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Abstract. This paper investigates the computational properties of
quasi-strict equilibrium, an attractive equilibrium refinement proposed
by Harsanyi, which was recently shown to always exist in bimatrix games.
We prove that deciding the existence of a quasi-strict equilibrium in
games with more than two players is NP-complete. We further show
that, in contrast to Nash equilibrium, the support of quasi-strict equi-
librium in zero-sum games is unique and propose a linear program to
compute quasi-strict equilibria in these games. Finally, we prove that
every symmetric multi-player game where each player has two actions at
his disposal contains an efficiently computable quasi-strict equilibrium
which may itself be asymmetric.

1 Introduction

Perhaps the most ubiquitous solution concept in non-cooperative game theory is
Nash equilibrium—a strategy profile that does not permit beneficial unilateral
deviation. One of the main drawbacks of this concept is its potential multiplicity:
While Nash equilibria are guaranteed to exist in finite games, there may be
many of them, which causes uncertainty among the players which one to choose.
For this reason, a number of concepts that single out particularly reasonable
Nash equilibria—so-called equilibrium refinements—have been proposed over the
years.

An important result by Norde et al. [23] has cast doubt upon this strand of
research. Norde et al. [23] have shown that Nash equilibrium can be completely
characterized by utility maximization in one-player games, consistency,1 and ex-
istence. As a consequence, all common equilibrium refinements either violate
consistency or existence. In particular, all refinements that are guaranteed to

? This material is based upon work supported by the Deutsche Forschungsgemeinschaft
under grant BR 2312/3-2.

1 Consistency as introduced by Peleg and Tijs [25] is defined as follows. Let S be a
solution of game G and let G′ be a reduced game where a subset of players are
assumed to invariably play the strategies prescribed by S. A solution concept is
consistent if the solution S′ in which all of the remaining players still play according
to S is a solution of G′.



exist such as perfect, proper, and persistent equilibria suffer from inconsistency
while other refinements such as quasi-strict, strong, and coalition-proof equilibria
may not exist. Since consistency is a very intuitive and appealing property, its
failure may be considered more severe than possible non-existence. Harsanyi’s
quasi-strict equilibrium, which refines the Nash equilibrium concept by requiring
that every action in the support yields strictly more payoff than actions not in
the support, has been shown to always exist in bimatrix games [22] and generic
n-player games (and thus in “almost every” game) [12]. Furthermore, Squires
[28] has shown that quasi-strict equilibrium is very attractive from an axiomatic
perspective as it satisfies the Cubitt and Sugden axioms [6], a strengthening of
a similar set of axioms by Samuelson. This result can be interpreted so that
the existence of quasi-strict equilibrium is sufficient to justify the assumption of
common knowledge of rationality. In fact, Quesada [26] even poses the question
whether the existence of quasi-strict equilibrium is sufficient for any reason-
able justification theory. Finally, isolated quasi-strict equilibria satisfy almost
all desirable properties defined in the refinements literature. They are essential,
strongly stable, regular, proper, and strictly perfect [see, e.g., 14, 29, 30].2

In recent years, the computational complexity of a number of equilibrium
refinements in various classes of games such as extensive-form games, conges-
tion games, or graphical games has come under increasing scrutiny [see, e.g.,
11, 19, 20, 27]. In this paper, we study the computational properties of quasi-
strict equilibrium in zero-sum games, general normal-form games, and certain
classes of symmetric or anonymous games. The remainder of the paper is struc-
tured as follows. In the next section, we introduce classes of strategic games and
the solution concepts of Nash equilibrium and quasi-strict equilibrium. Section 3
focuses on two-player games. We show that quasi-strict equilibria of zero-sum
games, unlike Nash equilibria, possess a unique support, and propose linear pro-
grams that characterize the quasi-strict equilibria in non-symmetric and sym-
metric zero-sum games. In Section 4 we turn to games with more than two
players. We first distinguish multi-player games where a quasi-strict equilibrium
is guaranteed to exist and can be found efficiently from those where existence is
not guaranteed. An example of the former class are symmetric games where ev-
ery player has two actions. We then move on to show that deciding the existence
of a quasi-strict equilibrium in games with more than two players is NP-complete
in general. This is in contrast to the two-player case, where the decision problem
is trivial due to the existence result by Norde [22].

