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Abstract A recurring theme in the mathematical social sciences is how to select the “most
desirable” elements given a binary dominance relation on a set of alternatives. Schwartz’s
tournament equilibrium set (TEQ) ranks among the most intriguing, but also among the most
enigmatic, tournament solutions proposed so far. Due to its unwieldy recursive definition,
little is known about TEQ. In particular, its monotonicity remains an open problem to date.
Yet, if TEQ were to satisfy monotonicity, it would be a very attractive solution concept
refining both the Banks set and Dutta’s minimal covering set. We show that the problem
of deciding whether a given alternative is contained in TEQ is NP-hard, and thus does not
admit a polynomial-time algorithm unless P equals NP. Furthermore, we propose a heuristic
that significantly outperforms the naive algorithm for computing TEQ.
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1 Introduction

A recurring theme in the mathematical social sciences is how to select the “most desirable”
elements given a binary dominance relation on a set of alternatives. Examples are diverse
and include selecting socially preferred candidates in social choice settings (e.g., Fishburn,
1977; Laslier, 1997), finding valid arguments in argumentation theory (e.g., Dung, 1995;
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Dunne, 2007), determining the winners of a sports tournament (e.g., Dutta and Laslier,
1999), making decisions based on multiple criteria (e.g., Bouyssou et al., 2006), choosing
the optimal strategy in a symmetric two-player zero-sum game (e.g., Fisher and Ryan, 1995;
Laffond et al., 1993b), and singling out acceptable payoff profiles in cooperative game the-
ory (Gillies, 1959; Brandt and Harrenstein, 2009). In social choice theory, where dominance-
based solutions are most prevalent, the dominance relation can simply be defined as the
pairwise majority relation, i.e., an alternative a is said to dominate another alternative b if
the number of individuals preferring a to b exceeds the number of individuals preferring b
to a. As is well known from Condorcet’s paradox (de Condorcet, 1785), the dominance re-
lation may contain cycles and thus need not have a maximum, even if each of the underlying
individual preferences does. As a consequence, the concept of maximality is rendered un-
tenable in most cases, and a variety of so-called solution concepts that take over the role of
maximality in non-transitive relations have been suggested (see, e.g., Laslier, 1997).

The tournament equilibrium set (TEQ) introduced by Schwartz (1990) ranks among
the most intriguing, but also among the most enigmatic, solution concepts that have been
proposed for tournaments, i.e., asymmetric and complete dominance relations. Due to its
unwieldy recursive definition, however, preciously little is known about TEQ (Dutta, 1990;
Laffond et al., 1993a). In particular, whether TEQ satisfies the important property of mono-
tonicity remains an open question to date. If it does, TEQ constitutes a most attractive tour-
nament solution, refining both the minimal covering set and the Banks set (Laslier, 1997;
Laffond et al., 1993a).

The computational effort required to determine a solution is obviously a very important
property of any solution concept. If computing a solution is intractable, the applicability of
the corresponding solution concept is seriously undermined. This paper relies on the well-
established framework of computational complexity theory (see, e.g., Papadimitriou, 1994,
for an excellent introduction). Complexity theory deals with complexity classes of problems
that are computationally equivalent in a well-defined way. Typically, problems that can be
solved by an algorithm whose running time is polynomial in the size of the problem instance
are considered tractable, whereas problems that do not admit such an algorithm are deemed
intractable. The class of decision problems that can be solved in polynomial time is denoted
by P, whereas NP (for “nondeterministic polynomial time”) refers to the class of decision
problems whose solutions can be verified in polynomial time. The famous P,NP conjecture
states that the hardest problems in NP do not admit polynomial-time algorithms and are thus
not contained in P. Although this statement remains unproven, it is widely believed to be
true. Hardness of a problem for a particular class intuitively means that the problem is no
easier than any other problem in that class. Both membership and hardness are established in
terms of reductions that transform instances of one problem into instances of another prob-
lem using computational means appropriate for the complexity class under consideration. In
the context of this paper, we will be interested in reductions that can be computed in time
polynomial in the size of the problem instances. Finally, a problem is said to be complete for
a complexity class if it is both contained in and hard for that class. Given the current state of
complexity theory, we cannot prove the actual intractability of most algorithmic problems,
but merely give evidence for their intractability. NP-hardness of a problem is commonly
regarded as very strong evidence for computational intractability because it relates the prob-
lem to a large class of problems for which no efficient, i.e., polynomial-time, algorithm is
known, despite enormous efforts to find such algorithms.

