can then be written as the following quadratic program
with linear constraints:

argmin
ξ∈Rm,w∈Rn

‖w‖2 s.t.
∑m

i=1 ξi = r and

∀i 〈w,xi〉 − yi ≤ ξi and yi − 〈w,xi〉 ≤ ξi .

In our analysis, we only use the fact that ‖f‖ is a strictly convex function
of f . Any other strictly convex function can be used in its place in the
tie-breaking step.

The following theorem states that ERM using the absolute loss function
has excellent game-theoretic properties. More precisely, it is group strate-
gyproof: if a member of an arbitrary coalition of agents strictly gains from a
joint deviation by the coalition, then some other member must strictly lose.
It should also be noted that in our case any mechanism without payments
satisfies individual rationality: if some agent does not provide values for his
part of the sample, then ERM will simply return the best fit for the points of
the other agents, so no agent can gain by not taking part in the mechanism.

Theorem 4.1. Let N be a set of agents, S = ]i∈NSi a training set such that
Si = {xi, yi} for all i ∈ N , and let ρi be degenerate at xi. Let ` denote the
absolute loss, `(a, b) = |a− b|, and let F be a convex hypothesis class. Then,
ERM minimizing ` over F with respect to S is group strategyproof.
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We prove this theorem below, as a corollary of the following more explicit
result.

Proposition 4.2. Let Ŝ = {(xi, ŷi)}mi=1 and S̃ = {(xi, ỹi)}mi=1 be two
training sets on the same set of points, and let f̂ = ERM(F , `, Ŝ) and
f̃ = ERM(F , `, S̃). If f̂ 6= f̃ then there exists i ∈ N such that ŷi 6= ỹi
and `(f̂(xi), ŷi) < `(f̃(xi), ŷi).

Proof. Let U be the set of indices on which Ŝ and S̃ disagree, i.e., U = {i :
ŷi 6= ỹi}. We prove the claim by proving its counter-positive, i.e., we assume
that `(f̃(xi), ŷi) ≤ `(f̂(xi), ŷi) for all i ∈ U , and prove that f̂ ≡ f̃ . We begin
by considering functions of the form fα(x) = αf̃(x)+(1−α)f̂(x) and proving
that there exists α ∈ (0, 1] for which

R̂(f̂ , S̃)− R̂(f̂ , Ŝ) = R̂(fα, S̃)− R̂(fα, Ŝ) . (1)

For every i ∈ U , our assumption that `(f̃(xi), ŷi) ≤ `(f̂(xi), ŷi) implies
that one of the following four inequalities holds:

f̃(xi) ≤ ŷi < f̂(xi) f̃(xi) ≥ ŷi > f̂(xi) (2)

ŷi ≤ f̃(xi) ≤ f̂(xi) ŷi ≥ f̃(xi) ≥ f̂(xi) (3)

Furthermore, we assume without loss of generality that ỹi = f̃(xi) for all
i ∈ U . Otherwise, we could simply change ỹi to equal f̃(xi) for all i ∈ U
without changing the output of the learning algorithm. If one of the two
inequalities in (2) holds, we set

αi =
ŷi − f̂(xi)

f̃(xi)− f̂(xi)
,

and note that αi ∈ (0, 1] and fαi(xi) = ŷi. Therefore, for every α ∈ (0, αi] it
holds that either

ỹi ≤ ŷi ≤ fα(xi) < f̂(xi) or ỹi ≥ ŷi ≥ fα(xi) > f̂(xi) .

Setting ci = |ŷi − ỹi|, we conclude that for all α in (0, αi],

`(f̂(xi), ỹi)− `(f̂(xi), ŷi) = ci and

`(fα(xi), ỹi)− `(fα(xi), ŷi) = ci.
(4)
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Alternatively, if one of the inequalities in (3) holds, we have that either

ŷi ≤ ỹi ≤ fα(xi) ≤ f̂(xi) or ŷi ≥ ỹi ≥ fα(xi) ≥ f̂(xi) .

Setting αi = 1 and ci = −|ỹi− ŷi|, we once again have that (4) holds for all α
in (0, αi]. Moreover, if we choose α = mini∈U αi, (4) holds simultaneously for
all i ∈ U . (4) also holds trivially for all i 6∈ U with ci = 0. (1) can now be
obtained by summing both of the equalities in (4) over all i.

Next, we recall that F is a convex set and therefore fα ∈ F . Since f̂
minimizes the empirical risk with respect to Ŝ over F , we specifically have
that

R̂(f̂ , Ŝ) ≤ R̂(fα, Ŝ) . (5)

Combining this inequality with (1) results in

R̂(f̂ , S̃) ≤ R̂(fα, S̃) . (6)

Since the empirical risk function is convex in its first argument, we have that

R̂(fα, S̃) ≤ αR̂(f̃ , S̃) + (1− α)R̂(f̂ , S̃) . (7)

Replacing the left-hand side above with its lower bound in (6) yields
R̂(f̂ , S̃) ≤ R̂(f̃ , S̃). On the other hand, we know that f̃ minimizes the
empirical risk with respect to S̃, and specifically R̂(f̃ , S̃) ≤ R̂(f̂ , S̃). Overall,
we have shown that

R̂(f̂ , S̃) = R̂(f̃ , S̃) = min
f∈F

R̂(f, S̃) . (8)

Next, we turn our attention to ‖f̂‖ and ‖f̃‖. We start by combining (8)
with (7) to get R̂(fα, S̃) ≤ R̂(f̂ , S̃). Recalling (1), we have that R̂(fα, Ŝ) ≤
R̂(f̂ , Ŝ). Once again using (5), we conclude that R̂(fα, Ŝ) = R̂(f̂ , Ŝ). Al-
though f̂ and fα both minimize the empirical risk with respect to Ŝ, we know
that f̂ was chosen as the output of the algorithm, and therefore it must hold
that

‖f̂‖ ≤ ‖fα‖ . (9)

Using convexity of the norm, we have ‖fα‖ ≤ α‖f̃‖+(1−α)‖f̂‖. Combining
this inequality with (9), we get ‖f̂‖ ≤ ‖f̃‖. On the other hand, (8) tells us
that both f̂ and f̃ minimize the empirical risk with respect to S̃, whereas f̃
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is chosen as the algorithm output, so ‖f̃‖ ≤ ‖f̂‖. Overall, we have shown
that

‖f̂‖ = ‖f̃‖ = min
f∈F : R̂(f,S̃)=R̂(f̃ ,S̃)

‖f‖ . (10)

In summary, in (8) we showed that both f̂ and f̃ minimize the empirical risk
with respect to S̃, and therefore both move on to the tie breaking step of the
algorithm. Then, in (10) we showed that both functions attain the minimum
norm over all empirical risk minimizers. Since the norm is strictly convex,
its minimum is unique, and therefore f̂ ≡ f̃ .

