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On the Rate of Convergence of Fictitious Play

Felix Brandt · Felix Fischer · Paul
Harrenstein

Abstract Fictitious play is a simple learning algorithm for strategic games
that proceeds in rounds. In each round, the players play a best response to a
mixed strategy that is given by the empirical frequencies of actions played in
previous rounds. There is a close relationship between fictitious play and the
Nash equilibria of a game: if the empirical frequencies of fictitious play converge
to a strategy profile, this strategy profile is a Nash equilibrium. While fictitious
play does not converge in general, it is known to do so for certain restricted
classes of games, such as constant-sum games, non-degenerate 2 × n games,
and potential games. We study the rate of convergence of fictitious play and
show that, in all the classes of games mentioned above, fictitious play may
require an exponential number of rounds (in the size of the representation of
the game) before some equilibrium action is eventually played. In particular,
we show the above statement for symmetric constant-sum win-lose-tie games.

Keywords Game Theory · Nash Equilibrium · Fictitious Play · Rate of
Convergence

1 Introduction

A common criticism of Nash equilibrium, the most prominent solution concept
of the theory of strategic games, is that it fails to capture how players’ deliber-
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ation processes actually reach a steady state. When considering a set of human
or artificial agents engaged in a parlor game or a more prosaic decision-making
situation, it is hard to imagine that they would after some deliberation arrive
at a Nash equilibrium, a carefully chosen probability distribution over all pos-
sible courses of action. One reason why this behavior is so hard to imagine
is that Nash equilibrium rests on rather strong assumptions concerning the
rationality of players and their ability to reliably carry out randomizations.
Another concern is that in many settings finding a Nash equilibrium is com-
putationally intractable.

A more reasonable scenario would be that agents face a strategic situation
by playing a game in their heads, going through several rounds of speculation
and counterspeculation as to how their opponents might react and how they
would react in turn. This is the idea underlying fictitious play (FP). FP pro-
ceeds in rounds. In the first round, each player arbitrarily chooses one of his
actions. In subsequent rounds, each player looks at the empirical frequency
of play of their respective opponents in previous rounds, interprets it as a
probability distribution, and myopically plays a pure best response against
this distribution. FP can also be seen as a learning algorithm for games that
are played repeatedly, such that the intermediate best responses are actually
played. This interpretation rests on the simplifying assumption that the other
players follow a fixed strategy.

FP was originally introduced by Brown [7] as an algorithm to approxi-
mate the value of constant-sum games, or equivalently compute approximate
solutions to linear programs [10]. Shortly after, it was shown that FP does
indeed converge to the desired solution [26]. While convergence does not ex-
tend to arbitrary games, as illustrated by Shapley [28], it does so for quite
a few interesting classes of games, and much research has focussed—and still
focusses—on identifying such classes ([3], and the references therein).

Both as a linear program solver and as a learning algorithm, FP is easily
outperformed by more sophisticated algorithms. However, FP is of captivating
simplicity and is therefore considered one of the most convincing explanations
of Nash equilibrium play. As Luce and Raiffa put it: “Brown’s results are not
only computationally valuable but also quite illuminating from a substantive
point of view. Imagine a pair of players repeating a game over and over again.
It is plausible that at every stage a player attempts to exploit his knowledge of
his opponent’s past moves. Even though the game may be too complicated or
too nebulous to be subjected to an adequate analysis, experience in repeated
plays may tend to a statistical equilibrium whose (time) average return is
approximately equal to the value of the game” [18, p. 443].

In this paper, we show that in virtually all classes of games where FP is
known to converge to a Nash equilibrium, it may take an exponential number
of rounds (in the representation of the game) before any equilibrium action
is played at all. While it has been widely known that FP does not converge
rapidly, our results are still somewhat surprising in their strength. They do
not depend on the choice of a metric for comparing probability distributions.
Rather, we show that the empirical frequency of FP after an exponential num-



On the Rate of Convergence of Fictitious Play 3

ber of rounds can be arbitrarily far from any Nash equilibrium for any rea-
sonable metric. This casts doubt on the plausibility of FP as an explanation
of Nash equilibrium play.