In the context of this paper, the definition of any computable tournament solution in-
duces a straightforward algorithm, which exhaustively enumerates all subsets of alternatives
and checks which of them comply with the conditions stated in the definition. Not surpris-
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ingly, such an algorithm is very inefficient. Yet, proving the intractability of a tournament
solution essentially means that any algorithm that implements this concept is asymptotically
as bad as the straightforward algorithm!

Recent work in computer science has addressed the computational complexity of almost
all common tournament solutions (see, e.g., Woeginger, 2003; Alon, 2006; Conitzer, 2006;
Brandt et al., 2009). Until recently, the minimal covering set and the tournament equilibrium
set have remained two notable exceptions. Laslier writes that “Unfortunately, no algorithm
has yet been published for finding the minimal covering set or the tournament equilibrium
set of large tournaments. For tournaments of order 10 or more, it is almost impossible to find
(in the general case) these sets at hand” (Laslier, 1997, p.8). While the minimal covering set
is computable in polynomial time (Brandt and Fischer, 2008), we show that the same is not
true for TEQ, unless P equals NP. We first give an arguably simpler alternative to Woeg-
inger’s (2003) NP-hardness proof for membership in the Banks set. Then the construction
used in that proof is modified so as to obtain the analogous result for TEQ. In contrast to
the Banks set, there is no obvious reason to suppose that the TEQ membership problem is in
NP; it may very well be even harder. In the second part of the paper, we propose and eval-
uate a heuristic for computing TEQ that performs reasonably well on tournaments with up
to 150 alternatives. We failed to find a counterexample of TEQ’s conjectured monotonicity
by searching a fairly large number of random tournaments.

2 Preliminaries

A tournament T is a pair (A,�), where A is a finite set of alternatives and � an asymmetric
and complete binary relation on A, also referred to as the dominance relation. Intuitively,
a � b signifies that alternative a beats b in a pairwise comparison.1 We write T for the
class of all tournaments and have T (A) denote the set of all tournaments on a fixed set A
of alternatives. If T is a tournament on A, then every subset X of A induces a tournament
T |X = (X,�|X), where �|X = {(x, y) ∈ X × X : x � y}.

As the dominance relation is not assumed to be transitive in general, there need not
be a so-called Condorcet winner, i.e., an alternative that dominates all other alternatives.
A tournament solution S is defined as a function that associates with each tournament T
on A a subset S (T ) of A. The definition of a tournament solution commonly includes the
requirement that S (T ) be non-empty if T is defined on a non-empty set of alternatives and
that it select the Condorcet winner if there is one (Laslier, 1997, p.37). For X a subset of A,
we also write S (X) for the more cumbersome S (T |X), provided that the tournament T is
known from the context. A tournament solution S is said to be monotonic if for any two
tournaments T,T ′ ∈ T (A) which only differ in that b � a in T and a � b in T ′, a ∈ S (T )
implies that also a ∈ S (T ′), i.e., reinforcing an alternative cannot cause it to be excluded
from the choice set. Monotonicity is a vital property that all reasonable tournament solutions
satisfy. In this paper, we will be concerned with two particular tournament solutions, the
Banks set and Schwartz’s tournament equilibrium set (TEQ). In order to formally define
these concepts, we need some auxiliary notions and notations.

