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We consider scheduling jobs with stochastic processing times on identical parallel machines.
The task is to find an adaptive scheduling policy that minimizes the sum of (weighted) expected
completion times. We denote this problem in the standard notation as P||E [

∑
(wj)Cj ]. The

stochastic problem has received quite some attention in the literature. The single machine problem
can be solved optimally by ordering jobs in non-increasing order of the ratio of weight over expected
processing time [4]. This generalization of the well-known deterministic Smith rule [6] is called
Weighted Shortest Processing Time (WSEPT) rule. For two or more machines, WSEPT is not
optimal anymore. Several approximation algorithms have been proposed. To date, all algorithms
have an approximation guarantee in the order O(∆), where ∆ is an upper bound on the squared

coefficients of variation of the processing time distributions Pj , that is, Var[Pj ]/E [Pj ]
2 ≤ ∆ for

all jobs j. It is a major open question whether there is a constant factor approximation algorithm
for this problem. For proper definitions and related work, we refer to [2, 3, 5].

Recently, Benjamin Labonte [1] showed in his master thesis a lower bound of Ω(∆1/4) on the
approximation ratio for WSEPT. Here, we give a stronger example and demonstrate a gap of
Ω(∆1/2) for the unweighted setting, i.e., the performance of SEPT.

Theorem 1. There is a lower bound of Ω(∆1/2) on the approximation guarantee of SEPT for
P||E [

∑
Cj ].

Proof. Consider the following scheduling instance on m parallel identical machines and two types
of jobs, denoted by A and B. We denote the number of type-A (type-B) jobs by nA (nB), and
their length by LA (LB). Let ε ∈ (0, 1]. The parameters are set as follows:

Jobs of type A: nA = m2, LA =
1

m
,

Jobs of type B: nB =
m3

4
, LB =

{
0 with prob 1− 1

m2

m1+ε with prob 1
m2

.

While jobs of type A are deterministic, B-jobs are stochastic with high coefficient of variation.
Note that

E [LB ] = m−1+ε > LA, and ∆ = CV [LB ] =
E
[
L2
B

]
E [LB ]

2 − 1 =
m2+2εm−2

m−2+2ε
− 1 = m2 − 1.

WESPT will schedule jobs of type A first and then jobs of type B. Let Cost(A ≺ B) denote the
expected cost of WSEPT and let Cost(B ≺ A) denote the expected of list scheduling according
to the priority order in which B-jobs precede A-jobs. To demonstrate the gap in this example, we
will show that

Cost(A ≺ B)

Cost(B ≺ A)
= Ω(m1−ε) = Ω(∆

1−ε
2 ).

First, we show that Cost(A ≺ B) = Θ(m3). Let Cost0(J) denote the expected cost for
scheduling job set J from time 0 on using m machines. Furthermore, let Delay(A,B) := Cost(A ≺
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B) − Cost0(B) be the expected delay cost that the job set A incurs on job set B (which is
deterministic in our case). Then

Cost(A ≺ B) = Cost0(A) + Cost0(B) +Delay(A,B). (1)

It is clear that

Cost0(A) = m×
nA
m (nAm + 1)

2
LA = Θ(m2),

and
Delay(A,B) = Θ(nB ×

nA
m
LA) = Θ(m3).

We analyze Cost0(B) by conditioning on the number of B-jobs that have a non-zero processing
time. Fix a realization of processing times and let Xi be a binary random variable that is 1 if and
only if the i-th B-job is long. And let X =

∑nB
i=1Xi be the total number of long B-jobs in this

realization. Obviously
E [Cost0(B)|X < m ] ≤ m2+ε.

Now, we bound Pr [X ≥ m] using Chernoff’s inequality. Given iid Bernoulli random variables
{Xi}ni=1, then for each δ ∈ (0, 1], it states that

Pr [X ≥ (1 + δ)E [X ]] ≤ e−δ
2E[X ]/3.

The expected number of long B-jobs is E [X ] = m/4. Now choosing δ = 1 yields Pr [X ≥ m− 1] ≤
Pr [X ≥ m/2] ≤ e−m/4, which becomes arbitrarily small for sufficiently large m.

Thus,

Cost0(B) = Pr [X < m]E [Cost0(B)|X < m ] + Pr [X ≥ m]E [Cost0(B)|X ≥ m ]

= O(m2+ε).

Since ε ∈ (0, 1), these bounds applied to (1) show that the expected total cost of WSEPT is

Cost(A ≺ B) = Θ(m3).

Next, we show that Cost(B ≺ A) = O(m2+ε). Recall from previous calculation that
Cost0(B) = O(m2+ε). In particular, the analysis shows that with high probability, at least
m/2 machines will still be empty after assigning all B-jobs. The cost of scheduling all the A-jobs
can be upper bounded by the cost of scheduling them on m/2 machines, which is equal to Θ(m2).
Altogether, a gap of Ω(m) = Ω(∆1/2) is established.
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