To understand the intuition behind Proposition 4.2, as well as its relation
to Theorem 4.1, assume that Ŝ represents the true preferences of the agents,
and that S̃ represents the values revealed by the agents and used to train the
regression function. Moreover, assume that Ŝ 6= S̃. Proposition 4.2 states
that one of two things can happen. Either f̂ ≡ f̃ , i.e., revealing the values
in S̃ instead of the true values in Ŝ does not affect the result of the learning
process. In this case, the agents might as well have told the truth. Or, f̂
and f̃ are different hypotheses, and Proposition 4.2 tells us that there must
exist an agent i who lied about his true value and is strictly worse off due to
his lie. Clearly, agent i has no incentive to actually participate in such a lie.
This said, we can now proceed to prove the theorem.

Proof of Theorem 4.1. Let S = {(xi, yi)}mi=1 be a training set that represents
the true private information of a set N of agents and let S̃ = {(xi, ỹi)}mi=1

be the information revealed by the agents and used to train the regression
function. Let C ⊆ N be an arbitrary coalition of agents that have conspired
to decrease some of their respective losses by lying about their values. Now
define the hybrid set of values where

for all i ∈ N , ŷi =

{
yi if i ∈ C
ỹi otherwise

,

and let Ŝ = {(xi, ŷi)}mi=1. Finally, let f̂ = ERM(F , `, Ŝ) and f̃ = ERM(F , `, S̃).
If f̂ ≡ f̃ then the members of C gain nothing from being untruthful.

Otherwise, Proposition 4.2 states that there exists an agent i ∈ N such that
ŷi 6= ỹi and `(f̂(xi), ŷi) < `(f̃(xi), ŷi). From ŷi 6= ỹi we conclude that this
agent is a member of C. Therefore, ŷi = yi and `(f̂(xi), yi) < `(f̃(xi), yi).
This contradicts our assumption that no member of C loses from revealing S̃
instead of Ŝ. We emphasize that the proof holds regardless of the values
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revealed by the agents that are not members of C, and we therefore have
group strategyproofness.

4.2. ERM with Other Convex Loss Functions

We have seen that performing ERM with the absolute loss is strate-
gyproof. We now show that the same is not true for most other con-
vex loss functions. Specifically, we examine loss functions of the form
`(α, β) = µ(|α−β|), where µ : R+ → R is a monotonically increasing strictly
convex function with unbounded subderivatives. Unbounded subderivatives
mean that µ cannot be bounded from above by any linear function.

For example, µ can be the function µ(α) = αd, where d is a real number
strictly greater than 1. A popular choice is d = 2, which induces the squared
loss, `(α, β) = (α−β)2. The following example demonstrates that ERM with
the squared loss is not strategyproof.

Example 4.3. Let ` be the squared loss function, X = R, and F the class
of constant functions over X . Further let S1 = {(x1, 2)} and S2 = {(x2, 0)}.
On S, ERM outputs the constant function f̂(x) ≡ 1, and agent 1 suffers
loss 1. However, if agent 1 reports his value to be 4, ERM outputs f̂(x) ≡ 2,
with loss of 0 for agent 1.

For every x ∈ X , let F(x) denote the set of feasible values at x, formally
defined as F(x) = { f(x) : f ∈ F }. Since F is a convex set, it follows
that F(x) is either an interval on the real line, a ray, or the entire real line.
Similarly, for a multiset X = {x1, . . . ,xn} ∈ X n, denote

F(X) = {〈f(x1), . . . , f(xn)〉 : f ∈ F} ⊆ Rn .

We then say that F is full on a multiset X = {x1, . . . ,xn} ∈ X n if F(X) =
F(x1)×· · ·×F(xn). Clearly, requiring that F is not full on X is a necessary
condition for the existence of a training set with points X where one of the
agents gains by lying. Otherwise, ERM will fit any set of values for the points
with an error of zero. For an example of a function class that is not full,
consider any function class F on X , |F| ≥ 2, and observe that there have
to exist f1, f2 ∈ F and a point x0 ∈ X such that f1(x0) 6= f2(x0). In this
case, F is not full on any multiset X that contains two copies of x0.

In addition, if |F| = 1, then any algorithm would trivially be strate-
gyproof irrespective of the loss function. In the following theorem we there-
fore consider hypothesis classes F of size at least two which are not full on
the set X of points of the training set.
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Theorem 4.4. Let µ : R+ → R be a monotonically increasing strictly convex
function with unbounded subderivatives, and define the loss function `(α, β) =
µ(|α − β|). Let F be a convex hypothesis class that contains at least two
functions, and let X = {x1, . . . ,xn} ∈ X n be a multiset such that F is not
full on X. Then there exist y1, . . . , yn ∈ R such that, if S = ]i∈NSi with
Si = {(xi, yi)}, ρi is degenerate at xi, and ERM is used, there is an agent
who has an incentive to lie.

An example for a function not covered by this theorem is given by
ν(α) = ln(1 + exp(α)), which is both monotonic and strictly convex, but
has a derivative bounded from above by 1. We use the subderivatives of µ,
rather than its derivatives, since we do not require µ to be differentiable.

As before, we actually prove a slightly stronger and more explicit claim
about the behavior of the ERM algorithm. The formal proof of Theorem 4.4
follows as a corollary below.

Proposition 4.5. Let µ and ` be as defined in Theorem 4.4 and let F be
a convex hypothesis class. Let Ŝ = {(xi, ŷi)}mi=1 be a training set, where
ŷi ∈ F(xi) for all i, and define f̂ = ERM(F , `, Ŝ). For each i ∈ N , one of the
following conditions holds:

1. f̂(xi) = ŷi.
2. There exists ỹi ∈ R such that, if we define S̃ = Ŝ−i ∪ {(xi, ỹi)} and
f̃ = ERM(F , `, S̃), `(f̃(xi), ŷi) < `(f̂(xi), ŷi).

To prove the above, we first require a few technical results, which we
state in the form of three lemmas. The first lemma takes the perspective of
agent i and considers the case where truth-telling results in a function f̂ such
that f̂(xi) > ŷi, i.e., agent i would like the ERM hypothesis to map xi to a
somewhat lower value. The second lemma then states that there exists a lie
that achieves this goal. The gap between the claim of this lemma and the
claim of Theorem 4.5 is a subtle one: merely lowering the value of the ERM
hypothesis does not necessarily imply a lowering of the loss incurred by agent
i. It could be the case that the lie told by agent i caused f̂(xi) to become
too low, essentially overshooting the desired target value and increasing the
loss of agent i. This point is resolved by the third lemma.

Lemma 4.6. Let `, F , Ŝ and f̂ be as defined in Theorem 4.5 and let i ∈ N
be such that f̂(xi) > ŷi. Then for all f ∈ F for which f(xi) ≥ f̂(xi), and
for all y ∈ R such that y ≤ ŷi, the dataset S̃ = Ŝ−i ∪ {(xi, y)} satisfies
R̂(f, S̃) ≥ R̂(f̂ , S̃).
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Proof. Let f ∈ F be such that f(xi) ≥ f̂(xi), let y ∈ R be such that y ≤ ŷi,
and define S̃ = Ŝ−i ∪ {(xi, y)}. We now have that

R̂(f, S̃) = R̂(f, S̃−i) + `(f(xi), ỹi)

= R̂(f, Ŝ)− `(f(xi), ŷi) + `(f(xi), ỹi)

= R̂(f, Ŝ)− µ(f(xi)− ŷi) + µ(f(xi)− ỹi) .