Let R be a binary relation on a set A. We write R∗ for the transitive reflexive closure
of R. By the top cycle TCA(R) we understand the maximal elements of A according to the
asymmetric part of R∗. A subset X of A is said to be transitive if R is transitive on X. For

1 Improving on a previous result by McGarvey, Stearns (1959) has shown that any tournament can be
realized via the simple majority rule when the number of voters is at least two greater than the number of
alternatives. Thus our results apply to all social choice settings where this is the case.
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X ⊆ Y ⊆ A, X is called maximal transitive in Y if X is transitive and no proper superset of X
in Y is. Clearly, since A is finite, every transitive set is contained in a maximal transitive set.

In tournaments, maximal transitive sets are also referred to as Banks trajectories. The
Banks set BA(T ) of a tournament T then collects the maximal elements of the Banks trajec-
tories (Banks, 1985).

Definition 1 (Banks set) Let T be a tournament on A. An alternative a ∈ A is in the Banks
set BA(T ) of T if a is a maximal element of some maximal transitive set in T .

The tournament equilibrium set TEQ(T ) of a tournament T on A is defined as the top
cycle of a particular subrelation of the dominance relation, referred to as the TEQ relation in
the following (Schwartz, 1990). The underlying idea is that alternative a is only “properly”
dominated by alternative b, i.e., dominated according to the subrelation, if b is selected from
the dominators of a by some tournament solution concept S . To make this idea precise,
for X ⊆ A, we write DX(a) = { b ∈ X : b � a } for the dominators of a in X, omitting
the subscript when X = A. Thus, for each alternative a one examines the set D(a) of its
dominators, and solves the subtournament T |D(a) by means of the solution S . According to
the subrelation, a is then only dominated by the alternatives in S (D(a)). This of course, still
leaves open the question as to the choice of the solution concept S . Now, in the case of
TEQ, S is taken to be TEQ itself! This recursion is well-defined because for any X ⊆ A and
a ∈ X, the set DX(a) is a proper subset of X. Thus, in order to determine the TEQ relation in a
subtournament T , one has to calculate the TEQ of subtournaments of T of strictly decreasing
order.

Definition 2 (Tournament equilibrium set) Let T ∈ T (A). For each subset X ⊆ A, define
the tournament equilibrium set TEQ(X) for X as

TEQ(X) = TCX(→X),

where→X is defined as the binary relation on X such that for all x, y ∈ X,

x→X y if and only if x ∈ TEQ(DX(y)).

Recall that in particular TEQ(∅) = ∅. The TEQ relation →X is a subset of the dominance
relation �, and if DX(x) , ∅, then there is some y ∈ DX(x) with y →X x. Furthermore,
Definition 2 directly yields a recursive algorithm to compute TEQ. Some reflection reveals
that, in the worst case, this naive algorithm requires time exponential in |A|.

It can easily be established that the Banks set and TEQ both select the Condorcet winner
of a tournament if there is one. Moreover, in a cyclic tournament of order three, the Banks set
and TEQ both consist of all alternatives. In more complex tournaments, however, the Banks
set and TEQ may differ. Consider, for example, the tournament T depicted in Figure 1. We
first calculate the TEQ relation→. Thus, e.g., for alternative e we find D(e) = {a, c, d}, which
constitutes a three-cycle, and so TEQ(D(e)) = {a, c, d}. Accordingly, a → e, c → e, as well
as d → e. Doing this for all alternatives, we find TEQ(T ) = {a, b, c} as the top cycle TC(→)
of the relation→. By contrast, the Banks set consists of the four elements a, b, c and d. For
example, d ∈ BA(T ), because {d, c, e} is a maximal transitive set with maximal element d.
Schwartz (1990) has shown that TEQ is always contained in the Banks set.

Proposition 1 (Schwartz, 1990) Let T = (A,�) be a tournament. Then, TEQ(T ) ⊆ BA(T ).
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Fig. 1 Example due to Schwartz (1990), where BA(T ) =

{a, b, c, d} and TEQ(T ) = {a, b, c}. The TEQ relation → is
indicated by thick edges.