2 Related Work

As mentioned above, FP does not converge in general. Shapley showed this
using a variant of Rock-Paper-Scissors and argued further that “if fictitious
play is to fail, the game must contain elements of both coordination and com-
petition” [28, p. 24]. This statement is perfectly consistent with the fact that
FP is guaranteed to converge for both constant-sum games [26] and iden-
tical interest games, i.e., games that are best-response equivalent (in mixed
strategies) to a common payoff game [22]. Other classes of games where FP
is known to converge include two-player games solvable by iterated elimina-
tion of strictly dominated strategies [23] and non-degenerate 2× 2 games [19].
While the proof of Miyasawa [19] was initially thought to apply to the class
of all 2× 2 games, this was later shown to be false [20]. Berger, however, has
recently succeeded in extending the result to non-degenerate 2× n games [2].
Since every non-degenerate 2 × 2 game is best-response equivalent to either
a constant-sum game or a common payoff game [22], the result of Miyasawa
follows more easily by combining those of Robinson [26] and Monderer and
Shapley [22].

Shapiro [27] has shown that in two-player constant-sum games the rate of
convergence of fictitious play is at most O(n−1/(r+s−2)), where n is the number
of rounds and r and s are the numbers of actions available to the two players.
Hidden in the asymptotic notation is an additional factor of a · 2r+s, where a
is the largest absolute payoff value. Karlin [17] conjectured that the correct
rate of convergence is O(n−1/2), but to our knowledge no progress has been
made toward this conjecture. A lower bound of O(n−1/2) already holds for the
Matching Pennies game [13]. It should be noted that all these bounds concern
convergence of payoffs values, whereas we study convergence to equilibrium
strategies.

Von Neumann [30] proposed a variant of FP and compared it to Dantzig’s
Simplex method. Indeed, there are some interesting similarities between the
two. Conitzer [8] and Goldberg et al. [14] have recently studied the ability of
FP to find approximate Nash equilibria. In addition to worst-case guarantees
on the approximation ratio—which are rather weak—Conitzer showed that in
random games a good approximation is typically achieved after a relatively
small number of rounds. Similarly, the Simplex method is known to work very
well in practice. As we show in this paper, FP also shares one of the major
shortcomings of the Simplex method: its exponential worst-case running time.

Since FP is one of the earliest and simplest algorithms for learning in
games, it inspired many of the algorithms that followed: the variant due to
von Neumann, a similar procedure suggested by Bellman [1], improvements
like smooth FP [11], the regret minimization paradigm [16], and a large num-
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ber of specialized algorithms put forward by the artificial intelligence commu-
nity (e.g., [24, 9]).

Despite the existence of much more sophisticated learning algorithms, FP
continues to be employed successfully in the area of artificial intelligence. Re-
cent examples include equilibrium computation in Poker [12] and in anony-
mous games with continuous player types [25], and learning in sequential auc-
tions [31].

3 Preliminaries

An accepted way to model situations of strategic interaction is by means of a
normal-form game (see, e.g., [18]). We will focus on games with two players.

A two-player game Γ = (P,Q) is given by two matrices P,Q ∈ Rm×n for
positive integers m and n. Player 1, or the row player, has a set A = {1, . . . ,m}
of actions corresponding to the rows of these matrices, player 2, the column
player, a set B = {1, . . . , n} of actions corresponding to the columns. To
distinguish between them, we usually denote actions of the row player by
a1, . . . , am and actions of the column player by b1, . . . , bn. Both players are
assumed to simultaneously choose one of their actions. For the resulting action
profile (i, j) ∈ A×B, they respectively obtain payoffs pij and qij .

A strategy of a player is a probability distribution s ∈ ∆(A) or t ∈ ∆(B)
over his actions, i.e., a nonnegative vector s ∈ Rm or t ∈ Rn such that

∑
i si =

1 or
∑

j tj = 1, respectively. In a slight abuse of notation, we write pst and
qst for the expected payoff of players 1 and 2 given a strategy profile (s, t) ∈
∆(A)×∆(B). A strategy is called pure if it selects one action with probability
one, and the set of pure strategies can be identified in a natural way with the
set of actions.

A two-player game is called a constant-sum game if pij+qij = pi′j′+qi′j′ for
all i, i′ ∈ A and j, j′ ∈ B. Since all results in this paper hold invariably under
positive affine transformations of the payoffs, such games can conveniently be
represented by a single matrix P containing the payoffs of player 1; player 2
is then assumed to minimize the values in P . A constant-sum game is further
called symmetric if P is a skew-symmetric matrix. In symmetric games, both
players have the same set of actions, and we usually denote these actions by
a1, a2, . . . , am. A game is a common payoff game if pij = qij for all i ∈ A and
j ∈ B. Finally, a game is non-degenerate if for each strategy, the number of
best responses of the other player is at most the support size of that strategy,
i.e., the number of actions played with positive probability.