(11)

Using the fact that f̂ is the empirical risk minimizer with respect to Ŝ, we
can get a lower bound for the above and obtain

R̂(f, S̃) ≥ R̂(f̂ , Ŝ)− µ(f(xi)− ŷi) + µ(f(xi)− ỹi) .

The term R̂(f̂ , Ŝ) on the right-hand side can again be rewritten using (11),
resulting in

R̂(f, S̃) ≥ R̂(f̂ , S̃)+µ(f̂(xi)−ŷi)−µ(f̂(xi)−ỹi)−µ(f(xi)−ŷi)+µ(f(xi)−ỹi) .

Denoting a = f̂(xi)− ŷi, b = f̂(xi)− ỹi, c = f(xi)− ŷi, and d = f(xi)− ỹi,
we can rewrite the above as

R̂(f, S̃) ≥ R̂(f̂ , S̃) + µ(a)− µ(b)− µ(c) + µ(d) . (12)

Noting that b, c, and d are all greater than a, and that b + c − 2a = d − a,
we use convexity of µ to obtain

µ(a) + µ(d) =

(
b− a
d− a

µ(a) +
c− a
d− a

µ(d)

)
+

(
c− a
d− a

µ(a) +
b− a
d− a

µ(d)

)
≥ µ

(
(b− a)a+ (c− a)d

d− a

)
+ µ

(
(c− a)a+ (b− a)d

d− a

)
= µ

(
(b+ c− 2a)a+ (c− a)(d− a)

d− a

)
+

µ

(
(c+ b− 2a)a+ (b− a)(d− a)

d− a

)
= µ(c) + µ(b) .

Combining this inequality with (12) concludes the proof.

Lemma 4.7. Let `, F , Ŝ and f̂ be as defined in Theorem 4.5 and let i ∈ N
be such that f̂(xi) > ŷi. Then there exists ỹi ∈ R such that if we define
S̃ = Ŝ−i ∪ {(xi, ỹi)} and f̃ = ERM(F , `, S̃), then f̃(xi) < f̂(xi).
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Proof. Let i be such that f̂(xi) 6= ŷi and assume without loss of generality
that f̂(xi) > ŷi. Since ŷi ∈ F(xi), there exists a function f ′ ∈ F such that
f ′(xi) = ŷi. Now define

φ =
R̂(f ′, Ŝ−i) − R̂(f̂ , Ŝ−i) + 1

f̂(xi)− f ′(xi)
. (13)

It holds, by definition, that R̂(f ′, Ŝ) > R̂(f̂ , Ŝ) and that `(f ′(xi), ŷi) <
`(f̂(xi), ŷi), and therefore the numerator of (13) is positive. Furthermore,
our assumption implies that the denominator of (13) is also positive, so φ is
positive as well.

Since µ has unbounded subderivatives, there exists ψ > 0 large enough
such that the subderivative of µ at ψ is greater than φ. By the definition of
the subderivative, we have that

for all α ≥ ψ, µ(ψ) + (α− ψ)φ ≤ µ(α) . (14)

Defining ỹi = f ′(xi)− ψ and S̃ = Ŝ−i ∪ {(xi, ỹi)}, we have that

`(f ′(xi), ỹi) = µ(f ′(xi)− ỹi) = µ(ψ) ,

and therefore

R̂(f ′, S̃) = R̂(f ′, S̃−i) + `(f ′(xi), ỹi) = R̂(f ′, S̃−i) + µ(ψ) . (15)

We further have that

`(f̂(xi), ỹi) = µ(f̂(xi)− ỹi) = µ(f̂(xi)− f ′(xi) + ψ) .

Combining (14) with the fact that f̂(xi)−f ′(xi) > 0, we get µ(ψ) + (f̂(xi)−
f ′(xi))φ as a lower bound for the above. Plugging in the definition of φ from
(13), we obtain

`(f̂(xi), ỹi) ≥ µ(ψ) + R̂(f ′, Ŝ−i)− R̂(f̂ , Ŝ−i) + 1 ,

and therefore,

R̂(f̂ , S̃) = R̂(f̂ , S̃−i) + `(f̂(xi), ỹi) ≥ µ(ψ) + R̂(f ′, Ŝ−i) + 1 .

Comparing the above with (15), we get

R̂(f̂ , S̃) > R̂(f ′, S̃) .

We now use Lemma 4.6 to extend the above to every f ∈ F for which f(xi) ≥
f̂(xi), namely, we now have that any such f satisfies R̂(f, S̃) > R̂(f ′, S̃). We
conclude that the empirical risk minimizer f̃ must satisfy f̃(xi) < f̂(xi).
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Lemma 4.8. Let ` and F be as defined in Theorem 4.5, let S = {(xi, ŷi)}mi=1

be a dataset, and let i ∈ N be an arbitrary index. Then the function g(ỹ) =
f(xi), where f = ERM(F , `, S−i ∪ {(xi, ỹ)}), is continuous.

Proof. We first restate ERM as a minimization problem over vectors in Rm.
Define the set of feasible values for the points x1, . . . ,xm to be

G =
{(
f(x1), . . . , f(xm)

)
: f ∈ F

}
.

Our assumption that F is a convex set implies that G is a convex set as well.
Now, define the function

L(v, ỹ) = `(vi, ỹ) +
∑
j 6=i

`(vj, ŷj), where v = (v1, . . . , vm) .

Finding f ∈ F that minimizes the empirical risk with respect to the dataset
S−i ∪ {(xi, ỹ)} is equivalent to calculating minv∈G L(v, ỹ). Moreover, g(ỹ)
can be equivalently defined as the value of the i’th coordinate of the vector
in G that minimizes L(v, ỹ).

To prove that g is continuous at an arbitrary point ỹ ∈ R, we show
that for every ε > 0 there exists δ > 0 such that if y ∈ [ỹ − δ, ỹ + δ] then
g(y) ∈ [g(ỹ)−ε, g(ỹ)+ε]. For this, let ỹ and ε > 0 be arbitrary real numbers,
and define

u = argmin
v∈G

L(v, ỹ) .

Since ` is strictly convex in its first argument, so is L. Consequently, u is
the unique global minimizer of L. Also define

Gε = {v ∈ G : |vi − ui| ≥ ε} .

Assume that ε is small enough that Gε is not empty (if no such ε exists, the
lemma holds trivially). Note that u 6∈ Gε for any value of ε > 0. Define Ḡε to
be the closure of Gε and let

ν = inf
v∈Ḡε

L(v, ỹ)− L(u, ỹ) .