Other than that, little is known and much surmised about the theoretical properties of
TEQ. For example, Schwartz (1990) conjectured that the top cycle of the TEQ relation
always consists of a single connected component, a property of TEQ that is usually referred
to as Index (Laffond et al., 1993a). Laffond et al. (1993a) and Houy (2009) showed that TEQ
satisfying Index is equivalent to it having a number of useful properties. In particular, TEQ
is monotonic if and only if Index holds. Moreover, Index implies the inclusion of TEQ in the
minimal covering set, another appealing tournament solution. Thus, if TEQ satisfies Index it
might be considered a very strong solution concept. Otherwise, TEQ lacks the vital property
of monotonicity and as such it would be severely flawed as a tournament solution.

3 An Alternative NP-Hardness Proof for Membership in the Banks Set

We begin our investigation of the computational complexity of the TEQ membership prob-
lem by giving an alternative proof for NP-hardness of the analogous problem for the Banks
set. The latter was first demonstrated by Woeginger (2003) using a reduction from graph
three-colorability. Our proof works by a reduction from 3SAT , the NP-complete satisfiabil-
ity problem for Boolean formulas in conjunctive normal form with exactly three literals per
clause (see, e.g., Papadimitriou, 1994). It is arguably simpler than Woeginger’s, and a much
similar construction will be used in the next section to prove NP-hardness of membership in
TEQ. The tournaments used in both reductions will be taken from a special class T ∗.

Definition 3 (The class T ∗) A tournament (A,�) is in the class T ∗ if it satisfies the follow-
ing properties. There is some odd integer n ≥ 1, the number of layers in the tournament, such
that A = C ∪ U1 ∪ · · · ∪ Un, where C,U1, . . . ,Un are pairwise disjoint and C = {c0, . . . , cn}.
Each Ui is a singleton if i is even, and Ui = {u1

i , u
2
i , u

3
i } if i is odd. The dominance relation �

satisfies the following properties for all ci ∈ Ci, c j ∈ C j, ui ∈ Ui, u j ∈ U j (0 ≤ i, j ≤ n):

(i) ci � c j, if i > j,
(ii) ui � c j, if i = j,

(iii) c j � ui, if i , j,
(iv) ui � u j, if i < j and at least one of i and j is even,
(v) uk

i � ul
i, if i is odd and k ≡ l − 1 (mod 3).

We also refer to c0 by d, for “decision node” and to
⋃

1≤i≤n Un by U. For i = 2k, we have
as a notational convention Ui = Yk = {yk} and set Y =

⋃
1≤2k≤n Yk.

Observe that this definition fixes the dominance relation between any two alternatives except
for some pairs of alternatives that are both in U.

As a next step in the argument, we associate with each instance of 3SAT a tourna-
ment in the class T ∗. An instance of 3SAT is given by a formula ϕ in 3-conjunctive
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Fig. 2 Tournament T BA
ϕ for the 3CNF formula ϕ = (¬p ∨ s ∨ q) ∧ (p ∨ s ∨ r) ∧ (p ∨ q ∨ ¬r). Omitted edges

are assumed to point downwards.

normal form (3CNF), i.e., ϕ = (x1
1 ∨ x2

1 ∨ x3
1) ∧ · · · ∧ (x1

m ∨ x2
m ∨ x3

m), where each
x ∈ {x1

i , x
2
i , x

3
i : 1 ≤ i ≤ m} is a literal. For each clause x1

i ∨ x2
i ∨ x3

i we assume x1
i , x2

i
and x3

i to be distinct literals. We moreover assume the literals to be indexed and by Xi we
denote the set {x1

i , x
2
i , x

3
i }. For literals x we have x̄ = ¬p if x = p, and x̄ = p if x = ¬p,

where p is some propositional variable. We may also assume that if x and y are literals in the
same clause, then x , ȳ. We say a 3CNF ϕ = (x1

1∨ x2
1∨ x3

1)∧· · ·∧ (x1
m∨ x2

m∨ x3
m) is satisfiable

if there is a tuple (x1, . . . , xm) in
�

1≤i≤m Xi such that v′ = v̄ for no v, v′ ∈ {x1, . . . , xm}. Let
V = {x1, . . . , xm}. Next we define for each 3SAT formula ϕ the tournament T BA

ϕ .