2 Preliminaries

An accepted way to model situations of strategic interaction is by means of a
normal-form game [see, e.g., 17].

2 Using the framework of Peleg and Tijs [25] and Norde et al. [23], quasi-strict equi-
libria could easily be axiomatically characterized by consistency and strict utility
maximization in one-player games.
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Definition 1 (normal-form game). A game in normal-form is a tuple Γ =
(N, (Ai)i∈N , (pi)i∈N ) where N = {1, . . . , n} is a set of players and for each
player i ∈ N , Ai is a nonempty set of actions available to player i, and pi :
("i∈NAi) → R is a function mapping each action profile of the game ( i.e.,
combination of actions) to a real-valued payoff for player i.

A vector s ∈ "i∈NAi of actions is also called a profile of pure strategies. This
concept can be generalized to (mixed) strategy profiles s ∈ S = "i∈NSi by letting
players randomize over their actions. We have Si denote the set of probability
distributions over player i’s actions, or (mixed) strategies available to player i.
We further write si and s−i, respectively, for the strategy of player i and the
strategy profile for all players but i. For a ∈ Ai, we denote by s(a) the probability
with which player i plays a in strategy profile s. A game with two players is often
called a bimatrix game. A bimatrix game is a zero-sum game if p1(a)+p2(a) = 0
for all a ∈ A.

Our results on symmetric and anonymous games will be based on the taxon-
omy introduced by Brandt et al. [4].3 A common aspect of games in all classes
of the taxonomy is that players cannot, or need not, distinguish between the
other players. A lattice of four classes of symmetric games is then defined by
considering two additional properties: identical payoff functions for all players
and the ability to distinguish oneself from the other players.

Definition 2 (symmetries). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a normal-form
game and A a set of actions such that Ai = A for all i ∈ N . For any permutation
π : N → N of the set of players, let π′ : AN → AN be the permutation of the set
of action profiles given by π′((a1, . . . , an)) = (aπ(1), . . . , aπ(n)). Γ is called

– anonymous if pi(s) = pi(π′(s)) for all s ∈ AN , i ∈ N and all π with π(i) = i,
– symmetric if pi(s) = pj(π′(s)) for all s ∈ AN , i, j ∈ N and all π with
π(j) = i,

– self-anonymous if pi(s) = pi(π′(s)) for all s ∈ AN , i ∈ N , and
– self-symmetric if pi(s) = pj(π′(s)) for all s ∈ AN , i, j ∈ N .

It is easily verified that the class of self-symmetric games equals the intersection
of symmetric and self-anonymous games, and that both of these are strictly con-
tained in the class of anonymous games. Anonymous multi-player games admit
a compact representation when the number of actions is bounded.

One of the best-known solution concepts in game theory is Nash equilib-
rium [21]. In a Nash equilibrium, no player is able to increase his payoff by
unilaterally changing his strategy.

Definition 3 (Nash equilibrium). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a
normal-form game. A strategy profile s ∈ S is called Nash equilibrium if for
all i ∈ N , a ∈ Ai,

pi(s) ≥ pi(s−i, a).

3 However, the terminology has been adjusted to coincide with that of Daskalakis and
Papadimitriou [7].
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maximize v
subject toP

a∈A1
s1(a) p(a, b) ≥ v ∀b ∈ A2

s1(a) ≥ 0 ∀a ∈ A1P
a∈A1

s1(a) = 1

minimize v
subject toP

b∈A2
s2(j) p(a, b) ≤ v ∀a ∈ A1

s2(b) ≥ 0 ∀b ∈ A2P
b∈A2

s2(b) = 1

Fig. 1. Primal/dual linear programs for computing minimax strategies in zero-sum
games

The solution concept of quasi-strict equilibrium proposed by Harsanyi [12] refines
the Nash equilibrium concept by requiring that actions played with positive
probability must yield strictly more payoff than actions played with probability
zero.4

Definition 4 (quasi-strict equilibrium). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be
a normal-form game. A Nash equilibrium s ∈ S is called quasi-strict if for all
i ∈ N and all a, b ∈ Ai with si(a) > 0 and si(b) = 0, pi(s−i, a) > pi(s−i, b).