An action i ∈ A of player 1 is said to strictly dominate another action i′ ∈ A
if it provides a higher payoff for every action of player 2, i.e., if for all j ∈ B,
pij > pi′j . Dominance among actions of player 2 is defined analogously. A
game is then called solvable via iterated strict dominance if strictly dominated
actions can be removed iteratively such that exactly one action remains for
each player.
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A pair (s, t) of strategies is called a Nash equilibrium if the two strate-
gies are best responses to each other, i.e., if pst ≥ pit for every i ∈ A and
qst ≥ qsj for every j ∈ B. A Nash equilibrium is quasi-strict if actions played
with positive probability yield strictly more payoff than actions played with
probability zero. By the minimax theorem [29], every Nash equilibrium (s, t)
of a constant-sum game satisfies minj

∑
i pijsi = maxi

∑
j pijtj = ω for some

ω ∈ R, also called the value of the game.
Fictitious play was originally introduced to approximate the value of

constant-sum games, and has subsequently been studied in terms of its con-
vergence to Nash equilibrium in more general classes of games. It proceeds in
rounds. In the first round, each player arbitrarily chooses one of his actions.
In subsequent rounds, each player looks at the empirical frequency of play of
his respective opponents in previous rounds, interprets it as a probability dis-
tribution, and myopically plays a pure best response against this distribution.
Fix a game Γ = (P,Q) with P,Q ∈ Rm×n. Denote by ui and vi the ith unit
vector in Rm and Rn, respectively. Then, a learning sequence of Γ is a sequence
(x0, y0), (x1, y1), (x2, y2), . . . of pairs of non-negative vectors (xi, yi) ∈ Rm×Rn

such that x0 = 0, y0 = 0, and for all k ≥ 0,

xk+1 = xk + ui where i is the index of a maximum component of Pyk and

yk+1 = yk + vj where j is the index of a maximum component of xkQ.

A learning sequence (x0, y0), (x1, y1), (x2, y2), . . . of a game Γ is said to
converge if for some Nash equilibrium s of Γ ,

lim
k→∞

(
xk

k
,
yk

k

)
= s,

where both division and limit are to be interpreted component-wise. We then
say that FP converges for Γ if every learning sequence of Γ converges to a
Nash equilibrium.

An alternative definition of a learning sequence, in which players update
their beliefs alternatingly instead of simultaneously, can be obtained by replac-
ing xkQ by xk+1Q in the last condition above. Berger [3] thus distinguishes
between simultaneous and alternating FP, and points out that Brown actually
introduced the latter variant, while almost all subsequent work routinely uses
the former. We henceforth concentrate on simultaneous FP, or simply FP, but
note that with some additional effort all of our results can be shown to hold
for alternating FP as well.

4 Results

We now present several results concerning the convergence rate of FP. Taken
together, they cover virtually all classes of games for which FP is known to
converge.
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a1 a2 a3

a1 0 −1 −ε

a2 1 0 −ε

a3 ε ε 0

Fig. 1 Symmetric constant-sum game used in the proof of Theorem 1. Player 1 chooses
rows, player 2 chooses columns. Outcomes are denoted by the payoff of player 1.

Round i (ai, ai) Pyi

0 − (0, 0, 0)
1 (a1, a1) (0, 1, 2−k)
2 (a2, a2) (−1, 1, 2−k2)
3 (a2, a2) (−2, 1, 2−k3)

...
...

2k (a2, a2) (−2k + 1, 1, 1)

Table 1 A learning sequence of the game depicted in Figure 1, where ε = 2−k.

4.1 Symmetric Constant-Sum Games and Games Solvable by Iterated Strict
Dominance

Let us first consider games with arbitrary payoffs. Our first result concerns
two large classes of games where FP is guaranteed to converge: constant-sum
games and games solvable by iterated strict dominance.

Theorem 1 In symmetric two-player constant-sum games, FP may require
exponentially many rounds (in the size of the representation of the game)
before an equilibrium action is eventually played. This holds even for games
solvable via iterated strict dominance.