Definition 4 (Banks construction) Let ϕ be a 3CNF (x1
1 ∨ x2

1 ∨ x3
1) ∧ · · · ∧ (x1

m ∨ x2
m ∨ x3

m).
Define T BA

ϕ = (C ∪ U,�) as the tournament in the class T ∗ with 2m − 1 layers such that for
all 1 ≤ j < 2m,

U j =

Xi if j = 2i − 1,
{yi} if j = 2i

and such that for all x ∈ Xi and x′ ∈ X j (1 ≤ i, j ≤ m),

x � x′ if both j < i and x′ = x̄ or both i < j and x′ , x̄.

Observe that in conjunction with the other requirements on the dominance relation of a
tournament in T ∗, this completely fixes the dominance relation � of T BA

ϕ .

An example of a tournament T BA
ϕ for a 3CNF ϕ is shown in Figure 2. We are now in a

position to present our proof that the Banks membership problem is NP-complete.

Theorem 1 The problem of deciding whether a particular alternative is in the Banks set of
a tournament is NP-complete.

Proof Membership in NP is obvious. For any fixed alternative a, we can simply guess a tran-
sitive subset of alternatives V with a as maximal element and verify that V is also maximal
with respect to set inclusion.
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For NP-hardness, we show that T BA
ϕ contains a maximal transitive set with maximal

element d if and only if ϕ is satisfiable. First observe that V is a maximal transitive subset
with maximal element d in T BA

ϕ only if both

(i) for all 1 ≤ i < 2m there is a u ∈ Ui such that u ∈ V , and
(ii) there are no 1 ≤ i < j < 2m, u ∈ Ui, u′ ∈ U j with u, u′ ∈ V such that u′ � u.

Regarding (i), if there is an 1 ≤ i < 2m such that no element of Ui is contained in V , we can
always add ci to V in order to obtain a larger transitive set. If (ii) were not to hold, both i
and j have to be odd for u j to dominate ui. However, in light of (i), there has to be a k with
i < k < j and u′′ ∈ Uk such that u′′ ∈ V . It follows that V is not transitive because u, u′′,
and u′ form a cycle. Recall we may assume that x , ȳ if x and y are literals in the same
clause. Thus, if there is maximal transitive set V with maximal element d complying with
both (i) and (ii), a satisfying assignment of ϕ can be obtained by letting all literals contained
in X ∩ V be true.

For the opposite direction, assume that ϕ is satisfiable. Then there is a tuple (x1, . . . , xm)
in
�

1≤i≤m Xi such that such that x′ = x̄ for no x, x′ ∈ {x1, . . . , xm}. Obviously V =

{x1, . . . , xm} ∪ {y1, . . . , ym−1} ∪ {d} contains no cycles and thus is transitive with maximal
element d. In order to obtain a larger transitive set with a different maximal element, we
need to add ci for some 1 ≤ i ≤ m to V . However, V ∪ {ci} always contains a cycle consist-
ing of ci, d, and u for some u ∈ Ui, contradicting the transitivity of V ∪ {ci}. We have thus
shown that d is the maximal element of some maximal transitive set in T BA

ϕ containing V as
a subset. ut

4 NP-hardness of Membership in TEQ

In this section we prove that the problem of deciding whether a particular alternative is in
the TEQ of a tournament is NP-hard. To this end, we refine the construction that was used
in the previous section to prove NP-completeness of membership in the Banks set.

Definition 5 (TEQ construction) Let ϕ be a 3CNF (x1
1 ∨ x2

1 ∨ x3
1) ∧ · · · ∧ (x1

m ∨ x2
m ∨ x3

m).
Further for each 1 ≤ i < m, let there be a set Zi = {z1

i , z
2
i , z

3
i }. Define T TEQ

ϕ as the tournament
(A,�) in T ∗ with 4m − 3 layers such that A = C ∪ U1 ∪ · · · ∪ U4m−3 and for all 1 ≤ i ≤ m,

U j =


Xi if j = 4i − 3,
Zi if j = 4i − 1,
{yi} otherwise.