Quasi-strict equilibrium is a very natural concept in that it requires all best
responses to be played with positive probability.

3 Two-Player Zero-Sum Games

It has been shown by a rather elaborate construction using Brouwer’s fixed
point theorem that quasi-strict equilibrium always exists in two-player games
[22]. Since every quasi-strict equilibrium is also a Nash equilibrium, the problem
of finding a quasi-strict equilibrium is intractable unless P = PPAD [5]. The
same is true for symmetric two-player games, because the symmetrization of
Gale et al. [9] preserves quasi-strictness [15]. For the restricted class of zero-
sum games, however, quasi-strict equilibria, like Nash equilibria, can be found
efficiently by linear programming. In contrast to Nash equilibria, the support of
quasi-strict equilibria in zero-sum games turns out to be unique.

Theorem 1. Quasi-strict equilibria in two-player zero-sum games possess a
unique support and can be computed using the linear program given in Figure 2.

Proof. It is known from the work of Jansen [13] that every bimatrix game with
a convex equilibrium set, and thus every two-player zero-sum game, possesses
a quasi-strict equilibrium. We first establish that the support of a quasi-strict
equilibrium must contain every action that is played with positive probability
4 Harsanyi originally referred to quasi-strict equilibrium as “quasi-strong”. However,

this term has been dropped to distinguish the concept from Aumann’s strong equi-
librium [1].
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maximize ε
subject toP

b∈A2
s2(b) p(a, b) ≤ v ∀a ∈ A1

s2(b) ≥ 0 ∀b ∈ A2P
b∈A2

s2(b) = 1

s1(a) + v −
P

b∈A2
s2(b) p(a, b)− ε ≥ 0 ∀a ∈ A1P

a∈A1
s1(a) p(a, b) ≥ v ∀b ∈ A2

s1(a) ≥ 0 ∀a ∈ A1P
a∈A1

s1(a) = 1

s2(b) + v −
P

a∈A1
s1(a) p(a, b)− ε ≥ 0 ∀b ∈ A2

Fig. 2. Linear program for computing quasi-strict equilibria in zero-sum games

in some equilibrium of the game. Assume for contradiction that (s1, s2) is a
quasi-strict equilibrium with value v and a ∈ A1 is an action with s1(a) = 0. It
follows from the definition of quasi-strict equilibrium that p1(a, s2) < v. Now,
if a is in the support of some Nash equilibrium, the exchangeability of equilib-
rium strategies in zero-sum games requires that p1(a, s2) = v, a contradiction.
As a consequence, the support of any quasi-strict equilibrium is unique and con-
sists precisely of those actions that are played with positive probability in some
equilibrium.

In order to compute quasi-strict equilibria, consider the two standard linear
programs for finding the minimax strategies for player 1 and 2, respectively,
given in Figure 1 [see, e.g., 17]. It is well-known from the minimax theorem [31],
and also follows from LP duality, that the value v of the game is identical and
unique in both cases. We can thus construct a linear feasibility program that
computes equilibrium strategies for both players by simply merging the sets of
constraints and omitting the minimization and maximization objectives. Now,
quasi-strict equilibrium requires that action a yields strictly more payoff than
action b if and only if a is in the support and b is not. For a zero-sum game
with value v this can be achieved by requiring that for every action a ∈ A1

of player 1, s1(a) + v >
∑
b∈A2

s2(a) p(a, b). If s1(a) = 0 (a is not in the
support), action a yields strictly less payoff than the game’s value. If, on other
hand, s1(a) > 0 (a is in the support), these constraints do not impose any
restrictions if the strategy profile is indeed an equilibrium with value v, which is
ensured by the remaining constraints. Since strict inequalities are not allowed in
linear programs, we introduce another variable ε to be maximized. Due to the
existence of at least one quasi-strict equilibrium, we will always find a solution
with positive ε, turning the weak inequality into a strict one. The resulting linear
program is given in Figure 2. ut