Since µ is strictly convex and has unbounded subderivatives, the level-sets of
L(v, ỹ), as a function of v, are all bounded. Therefore, there exists w ∈ Ḡε
that attains the infimum above. More precisely, w is such that L(w, ỹ) −
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L(u, ỹ) = ν. Using uniqueness of the minimizer u, as well as the fact that
w 6= u, we conclude that ν > 0. We have proven that if v ∈ F is such that

L(v, ỹ) < L(u, ỹ) + ν , (16)

then |vi − ui| < ε. It therefore suffices to show that there exists δ > 0 such
that if y ∈ [ỹ−δ, ỹ+δ] then the vector v ∈ G that minimizes L(v, y) satisfies
the condition in (16).

Since ` is convex in its second argument, ` is also continuous in its second
argument. Thus, there exists δ > 0 such that for all y ∈ [ỹ− δ, ỹ+ δ] it holds
that both

`(ui, ỹ) < `(ui, y) + ν/2 and `(wi, y) < `(wi, ỹ) + ν/2 ,

where w = arg minv∈G L(v, y). Therefore,

L(u, ỹ) < L(u, y) + ν/2 and L(w, ỹ) < L(w, y) + ν/2 .

Finally, since w minimizes L(v, y), we have L(w, y) ≤ L(u, y). Combining
these three inequalities yields the condition in (16).

We are now ready to prove Proposition 4.5, and then Theorem 4.4.

Proof of Proposition 4.5. If f̂(xi) = ŷi for all i ∈ N , we are done. Otherwise
let i be an index for which f̂(xi) 6= ŷi and assume without loss of generality
that f̂(xi) > ŷi. Using Lemma 4.7, we know that there exists ỹi ∈ R such
that if we define S̃ = Ŝ−i ∪ {(xi, ỹi)} and f ′ = ERM(F , `, S̃), then f ′ satisfies
f̂(xi) > f ′(xi).

We consider the two possible cases: either f̂(xi) > f ′(xi) ≥ ŷi, and
therefore `(f̂(xi), ŷi) > `(f ′(xi), ŷi) as required. Otherwise, f̂(xi) > ŷi >
f ′(xi). Using Lemma 4.8, we know that f(xi) changes continuously with ỹi,
where f = ERM(F , `, S−i∪{(xi, ỹi)}). Relying on the elementary Intermediate
Value Theorem, we conclude that for some y ∈ [ŷi, ỹi] it holds that f , the
empirical risk minimizer with respect to the dataset S−i ∪ {(xi, y)}, satisfies
f(xi) = ŷi. Once again we have `(f̂(xi), ŷi) > `(f(xi), ŷi).

Proof of Theorem 4.4. Since F is not full on X, there are y∗1, . . . , y
∗
n such that

y∗i ∈ F(xi) for all i, and 〈y∗1, . . . , y∗n〉 /∈ F(X). Defining S = {(xi, y∗i )}ni=1,
there exists some agent i which isn’t satisfied by the output of the ERM
algorithm on S. Using Proposition 4.5 we conclude that this agent has an
incentive to lie.
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It is natural to ask what happens for loss functions that are sublinear in
the sense that they cannot be bounded from below by any linear function
with strictly positive derivative. A property of such loss functions, and the
reason why they are rarely used in practice, is that the set of empirical risk
minimizers need no longer be convex. It is thus unclear how tie-breaking
should be defined in order to find a unique empirical risk minimizer. Fur-
thermore, the following example provides a negative answer to the question
of general strategyproofness of ERM with sublinear loss.

Example 4.9. We demonstrate that ERM is not strategyproof if `(a, b) =√
|a− b| and F is the class of constant functions over R. Let S =

{(x1, 1), (x2, 2), (x3, 4), (x4, 6)} and S̃ = {(x1, 1), (x2, 2), (x3, 4), (x4, 4)}.
Clearly, the local minima of R̂(f, S) and R̂(f, S̃) have the form f(x) ≡ y
where (xi, y) ∈ S or (xi, y) ∈ S̃, respectively, for some i ∈ {1, 2, 3, 4}. The
empirical risk minimizer for S is the constant function f1(x) ≡ 2, while that
for S̃ is f2(x) ≡ 4. Thus, agent 4 can declare his value to be 4 instead of 6
to decrease his loss from 2 to

√
2.

5. Uniform Distributions Over the Sample

We now turn to settings where a single agent holds a (possibly) non-
degenerate distribution over the input space. However, we still do not move
to the full level of generality. Rather, we concentrate on a setting where
for each agent i, ρi is the uniform distribution over the sample points xij,
j = 1, . . . ,m. While this setting is equivalent to curve fitting with multiple
agents and may be interesting in its own right, we primarily engage in this
sort of analysis as a stepping stone in our quest to understand the learning
game. The results in this section will function as building blocks for the
results of Section 6.

Since each agent i ∈ N now holds a uniform distribution over his sample,
we can simply assume that his cost is his average empirical loss on the sample,
R̂(f̃ , Si) = (1/m) ·

∑m
j=1 `(f̃(xij), yij). The mechanism’s goal is to minimize

R̂(f̃ , S). We stress at this point that the results in this section also hold if the
agents’ samples differ in size. This is of course true for the negative results,
but also holds for the positive ones. As we move to this more general setting,
truthfulness of ERM immediately becomes a thorny issue even under absolute
loss. Indeed, the next example indicates that more sophisticated mechanisms
must be used to achieve strategyproofness.
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Example 5.1. Let F be the class of constant functions over Rk, N = {1, 2},
and assume the absolute loss function is used. Let S1 = {(1, 1), (2, 1), (3, 0)}
and S2 = {(4, 0), (5, 0), (6, 1)}. The global empirical risk minimizer (ac-
cording to our tie-breaking rule) is the constant function f1(x) ≡ 0 with
R̂(f1, S1) = 2/3. However, if agent 1 declares S̃1 = {(1, 1), (2, 1), (3, 1)},
then the empirical risk minimizer becomes f2(x) ≡ 1, which is the optimal
fit for agent 1 with R̂(f2, S1) = 1/3.

5.1. Mechanisms with Payments

One possibility to overcome the issue that became manifest in Exam-
ple 5.1 is to consider mechanisms that not only return an allocation, but can
also transfer payments to and from the agents based on the inputs they pro-
vide. A famous example for such a payment rule is the Vickrey-Clarke-Groves
(VCG) mechanism [16, 17, 18]. This mechanism, which has been described
in detail in Section 2, starts from an efficient allocation and computes each
agent’s payment according to the utility of the other agents, thus aligning
the individual interests of each agent with that of society.