As in the Banks construction, we let for all x ∈ Xi and x′ ∈ X j (1 ≤ i, j ≤ m)

x � x′ if both j < i and x′ = x̄ or both i < j and x′ , x̄.

Finally, for all 1 ≤ i, j ≤ m, xk
i ∈ Xi and zl

j ∈ Z j,

xk
i � zl

j if and only if i < j or both i = j and k = l.

An example for such a tournament is shown in Figure 3.
We now proceed to show that a 3SAT formula ϕ is satisfiable if and only if the decision

node d is in the tournament equilibrium set of T TEQ
ϕ . We make use of the following lemma.

Recall that →∗B denotes the transitive reflexive closure of →B. Moreover, for B ⊆ A with
B ∩C , ∅, let cB be the alternative in C with the highest index among those included in B.
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y4
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d

c1

c3

c5

c7

c9

c2

c4

c6

c8

Fig. 3 Tournament T TEQ
ϕ for the 3CNF formula ϕ = (¬p ∨ s ∨ q) ∧ (p ∨ s ∨ r) ∧ (p ∨ q ∨ ¬r).

Lemma 1 Let T = (A,�) be a tournament in T ∗ and let B ⊆ A such that d ∈ B. Then,
cB →

∗
B b for all b ∈ B.

Proof The proof is by induction on the size of B. The basis, i.e., if B = {d}, is trivial.
Now assume that {d} is a proper subset of B and consider an arbitrary b ∈ B. First assume
b ∈ B ∩ C. If b , cB, cB is the Condorcet winner in DB(b) by construction. Hence, either
cB = b or cB →B b. In either case cB →

∗
B b. Now assume b ∈ B ∩ U and consider DB(b).

As DB(b) is a proper subset of B including d the induction hypothesis is applicable. Hence,
cDB(b) →

∗ x for all x ∈ DB(b). Accordingly, cDB(b) ∈ TEQ(DB(b)) and thus cDB(b) →B b. As
also cB →

∗
B cDB(b), it follows that cB →

∗
B b. ut

We are now ready to state the main theorem of this paper.

Theorem 2 Deciding whether a particular alternative is in the tournament equilibrium set
of a tournament is NP-hard.

Proof By reduction from 3SAT . Consider an arbitrary 3CNF ϕ and construct the tournament
T TEQ
ϕ = (C ∪ U,�). This can be done in polynomial time. We show that

ϕ is satisfiable if and only if d ∈ TEQ(T TEQ
ϕ ).

For the direction from right to left, observe that, by an argument analogous to the proof of
Theorem 1, it can be shown that ϕ is satisfiable if and only if d ∈ BA(T TEQ

ϕ ). So assuming
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that ϕ is not satisfiable yields d < BA(T TEQ
ϕ ). By the inclusion of TEQ in the Banks set (see

Proposition 1) it follows that d < TEQ(T TEQ
ϕ ).

For the opposite direction, assume that ϕ is satisfiable. Then there is a tuple (x1, . . . , xm)
in
�

1≤i≤m Xi such that x′ = x̄ for no x, x′ ∈ {x1, . . . , xm}. Let W = {x1, . . . , xm} and
{u1, . . . , un} = W ∪ {y1, . . . , ym−1} ∪ {z

j
i ∈ Z : x j

i ∈ W}, where ui ∈ Ui for each 1 ≤ i ≤ n.
Obviously, {u1, . . . , un} contains no cycles and as such is transitive. We now define a se-
quence B1, . . . , Bn+1 of subsets of A such that for each i with 1 ≤ i ≤ n + 1

Bi =

A if i = n + 1,
D(ui) ∩ Bi+1 otherwise.

Defined thus we have B1 ( · · · ( Bn+1. Moreover, by construction, d ∈ Bi for each i with
1 ≤ i ≤ n + 1. To simplify notation, we write→i and Di(x) for→Bi and DBi (x), respectively.
Observe that for all i with 1 ≤ i ≤ n,

Bi = Di+1(ui) = D(ui) ∩ · · · ∩ D(un).