Proof Consider the symmetric two-player constant-sum game Γ = (P,Q) with
payoff matrix P for player 1 as shown in Figure 1, where 0 < ε < 1. It is readily
appreciated that (a3, a3) is the only Nash equilibrium of this game, as it is the
only action profile that remains after iterated elimination of strictly dominated
actions. Consider an arbitrary integer k > 1. We show that for ε = 2−k, FP
may take 2k rounds before either player plays action a3. Since the game can
clearly be encoded using O(k) bits in this case, the theorem follows.

Let FP start with both players choosing action a1. Since the game is sym-
metric, we can assume the actions for each step of the learning sequence to
be identical for both players. After the first round Py1 = (0, 1, 2−k), and both
players will play a2 in round 2. We claim that they will continue to do so
at least until round 2k. Too see this, observe that for all i with 1 ≤ i < 2k,
we have Pyi = (−i + 1, 1, 2−ki). As 2−ki < 1, both players will choose a2 in
round i+ 1. Table 1 summarizes this development. It follows that the action
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sequence
(a1, a1) (a2, a2), . . . , (a2, a2)︸ ︷︷ ︸

2k − 1 times

gives rise to a learning sequence that is exponentially long in k and in which
no equilibrium action is played. ut

This result is tight in the sense that FP converges very quickly in symmetric
2× 2 games. Up to renaming of actions, every such game can be described by
a matrix a1 a2

a1 0 −α

a2 α 0

for some α ≥ 0. If α = 0, every strategy profile is a Nash equilibrium. Oth-
erwise, action a1 is strictly dominated for both players, and both players will
play the equilibrium action a2 from round 2 onwards.

4.2 Non-Degenerate 2× n Games and Identical Interest Games

Another class of games where FP is guaranteed to converge are non-degenerate
2× n games. We again obtain a strong negative result concerning the conver-
gence rate of FP, which also applies to games with identical interests.

Theorem 2 In non-degenerate 2 × 3 games, FP may require exponentially
many rounds (in the size of the representation of the game) before an equi-
librium action is eventually played. This holds even for games with identical
interests.

Proof Consider the 2×3 game Γ = (P,Q) shown in Figure 2, where 0 < ε < 1.
It is easily verified that Γ is non-degenerate and that the players have identical
interests. The action profile (a2, b3) is the only action profile that remains after
iterated elimination of strictly dominated actions, and thus the only Nash
equilibrium of the game.

Now consider an integer k > 1. We show that for ε = 2−k, FP may take 2k

rounds before actions a2 or b3 are played. Since in this case the game can
clearly be encoded using O(k) bits, the theorem follows.

Let FP start with both players choosing action a1. Then, Py1 = (1, 0) and
x1Q = (1, 2, 0). Accordingly, in the second round, the row player will choose a1,
and the column player b2. Hence, Py2 = (3, 2 + 2−k) and x2Q = (2, 4, 0).
Hereafter, for at least another 2k − 1 rounds, the players will choose the same
actions as in round 2, because for all i with 2 ≤ i ≤ 2k, xiQ = (i, 2i, 0),
Pyi = (2i−1, 2i−1+2−k(i−1)), and 2i−1 > 2i−1+2−k(i−1). Accordingly,
the sequence of pairs of actions

(a1, b1) (a1, b2), . . . , (a1, b2)︸ ︷︷ ︸
2k times

,
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b1 b2 b3

a1 (1, 1) (2, 2) (0, 0)

a2 (0, 0) (2 + ε, 2 + ε) (3, 3)

Fig. 2 Non-degenerate two-player game with identical interests used in the proof of Theo-
rem 2. Outcomes are denoted by a pair of payoffs for the two players.

Round i (ai, bi) Pyi xiQ

0 − (0, 0) (0, 0, 0)
1 (a1, b1) (1, 0) (1, 2, 0)
2 (a1, b2) (3, 2 + 2−k) (2, 4, 0)
3 (a1, b2) (5, 4 + 2−k2) (3, 6, 0)

...
...

...
2k (a1, b2) (2k+1 − 1, 2k+1 − 1 − 2−k) (2k, 2k+1, 0)

Table 2 A learning sequence of the game shown in Figure 2, where ε = 2−k

which contains no equilibrium actions, gives rise to a learning sequence that
is exponentially long in k. Table 2 summarizes these sequences. ut

This result is again tight: in any 2×2 game, one of the players must always
play an equilibrium action almost immediately. Indeed, given that the initial
action profile is not itself an equilibrium, one of the players plays his second
action in the following round. But what about the other player? By looking at
the subgame of the game in Figure 2 induced by actions {a1, a2} and {b1, b2},
and at the learning sequence used to obtain Theorem 2, we find that it might
still take exponentially many rounds for one of the two players before he plays
an equilibrium action for the first time.