In our setting, where social welfare equals the total empirical risk, ERM
generates a function, or outcome, that maximizes social welfare and can
therefore be directly augmented with VCG payments. Given an outcome f̂ ,
each agent i has to pay an amount of R̂(f̂ , S̃−i). In turn, the agent can receive
some amount hi(S̃−i) that does not depend on the values he has reported,
but possibly on the values reported by the other agents. It is well known [18],
and also easily verified, that this family of mechanisms is strategyproof: no
agent is motivated to lie regardless of the other agents’ actions. Furthermore,
this result holds for any loss function, and may thus be an excellent solution
for some settings.

In many other settings, however, especially in the world of the Internet,
transferring payments to and from users can pose serious problems, up to
the extent that it might become completely infeasible. The practicality of
VCG payments in particular has recently also been disputed for various other
reasons [19]. Perhaps most relevant to our work is the fact that VCG mech-
anisms are in general susceptible to manipulation by coalitions of agents and
thus not group strategyproof. It is therefore worthwhile to explore which re-
sults can be obtained when payments are disallowed. This will be the subject
of the following section.
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5.2. Mechanisms without Payments

In this section, we restrict ourselves to the absolute loss function. When
ERM is used, and for the special case covered in Section 4, this function was
shown to possess incentive properties far superior to any other loss function.
This fuels hope that similar incentive compatibility results can be obtained
with uniform distributions over the samples, even when payments are dis-
allowed. This does not necessarily mean that good mechanisms without
payments cannot be designed for other loss functions, even in the more gen-
eral setting of this section. We leave the study of such mechanisms for future
work.

ERM is efficient, i.e., it minimizes the overall loss and maximizes social
welfare. In light of Example 5.1, we shall now sacrifice efficiency for incen-
tive compatibility. More precisely, we seek strategyproof or group strate-
gyproof mechanisms which are at the same time approximately efficient. We
should stress that the reason we resort to approximation is not to make the
mechanism computationally tractable, but to achieve incentive compatibility
without payments, like we had in Section 4.

Example 5.1, despite its simplicity, is surprisingly robust against many
conceivably truthful mechanisms. The reader may have noticed, however,
that the values of the agents in this example are not “individually realizable”:
in particular, there is no constant function which realizes agent 1’s values,
i.e., fits them with a loss of zero. In fact, agent 1 benefits from revealing
values which are consistent with his individual empirical risk minimizer. This
insight leads us to design the following simple but useful mechanism, which
we will term “project-and-fit”:

Input: A hypothesis class F and a sample S = ]Si, Si ⊆ X × R
Output: A function f ∈ F .
Mechanism:

1. For each i ∈ N , let fi = ERM(F , Si).
2. Define S̃i = {(xi1, fi(xi1)), . . . , (xim, fi(xim))}.
3. Return f = ERM(S̃), where S̃ = ]ni=1S̃i.

In other words, the mechanism calculates the individual empirical risk
minimizer for each agent and uses it to relabel the agent’s sample. Then, the
relabeled samples are combined, and ERM is performed. It is immediately
evident that this mechanism achieves group strategyproofness at least with
respect to Example 5.1.
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More generally, it can be shown that the mechanism is group strate-
gyproof when F is the class of constant functions over Rk. Indeed, it is
natural to view our setting through the eyes of social choice theory (see, e.g.,
[20]): agents entertain (weak) preferences over a set of alternatives, i.e., the
functions in F . In the case of constant functions, agents’ preferences are what
is known as single-plateau [21]: each agent has an interval of ideal points min-
imizing his individual empirical risk, and moving away from this plateau in
either direction strictly decreases the agent’s utility. More formally, let a1, a2

be constants such that the constant function f(x) ≡ a minimizes an agent’s
empirical risk if and only if a ∈ [a1, a2]. If a3 and a4 satisfy a3 < a4 ≤ a1

or a3 > a4 ≥ a2, then the agent strictly prefers the constant function a4

to the constant function a3. As such, single-plateau preferences generalize
the class of single-peaked preferences. For dealing with single-plateau pref-
erences, Moulin [21] defines the class of generalized Condorcet winner choice
functions, and shows that these are group strategyproof.

When F is the class of constant functions and ` is the absolute loss,
the constant function equal to a median value in a sample S minimizes the
empirical risk with respect to S. This is because there must be at least
as many values below the median value as are above, and thus moving the
fit upward (or downward) must monotonically increase the sum of distances
to the values. Via tie-breaking, project-and-fit essentially turns the single-
plateau preferences into single-peaked ones, and then chooses the median
peak. Once again, group strategyproofness follows from the fact that an
agent can only change the mechanism’s output by increasing its distance
from his own empirical risk minimizer.

Quite surprisingly, project-and-fit is not only truthful but also provides
a constant approximation ratio when F is the class of constant functions or
the class of homogeneous linear functions over R, i.e., functions of the form
f(x) = a · x. The class of homogeneous linear functions, in particular, is
important in machine learning, for instance in the context of Support Vector
Machines [22].

Theorem 5.2. Assume that F is the class of constant functions over Rk,
k ∈ N or the class of homogeneous linear functions over R. Then project-
and-fit is group strategyproof and 3-efficient.

Proof. We shall first prove the theorem for the case when F is the class
of constant functions over Rk (Steps 1 and 2), and then extend the result
to homogeneous linear functions over R (Step 3). We have already shown
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truthfulness, and therefore directly turn to approximate efficiency. In the
following, we denote the empirical risk minimizer by f ∗(x) ≡ a∗, and the
function returned by project-and-fit by f(x) ≡ a.

Step 1: |{ yij : yij ≤ a }| ≥ 1
4
nm and |{ yij : yij ≥ a }| ≥ 1

4
nm. Let

ỹij denote the projected values of agent i. As noted above, when F is the
class of constant functions, the mechanism in fact returns the median of the
values ỹij, and thus

|{ ỹij : ỹij ≤ a }| ≥ 1

2
nm . (17)

Furthermore, since for all j, ỹij is the median of the original values yij of
agent i, it must hold that at least half of these values are smaller than their
corresponding original value, i.e.,

|{ yij : yij ≤ a }| ≥ 1

2
|{ ỹij : ỹij ≤ a }| . (18)

Combining (17) and (18), we obtain |{ yij : yij ≤ a }| ≥ 1
4
nm. By symmet-

rical arguments, we get that |{ yij : yij ≥ a }| ≥ 1
4
nm.

Step 2: 3-efficiency for constant functions. Denote d = |a − a∗|, and
assume without loss of generality that a < a∗. We now have that

R̂(f, S) =
1

nm

∑
i,j

|yij − a|

=
1

nm

 ∑
i,j:yij≤a

(a− yij) +
∑

i,j:a<yij≤a∗
(yij − a) +

∑
i,j:yij>a∗

(yij − a)


≤ 1

nm

 ∑
i,j:yij≤a

(a− yij) +
∑

i,j:a<yij≤a∗
d+

∑
i,j:yij>a∗

(d+ (yij − a∗))


=

1

nm

 ∑
i,j:yij≤a

(a− yij) +
∑

i,j:yij>a∗

(yij − a∗) + |{ i, j : yij > a }| · d

 .