It now suffices to prove that

d ∈ TEQ(Bk) for all 1 ≤ k ≤ n + 1. (∗)

We first make the following observations. For all 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n,

(i) u j ∈ Bi if and only if j < i,
(ii) c j ∈ Bi if and only if j < i,

(iii) ci →i+1 c j if j < i ≤ n,
(iv) ui →i+1 ci, if i ≤ n.

For (i), observe that u j ∈ A and, by transitivity of the set {u1, . . . , un}, u j ∈ D(ui), . . . ,
u j ∈ D(un) if i ≤ n. Hence, u j ∈ Bi. If on the other hand j ≥ i, then u j < D(u j) and thus
u j < Bi. For (ii), observe that c j ∈ D(ui) for all i , j and thus c j ∈ Bi if j < i. However,
c j < D(u j) and hence c j < Bi if j ≥ i. For (iii), merely observe that ci is the Condorcet
winner in Di+1(c j), if j < i ≤ n. To appreciate (iv), observe that by construction Di+1(ci) has
to be either a singleton {ui} for some ui ∈ Ui, or Ui itself. The former holds if Ui ⊆ Y , or if
Ui ⊆ X and i , n, the latter if Ui = Un or if Ui ⊆ Z. In either case, TEQ(Di+1(ci)) = Di+1(ci)
and ui →i+1 ci holds. To see that Di+1(ci) = {ui} if Ui ⊆ X with i , n, let Ui = {ui, u′i , u

′′
i }. By

construction, D(ci) = Ui∪{c j : j > i} and Ui+2 ⊆ Z. Moreover, by transitivity of {u1, . . . , un},
also u′i , u

′′
i < D(ui+2). Accordingly, u′i , u

′′
i < Bi+1 whereas, with (i), we have ui ∈ Bi+1. In

virtue of (ii), we may conclude that Di+1(ci) = D(ci) ∩ Bi+1 = {ui}.
We are now in a position to prove (∗) by induction on k. For k = 1, observe that, by

construction and observation (ii), d is a Condorcet winner in B1 and, thus, d ∈ TEQ(B1). For
the induction step, let k = i + 1. By observation (i) we know that ui ∈ Bi+1 and, in virtue
of the induction hypothesis, that d ∈ TEQ(Bi). Because Bi = Di+1(ui), we have d →i+1 ui.
Moreover, by observations (iii) and (iv),

ci →i+1 d →i+1 ui →i+1 ci,

i.e., ci, d and ui constitute a →i+1-cycle. In virtue of observation (ii), ci is the alternative
in C ∩ Bi+1 with the highest index. By Lemma 1 it then follows that ci →

∗
i+1 b for all

b ∈ Bi+1. We may conclude that {ci, d, ui} ⊆ TCBi+1 (→i+1). Hence, d ∈ TEQ(Bi+1). ut

The preceding proof establishes the intractability of any solution concept that is sand-
wiched between the Banks set and TEQ, i.e., any concept that always selects a subset of the
Banks set and a superset of TEQ.
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Algorithm 1 Tournament Equilibrium Set
procedure TEQ(X)
R← ∅
B← C ← arg mina∈X |D(a)|
loop

R← R ∪ {(b, a) : a ∈ C ∧ b ∈ TEQ(D(a))}
D←

⋃
a∈C TEQ(D(a))

if D ⊆ B then return TCB(R) end if
C ← D
B← B ∪C

end loop

5 A Heuristic for Computing TEQ

Computational intractability of the TEQ membership problem implies that TEQ cannot be
computed efficiently either. Nevertheless, the running time of the naive algorithm, which
straightforwardly implements the recursive definition of TEQ, can be greatly reduced when
assuming that TEQ satisfies Index. This assumption can fairly be made because otherwise
TEQ would be severely compromised as a solution concept and the issue of computing it
moot.