Theorem 2 also applies to potential games [21], which form a superclass
of the games with identical interests. For the given ordering of its actions,
the game of Figure 2 further has strategic complementarities and diminishing
returns,1 which implies results analogous to Theorem 2 for classes of games in
which convergence of FP was respectively claimed by Hahn [15]2 and shown
by Berger [4].

4.3 Games with Constant Payoffs

The proofs of the previous two theorems crucially rely on exponentially small
payoffs, so one may wonder if similar results can still be obtained if additional
constraints are imposed on the payoffs. While this is certainly not the case for
games where both the payoffs and the number of actions are constant, we find

1 A two-player game with totally ordered sets of actions is said to have strategic com-
plementarities if the advantage of switching to a higher action, according to the ordering,
increases when the opponent chooses a higher action, and diminishing returns if the advan-
tage of increasing one’s action is decreasing.

2 The proof of this claim later turned out to be flawed [5].
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a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 0 −1 −1 −1 −1 0 0 0 −1

a2 1 0 0 0 0 −1 1 1 1

a3 1 0 0 0 0 0 −1 1 1

a4 1 0 0 0 0 0 0 −1 1

a5 1 0 0 0 0 0 0 0 −1

a6 0 1 0 0 0 0 0 0 0

a7 0 −1 1 0 0 0 0 0 0

a8 0 −1 −1 1 0 0 0 0 0

a9 1 −1 −1 −1 1 0 0 0 0

Fig. 3 Symmetric constant-sum game Γ 4 used in the proof of Theorem 3. The game pos-
sesses a quasi-strict equilibrium (s4, s4) with s4 = (0, 0, 0, 0, 0, 8

15
, 4
15
, 2
15
, 1
15

).

that a somewhat weaker version of Theorem 1 holds for games with constant
payoffs, and in particular for symmetric constant-sum win-lose-tie games, i.e.,
symmetric constant-sum games with payoffs in {−1, 0, 1}.

For each integer k with k > 1 we define a symmetric constant-sum game Γ k

with a unique (mixed) Nash equilibrium and show that FP may take a number
of rounds exponential in k before an equilibrium action is played. In contrast
to the previous result, however, this result not only assumes a worst-case initial
action profile, but also a worst-case learning sequence.

Theorem 3 In symmetric constant-sum win-lose-tie games, FP may require
exponentially many rounds (in the size of the game) before an equilibrium
action is eventually played.

Proof Fix an integer k > 1. We construct a symmetric constant-sum win-lose-
tie game Γ k = (P k, Qk) with a (2k + 1) × (2k + 1) payoff matrix P k = (pkij)
for player 1 such that for all i, j with 1 ≤ j ≤ i ≤ 2k + 1,

pkij =



1 if j = 1 and 2 ≤ i ≤ k + 1, or

if j = 1 and i = 2k + 1, or

if j 6= 1 and i = j + k,

−1 if j 6= 1 and i > j + k,

0 otherwise.

For i < j, let pkij = −pkji. Thus Γ k clearly is a symmetric constant-sum

game. To illustrate the definition, Γ 4 is shown in Figure 3.
Further define, for each k, a strategy profile (sk, sk) of Γ k such that for

all i with 1 ≤ i ≤ 2k + 1,

ski =

{
22k+1−i/(2k − 1) if i > k + 1,

0 otherwise.
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Round i (aj , aj) P 4yi

0 − (0, 0, 0, 0, 0, 0, 0, 0, 0)

1 (a1, a1) (0, 1, 1, 1, 1, 0, 0, 0, 1)

2 (a2, a2) (−1, 1, 1, 1, 1, 1,−1,−1, 0)

3 (a3, a3) (−2, 1, 1, 1, 1, 1, 0,−2,−1)
4 (a3, a3) (−3, 1, 1, 1, 1, 1, 1,−3,−2)

5 (a4, a4) (−4, 1, 1, 1, 1, 1, 1,−2,−3)
6 (a4, a4) (−5, 1, 1, 1, 1, 1, 1,−1,−4)
7 (a4, a4) (−6, 1, 1, 1, 1, 1, 1, 0,−5)
8 (a4, a4) (−7, 1, 1, 1, 1, 1, 1, 1,−6)