We now bound the last expression above by replacing |{i, j : yij > a}| with
its upper bound 3

4
nm derived in Step 1 and obtain

R̂(f, S) ≤ 1

nm

 ∑
i,j:yij≤a

(a− yij) +
∑

i,j:yij>a∗

(yij − a∗) +
3

4
nm · d

 .
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Similarly,

R̂(f ∗, S) ≥ 1

nm

 ∑
i,j:yij≤a

(d+ (a− yij)) +
∑

i,j:yij>a∗

(yij − a∗)

 ,

and using Step 1,

R̂(f ∗, S) ≥ 1

nm

 ∑
i,j:yij≤a

(a− yij) +
∑

i,j:yij>a∗

(yij − a∗) +
1

4
nm · d

 .

Since two of the expressions in the upper bound for R̂(f, S) and
the lower bound for R̂(f ∗, S) are identical, it is now self-evident that
R̂(f, S)/R̂(f ∗, S) ≤ 3.

Step 3: Extension to homogeneous linear functions over R. We describe
a reduction from the case of homogeneous functions over R to the case of
constant functions over R. Given a sample S, we create a sample S ′ by
mapping each example (x, y) ∈ S to |x| copies of the example (x, y/x).4 Let
f1 be the homogeneous linear function defined by f1(x) = a ·x, and let f2 be
the constant function defined by f2(x) = a. It is now straightforward to show
that R̂(f1, S) = R̂(f2, S

′), and that project-and-fit chooses f1 when given the
class of homogeneous linear functions and S if and only if it chooses f2 when
given the class of constant functions and S ′.

A simple example shows that the 3-efficiency analysis given in the proof
is tight. We generalize this observation by proving that, for the class of
constant or homogeneous linear functions and irrespective of the dimension
of X , no truthful mechanism without payments can achieve an efficiency ratio
better than 3. It should be noted that this lower bound holds for any choice
of points xij.

Theorem 5.3. Let F be the class of constant functions over Rk or the class
of homogeneous linear functions over Rk, k ∈ N. Then there exists no strat-
egyproof mechanism without payments that is (3− ε)-efficient for any ε > 0,
even when |N | = 2.

4Here we assume that the values x are integers, but it is possible to deal with noninteger
values by assigning weights.
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We first require a technical result. For this, assume that F is the class of
constant functions over Rk, let N = {1, 2}, and fix some truthful mechanism
M .

Lemma 5.4. Let q, t ∈ N, and define m = 2t − 1. Then there exists a
sample S defined by

S1 = {(x11, y), (x12, y), . . . , (x1m, y)} and

S2 = {(x21, y
′), (x22, y

′), . . . , (x2m, y
′)},

such that y − y′ = 2q and M(S) ≥ y − 1
2

or M(S) ≤ y′ + 1
2
.

Proof. We perform an induction on q. For q = 0, we simply set y = 1 and
y′ = 0. Now, let S be a sample as in the formulation of the lemma, and
let a = M(S), i.e., a is the constant function returned by M given S. We
distinguish two different cases.

Case 1: If a ≥ y − 1/2, let S ′ such that S ′1 = S1 and

S ′2 = {(x21, 2y
′ − y), . . . , (x2m, 2y

′ − y)} .

Notice that y − (2y′ − y) = 2(y − y′), so the distance between the values
has doubled. Denote a′ = M(S ′). Due to truthfulness of M , it must hold
that `(a′, y′) ≥ `(a, y′) ≥ 2q − 1

2
. Otherwise, if agent 2’s true type was S2, he

would benefit by saying that his type is in fact S ′2. Therefore, a′ ≥ y − 1
2

or
a′ ≤ y′ − (2q + 1

2
) = 2y′ − y + 1

2
.

Case 2: If a ≤ y′ + 1
2
, let S ′ such that S ′2 = S2 and

S ′1 = {(x11, 2y − y′), . . . , (x1m, 2y − y′)} .

Analogously to Case 1, the induction step follows from truthfulness of M
with respect to agent 1.

Proof of Theorem 5.3. Consider the sample S as in the statement of the
lemma, and assume without loss of generality that M(S) = a ≥ y − 1

2
.

Otherwise, symmetrical arguments apply. We first observe that if M is ap-
proximately efficient, it cannot be the case that M(S) > y. Otherwise, let
S ′ be the sample such that S ′1 = S1 and

S ′2 = {(x21, y), . . . , (x2m, y)} ,
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and denote a′ = M(S ′). Then, by truthfulness with respect to agent 2,
`(a′, y′) ≥ `(a, y′). It follows that a′ 6= y, and therefore R̂(a′, S ′) > 0. Since
R̂(y, S ′) = 0, the efficiency ratio is not bounded.

Now let S ′′ be such that S ′′2 = S2, and

S ′′1 = {(x11, y), (x12, y), . . . , (x1t, y), (x1,t+1, y
′), . . . , (x1m, y

′)} ,

i.e., agent 1 has t points at y and t− 1 points at y′. Let a′′ = M(S ′′). Due to
truthfulness, it must hold that `(a′′, y) = `(a, y), since agent 1’s empirical risk
minimizer with respect to both S and S ′′ is y. Since we already know that
y − 1

2
≤ a ≤ y, we get that a′′ ≥ y − 1

2
, and thus R̂(a′′, S ′′) ≥ (3t−2)

(4t−2)
(2q − 1

2
).

On the other hand, the empirical risk minimizer on S ′′ is y′, and R̂(y′, S ′′) ≤
t

4t−2
2q. The efficiency ratio R̂(a′′, S ′′)/R̂(y′, S ′′) tends to 3 as t and q tend to

infinity.
We will now explain how this result can be extended to homogeneous

linear functions over Rk. For this, define the sample S by

S1 = {〈t− 1, 0, . . . , 0〉, (t− 1)y), (〈t, 0, . . . , 0〉, ty)} and

S2 = {〈t− 1, 0, . . . , 0〉, (t− 1)y′), (〈t, 0, . . . , 0〉, ty′)} .

As with constant functions, a homogeneous linear function defined by a sat-
isfies R̂(a, S1) = |a1 − y|, and R̂(a, S2) = |a1 − y′|. Therefore, we can use
similar arguments to the ones above to show that there exists a sample S
with y − y′ = 2q, and if a = M(S) for some truthful mechanism M , then
y − 1

2
≤ a1 ≤ y or y′ ≤ a1 ≤ y′ + 1

2
. As before, we complete the proof by

splitting the points controlled by agent 1, i.e., by considering the sample S ′

where S ′1 = {〈t− 1, 0, . . . , 0〉, (t− 1)y′), (〈t, 0, . . . , 0〉, ty)}.

Let us recapitulate. We have found a group strategyproof and 3-efficient
mechanism for the class of constant functions over Rk and for the class of
homogeneous linear functions over R. A matching lower bound, which also
applies to multi-dimensional homogeneous linear functions, shows that this
result cannot be improved upon for these classes. It is natural to ask at this
point if project-and-fit remains strategyproof when considering more complex
hypothesis classes, such as homogeneous linear functions over Rk, k ≥ 2, or
linear functions. An example serves to answer this question in the negative.