Algorithm 1 computes TEQ by starting with the set B of all alternatives that have domi-
nator sets of minimal size (i.e., the so-called Copeland winners). These alternatives are good
candidates to be included in TEQ, and the small size of their dominator sets speeds up the
computation of their TEQ-dominators. Then, all alternatives that TEQ-dominate any alter-
native in B are iteratively added to B. When no more such alternatives can be found, the
algorithm returns the top cycle of→B. The worst-case running time of this algorithm is of
course still exponential, but experimental results suggest that it significantly outperforms
the naive algorithm on tournaments that are generated by orienting each edge uniformly at
random. These results are shown in Table 1.

We implemented different versions of both algorithms, based on different subroutines to
determine the top cycle. Among these, the algorithm by Tarjan (1972) consistently showed
the best performance. The recursive computation of TEQ involves the computation of the
TEQ of many tournaments of low order. A significant speedup can therefore be achieved
by computing the TEQ only once for small tournaments and storing the result in a lookup
table. In practice, the effectiveness of this approach is limited by the amount of memory
available to store the results. In our experiments, a good tradeoff between computation time
and memory requirements was obtained by storing the TEQ for tournaments of order nine
or less.

While choosing tournaments uniformly at random might be useful for benchmarking
algorithms, it raises a number of conceptual problems. First, in voting and most other ap-
plications uniform random tournaments do not represent a reasonably realistic model of
social preferences. Secondly, these tournaments are “almost” regular and most tournament
solutions almost always select all alternatives in regular tournaments. One model of random
tournaments that have more structure can be obtained by defining an arbitrary linear order on
the alternatives a1, . . . , an and letting ai � a j for i < j with some fixed probability p > 0.5.
The case where p = 1 yields a “completely structured” transitive tournament. The more
structure a tournament possesses, the more Algorithm 1 outperforms the naive algorithm,
due to the increasing number of large dominator sets that have to be analyzed by the latter at
every level of the recursion. In large structured tournaments, the performance gap becomes
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|A| naive Algorithm 1
w/o lookup w/ lookup w/o lookup w/ lookup

Uniform random tournaments (p = 0.5)
50 0.65 s 0.28 s 0.19 s 0.18 s

100 49.60 s 9.67 s 9.28 s 5.84 s
150 1 088 s 178 s 196 s 105 s
200 10 525 s 1 731 s 1 910 s 1 034 s

Structured random tournaments (p = 0.8)
50 19.24 s 2.02 s 0.02 s 0.02 s

100 15 981 s 1 504 s 3.03 s 2.49 s
150 > 24 h > 24 h 720 s 522 s
200 > 24 h > 24 h 44 454 s 31 197 s

Table 1 Experimental evaluation of algorithms for computing TEQ. Both the naive algorithm and Algo-
rithm 1 were implemented in the Java programming language. The table lists the average running time for
ten instances on a 3GHz Core2Duo machine. Running times are also given for versions of the algorithms
that store the TEQ of tournaments of order nine or less in a lookup table (which is initially empty). For
tournaments of order 150 or more, the naive algorithm did not terminate within 24 hours.

rather impressive (see Table 1). For example, to compute the TEQ of a structured random
tournament of order 100, the naive algorithm requires more than four hours, or about 25
minutes with lookup, whereas this takes Algorithm 1 only about three seconds.2

We have further used the naive algorithm to try to disprove Index (and thus TEQ’s mono-
tonicity), but failed to find a counterexample by an exhaustive search in all tournaments of
order 12 or lower. Over a period of several months we also investigated about 8 billion ran-
dom tournaments with up to 50 alternatives, again to no avail. This is interesting insofar
as we successfully used the same methods to find counterexamples for TEQ’s external sta-
bility, a related conjecture by Schwartz that was recently disproved by Houy (2009). We
found plenty of counterexamples for external stability by random search and showed that
Houy’s counterexample of 11 alternatives is minimal. The total number of counterexamples
of order 11 is 26.

Acknowledgements This material is based upon work supported by the Deutsche Forschungsgemeinschaft
under grant BR 2312/3-2. We are grateful to Brendan McKay for providing a program that generates non-
isomorphic tournaments.
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