9 (a5, a5) (−8, 1, 1, 1, 1, 1, 1, 1,−5)
10 (a5, a5) (−9, 1, 1, 1, 1, 1, 1, 1,−4)
11 (a5, a5) (−10, 1, 1, 1, 1, 1, 1, 1,−3)
12 (a5, a5) (−11, 1, 1, 1, 1, 1, 1, 1,−2)
13 (a5, a5) (−12, 1, 1, 1, 1, 1, 1, 1,−1)
14 (a5, a5) (−13, 1, 1, 1, 1, 1, 1, 1, 0)
15 (a5, a5) (−14, 1, 1, 1, 1, 1, 1, 1, 1)
16 (a5, a5) (−15, 1, 1, 1, 1, 1, 1, 1, 2)

Table 3 A learning sequence of the game Γ 4 shown in Figure 3

It is not hard to see that (sk, sk) is a quasi-strict equilibrium of Γ k. Moreover,
since Γ k is both a symmetric and a constant-sum game, the support of any
equilibrium strategy of Γ k is contained in that of sk (cf. [6]). We will now
show that, when starting with (a1, a1), FP in Γ k may take at least 2k rounds
before an equilibrium action is played for the first time.

Consider the sequence a1, . . . , a2k with aj = a1+dlog2 je for all j with 1 ≤
j ≤ 2k, i.e., the sequence

a1, a2, a3, a3, . . . , ai, . . . , ai︸ ︷︷ ︸
2i−2 times

, . . . , ak+1, . . . , ak+1︸ ︷︷ ︸
2k−1 times

.

The length of this sequence is clearly exponential in k. Further define vectors

x0, . . . , x2
k

of dimension 2k+1 such that x0 = 0, and for i with 1 ≤ j ≤ 2k+1,
xj+1 = xj + ui when aj+1 = i.

We now claim that (x0, x0), . . . , (x2
k

, x2
k

) is a learning sequence of Γ k,
i.e., that j + 1 is the index of a maximal component of both P kyj and xjQk.
Table 3 shows the development of this sequence for k = 4.

By symmetry of Γ k it suffices to prove the claim for P kyj . After the first
round, we have for all i with 1 ≤ i ≤ 2k + 1,

(P ky1)i =

{
1 if 1 < i ≤ k + 1,

0 otherwise.

Furthermore, since {a2, . . . , a2k} ⊆ {a2, . . . , ak+1}, we have that (P kyj)i = 1
for all i with 1 < i ≤ k + 1 and all j with 1 < j ≤ 2k. It, therefore, suffices
to show that (P kyj)i for all i with i = 1 or k + 1 < i < 2k + 1 and all j
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with 1 < j ≤ 2k. Since, p1i = −1 for all i with 1 < i ≤ k + 1, the former
is obvious. For the latter, it can be shown by a straightforward, if somewhat
tedious, induction on j that for all i with 1 ≤ i < k and all j with 1 < j ≤ 2k,

(P kyj)i+k+1 =


1− j if j ≤ 2i−1,

1 + j − 2i if 2i−1 < j ≤ 2i,

1 otherwise,

and,

(P kyj)2k+1 =

{
2− j if j ≤ 2k−1,

2 + j − 2k otherwise.

It follows that (P kyj)i ≤ 1 for all i with 1 ≤ i ≤ 2k + 1 and all j with
1 ≤ j < 2k, which proves the claim. ut

5 Conclusion

We have studied the rate of convergence of fictitious play and obtained mostly
negative results: for almost all of the classes of games where FP is known to
converge, it may take an exponential number of rounds before some equilibrium
action is eventually played. These results hold already for games with very few
actions, given that one of the payoffs is exponentially small compared to the
others. Slightly weaker results apply to symmetric constant-sum games and
games solvable by iterated strict dominance, even if payoffs are in the set
{−1, 0, 1}. It is an open question whether this result can be strengthened to
match that for games with arbitrary payoffs, and whether a similar result can
be obtained for the classes of games covered by Theorem 2, i.e., for potential
games and identical interest games.

While it has been known previously that fictitious play does not converge
rapidly in general, our results are still somewhat surprising in their strength.
They do not depend on the choice of a metric for comparing probability dis-
tributions. Rather, the empirical frequency of FP after an exponential number
of rounds can be arbitrarily far from any Nash equilibrium for any reasonable
metric. This casts doubt on the plausibility of fictitious play as an explanation
of Nash equilibrium play.
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