Example 5.5. We demonstrate that project-and-fit is not strategyproof
when F is the class of linear functions over R. Let S1 = {(0, 0), (4, 1)}
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and S2 = {(1, 1), (2, 0)}. Since S1 and S2 are individually realizable, the
mechanism simply returns the empirical risk minimizer, which is f(x) = x/4
(this can be determined by solving a linear program). It further holds that
R̂(f, S2) = 5/8. If, however, one considers S̃2 = {(1, 1), (2, 1)} and the same
S1, then the mechanism returns f̃(x) = 1. Agent 2 benefits from this lie as
R̂(f̃ , S2) = 1/2.

It is also possible to extend this example to the case of homogeneous
linear functions over R2 by fixing the second coordinate of all points at 1, i.e.,
mapping each x ∈ R to x′ = (x, 1) ∈ R2. Indeed, the value of a homogeneous
linear function f(x) = 〈a, b〉 · x on the point (x, 1) is ax+ b.

Is there some other mechanism which deals with more complex hypoth-
esis classes and provides a truthful approximation? In order to tackle this
question, it will be instructive to once again view the hypothesis class F as
a set of alternatives. The agents’ types induce a preference order over this
set of alternatives. Explicitly, agent i weakly prefers function f1 to function
f2 if and only if R̂(f1, Si) ≤ R̂(f2, Si). A mechanism without payments is a
social choice function from the agents’ preferences over F to F .

The celebrated Gibbard-Satterthwaite Theorem [23, 24] asserts that every
truthful social choice function from the set of all linear preferences over some
set A of alternatives to A must be dictatorial, in the sense that there is some
agent d such that the social outcome is always the one most preferred by d.
Observe that this theorem does not directly apply in our case, since voters’
preferences are restricted to a strict subset of all possible preference relations
over F .

For the time being, let us focus on homogeneous linear functions f over
Rk, k ≥ 2. This class is isomorphic to Rk, as every such function can be
represented by a vector a ∈ Rk such that f(x) = a · x. Let R be a weak
preference relation over Rk, and let P be the asymmetric part of R (i.e., aPa′

if and only if aRa′ and not a′Ra). R is called star-shaped if there is a unique
point a∗ ∈ Rk such that for all a ∈ Rk and λ ∈ (0, 1), a∗P (λa∗+(1−λ)a)Pa.
In our case preferences are clearly star-shaped, as for any a, a′ ∈ Rk and any
sample S, R̂((λa + (1− λ)a′), S) = λR̂(a, S) + (1− λ)R̂(a′, S).

A preference relation R over Rm is called separable if for every j, 1 ≤ j ≤
m, all x, y ∈ Rm, and all aj, bj ∈ R,

〈x−j, aj〉R 〈x−j, bj〉 if and only if 〈y−j, aj〉R 〈y−j, bj〉 ,
where 〈x−j, aj〉 = 〈x1, . . . , xj−1, aj, xj+1, . . . , xm〉. The following example es-
tablishes that in our setting preferences are not separable.
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Example 5.6. Let F be the class of homogeneous linear functions over R,
and define S1 = {(〈1, 1〉, 0)}. Then agent 1 prefers 〈−1, 1〉 to 〈−1, 2〉, but
also prefers 〈−2, 2〉 to 〈−2, 1〉.

Border and Jordan [25] investigate a setting where the set of alternatives
is Rk. They give possibility results for the case when preferences are star-
shaped and separable. On the other hand, when k ≥ 2 and the separability
criterion is slightly relaxed, in a way which we will not elaborate on here,
then any truthful social choice function must necessarily be dictatorial.

Border and Jordan’s results also require surjectivity: the social choice
function has to be onto Rk.5 While this is a severe restriction in general, it is
in fact very natural in our context. If all agents have values consistent with
some function f , then the mechanism can have a bounded efficiency ratio
only if its output is the function f (indeed, f has loss 0, while any other
function has strictly positive loss). Therefore, any approximately efficient
mechanism must be surjective.

The above discussion leads us to believe that there is no truthful approx-
imation mechanism for homogeneous linear functions over Rk for any k ≥ 2.
The following conjecture formalizes this statement.

Conjecture 5.7. Let F be the class of homogeneous linear functions over Rk,
k ≥ 2, and assume that m = |Si| ≥ 3. Then any mechanism that is strate-
gyproof (in ex-post Nash equilibrium) and surjective must be a dictatorship.

Conceivably, dictatorship would be an acceptable solution if it could guar-
antee approximate efficiency. A simple example shows that unfortunately this
is not the case.

Example 5.8. Consider the class of homogeneous linear functions over R2,
N = {1, 2}. Let S1 = {(〈0, 1〉, 0), (〈0 + ε, 1〉, 0)} and S2 = {(〈1, 1〉, 1), (〈1 +
ε, 1〉, 1)} for some ε > 0. Any dictatorship has an empirical risk of 1/2.
On the other hand, the function f(x1, x2) = x1 has empirical risk ε/2. The
efficiency ratio increases arbitrarily as ε decreases.

6. Arbitrary Distributions Over the Sample

In Section 5 we established several positive results in the setting where
each agent cares about a uniform distribution on his portion of a global

5Border and Jordan [25] originally required unanimity, but their theorems can be re-
formulated using surjectivity [26].
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training set. In this section we extend these results to the general regression
learning setting defined in Section 3. More formally, the extent to which
agent i ∈ N cares about each point in X will now be determined by the
distribution function ρi, and agent i controls the labels of a finite set of
points sampled according to ρi. Our strategy in this section will consist of
two steps. First, we want to show that under standard assumptions on the
hypothesis class F and the number m of samples, each agent’s empirical
risk on the training set Si estimates his real risk according to ρi. Second, we
intend to establish that, as a consequence, our incentive compatibility results
are not significantly weakened when we move to the general setting.

Abstractly, let D be a probability distribution on X and let G be a class
of real-valued functions from X to [0, C]. We would like to prove that for
any ε > 0 and δ > 0 there exists m ∈ N such that, if X1, . . . , Xm are sampled
i.i.d. according to D,

Pr

(
for all g ∈ G,

∣∣∣∣EX∼D[g(X)]− 1

m

m∑
i=1

g(Xi)

∣∣∣∣ ≤ ε

)
≥ 1− δ. (19)

To establish this bound, we use standard uniform convergence arguments.
A specific technique is to show that the hypothesis class G has bounded
complexity. The complexity of G can be measured in various different ways,
for example using the pseudo-dimension [27, 28], an extension of the well-
known VC-dimension to real-valued hypothesis classes, or the Rademacher
complexity [29]. If the pseudo-dimension of G is bounded by a constant,
or if the Rademacher complexity of G with respect to an m-point sample
is O(

√
m), then there indeed exists m such that (19) holds.

More formally, assume that the hypothesis class F has bounded complex-
ity, choose ε > 0, δ > 0, and consider a sample Si of size m = Θ(log(1/δ)/ε2)
drawn i.i.d. from the distribution ρi of any agent i ∈ N . Then we have that

Pr
(

for all f ∈ F ,
∣∣∣Ri(f)− R̂(f, Si)

∣∣∣ ≤ ε
)
≥ 1− δ . (20)

In particular, we want the events in (20) to hold simultaneously for all i ∈ N ,
i.e.,

for all f ∈ F ,
∣∣∣RN(f)− R̂(f, S)

∣∣∣ ≤ ε . (21)

Using the union bound, this is the case with probability at least 1− nδ.
We now turn to incentive compatibility. The following theorem implies

that mechanisms which do well in the setting of Section 5 are also good, but
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slightly less so, when arbitrary distributions are allowed. Specifically, given a
training set satisfying (20) for all agents, a mechanism that is strategyproof
in the setting of Section 5 becomes ε-strategyproof, i.e., no agent can gain
more than ε by lying, no matter what the other agents do. Analogously, a
group strategyproof mechanism for the setting of Section 5 becomes ε-group
strategyproof, i.e., there exists an agent in the coalition that gains less than ε.
Furthermore, efficiency is preserved up to an additive factor of ε. We wish
to point out that ε-equilibrium is a well-established solution concept, the
underlying assumption being that agents would not bother to lie if they were
to gain an amount as small as ε. This concept is particularly appealing when
one recalls that ε can be chosen to be arbitrarily small.

Theorem 6.1. Let F be a hypothesis class, ` some loss function, and S =
]Si a training set such that for all f ∈ F and i ∈ N , |Ri(f) − R̂(f, Si)| ≤
ε/2, and |RN(f) − R̂(f, S)| ≤ ε/2. Let M be a mechanism with or without
payments.

1. If M is (group) strategyproof under the assumption that each agent’s
cost is R̂(f̃ , Si), then M is ε-(group) strategyproof in the general regres-
sion setting.

2. If M is α-efficient under the assumption that the mechanism’s goal is to
minimize R̂(f̃ , S), M(S) = f̃ , then RN(f̃) ≤ α · argminf∈F RN(f) + ε.

Proof. We will only prove the first part of the theorem, and only for (individ-
ual) strategyproofness. Group strategyproofness as well as the second part
of the theorem follow from similar arguments.

Let i ∈ N , and let ũi(S̃i) be the utility of agent i when S̃ is reported
and assuming a uniform distribution over Si. Denoting by f̃ the function
returned by M given S̃, we have

ũi(S̃) = −R̂(f̃ , Si) + pi(S̃) ,

where Si is the training data of agent i with the true labels set by oi. If M
is a mechanism without payments, pi is the constant zero function. Since M
is strategyproof for the uniform distribution, ũi(Si, S̃−i) ≥ ũi(Ŝi, S̃−i) holds
for all Ŝi.

On the other hand, let ui denote agent i’s utility function with respect to
distribution ρi, i.e.,

ui(S̃) = −Ri(f̃) + pi(S̃) ,
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where f̃ is as above. Then, |ui(S̃)− ũi(S̃)| = |Ri(f̃)− R̂(f̃ , Si)|. By assump-
tion, this expression is bounded by ε/2. Similarly, with respect to i’s true
values Si, if M(Si, S̃−i) = f̂ , then

|ui(Si, S̃−i)− ũi(Si, S̃−i)| = |Ri(f̂)− R̂(f̂ , Si)| ≤ ε/2 .

It follows that for any S̃,

ui(S̃)− ui(Si, S̃−i) ≤
(
ũi(S̃) +

ε

2

)
−
(
ũi(Si, S̃−i)−

ε

2

)
≤ ε .

As discussed above, the conditions of Theorem 6.1 are satisfied with prob-
ability 1 − δ when F has bounded dimension and m = Θ(log(1/δ)/ε2). As
the latter expression depends logarithmically on 1/δ, the sample size only
needs to be increased by an additive factor of Θ(log(n)/ε2) to achieve the
stronger requirement of (21).

Let us examine how Theorem 6.1 applies to our positive results. Since
ERM with VCG payments is strategyproof and efficient under uniform dis-
tributions over the samples, we obtain ε-strategyproofness and efficiency up
to an additive factor of ε when it is used in the general learning game, i.e.,
with arbitrary distributions. This holds for any loss function `. The project-
and-fit mechanism is ε-group strategyproof in the learning game when F is
the class of constant functions or of homogeneous linear functions over R,
and 3-efficient up to an additive factor of ε. This is true only for the absolute
loss function.

7. Discussion

In this paper, we have studied mechanisms for a general regression learn-
ing framework involving multiple strategic agents. In the case where each
agent controls one point, we have obtained a strong and surprising charac-
terization of the truthfulness of ERM. When the absolute loss function is
used, ERM is group strategyproof. On the other hand, ERM is not strate-
gyproof for any loss function that is superlinear in a certain well-defined way.
This particularly holds for the popular squared loss function. In the general
learning setting, we have established the following result: For any ε, δ > 0,
given a large enough training set, and with probability 1−δ, ERM with VCG
payments is efficient up to an additive factor of ε, and ε-strategyproof. We
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have also obtained limited positive results for the case when payments are
disallowed, namely an algorithm that is ε-group strategyproof and 3-efficient
up to an additive factor of ε for constant functions over Rk, k ∈ N, and
for homogeneous linear functions over R. We gave a matching lower bound,
which also applies to multi-dimensional homogeneous linear functions. The
number of samples required by the aforementioned algorithms depends on
the combinatorial richness of the hypothesis space F , but differs only by an
additive factor of Θ(log(n)/ε2) from that in the traditional regression learn-
ing setting without strategic agents. Since F can be assumed to be learnable
in general, this factor is not very significant.

At the moment there is virtually no other work on incentives in machine
learning, many exciting directions for future work exist. While regression
learning constitutes an important area of machine learning with numerous
applications, adapting our framework for studying incentives in classification
or in unsupervised settings will certainly prove interesting as well. In classi-
fication, each point of the input space is assigned one of two labels, either +1
or−1. ERM is trivially incentive compatible in classification when each agent
controls only a single point. The situation again becomes complicated when
agents control multiple points. In addition, we have not considered settings
where ERM is computationally intractable. Just like in general algorithmic
mechanism design, VCG is bound to fail in this case. It is an open question
whether one can simultaneously achieve tractability, approximate efficiency,
and (approximate) incentive compatibility.

Several interesting questions follow directly from our work. The one we
are most interested in is settling Conjecture 5.7: are there incentive com-
patible and approximately efficient mechanisms without payments for homo-
geneous linear functions? Do such mechanisms exist for other interesting
hypothesis classes? These questions are closely related to general questions
about the existence of incentive compatible and non-dictatorial mechanisms,
and have implications way beyond the scope of machine learning and com-
puter science.
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