We proceed by showing that every symmetric zero-sum game contains a sym-
metric quasi-strict equilibrium. This result should be contrasted to Theorem 3
in Section 4 which establishes that this is not the case for symmetric two-player
games in general.
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maximize ε
subject toP

b∈A2
s(b) p(a, b) ≤ 0 ∀a ∈ A1

s(b) ≥ 0 ∀b ∈ A2P
b∈A2

s(b) = 1

s(a)−
P

b∈A2
s(b) p(a, b)− ε ≥ 0 ∀a ∈ A1

Fig. 3. Linear program for computing quasi-strict equilibria in symmetric zero-sum
games

Theorem 2. Every symmetric two-player zero-sum game contains a symmetric
quasi-strict equilibrium that can be computed using the linear program given in
Figure 3.

Proof. According to Theorem 1, the support of any quasi-strict equilibrium con-
tains all actions that are played with positive probability in some equilibrium.
Clearly, in symmetric games, these actions coincide for both players and any min-
imax probability distribution over these actions constitutes a symmetric equilib-
rium. Since both players can enforce their minimax value using the same strategy
in a symmetric zero-sum game, the value of the game has to be zero. Given that
the equilibrium strategies (s, s) have to be symmetric and that the value of the
game is known, the linear program in Figure 2 can be significantly simplified,
resulting in the linear program given in Figure 3. ut

The linear program in Figure 3 can be used to directly compute the essential
set of a dominance graph. The essential set is defined as the set of actions played
with positive probability in some Nash equilibrium of the zero-sum game given
by the (symmetric) adjacency matrix of a directed graph [8]. It follows from
Theorem 1 that this is exactly the unique support of all quasi-strict equilibria.

4 Multi-Player Games

In games with three or more players the existence of a quasi-strict equilibrium is
no longer guaranteed. However, there are very few examples in the literature for
games without quasi-strict equilibria.5. An important question is of course which
natural classes of games always contain a quasi-strict equilibrium. It has already
been shown that this is not the case for the class of single-winner games which
require that all outcomes are permutations of the payoff vector (1, 0, . . . , 0) [3].

In the following, we will analyze whether symmetric and anonymous games
always admit a quasi-strict equilibrium. It turns out that self-anonymous games,
and thus also anonymous games, need not possess a quasi-strict equilibrium. For
this, consider the following three-player single-loser game where players Alice,

5 To the best of our knowledge, there are four examples, all of which involve three
players with two actions each [29, 16, 6, 3].
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Bob, and Charlie independently and simultaneously are to decide whether to
raise their hand or not (for instance, in order to decide who has to take out the
garbage). Alice loses if exactly one player raises his hand, whereas Bob loses if
exactly two players raise their hands, and Charlie loses if either all or no players
raise their hand. The matrix form of this self-anonymous game is depicted in
Figure 4. The game exhibits some peculiar phenomena, some of which may be
attributed to the absence of quasi-strict equilibrium. For example, the security
level of all players is 0.5 and the expected payoff in the only Nash equilibrium
(which has Alice raise her hand and Charlie randomize with equal probability) is
(0.5, 0.5, 1). However, the minimax strategies of Alice and Bob are different from
their equilibrium strategies, i.e., they can guarantee their equilibrium payoff by
not playing their respective equilibrium strategies.6 Furthermore, the unique
equilibrium is not quasi-strict, i.e., Alice and Bob could as well play any other
action without jeopardizing their payoff.

(1, 1, 0) (0, 1, 1) (0, 1, 1) (1, 0, 1)

(0, 1, 1) (1, 0, 1) (1, 0, 1) (1, 1, 0)

Fig. 4. Self-anonymous game without a quasi-strict equilibrium. Players 1, 2, and 3
choose rows, columns, and matrices, respectively. In the only Nash equilibrium of the
game player 1 plays his second action, player 2 plays his first action, and player 3
randomizes over both his actions.

For symmetric and self-symmetric games, on the other hand, the picture ap-
pears to be different. Self-symmmetric games are a subclass of common-payoff
games, where the payoff of all players is identical in every outcome. Starting from
an outcome with maximum payoff p for all players, a quasi-strict equilibrium can
be found by iteratively adding actions to the support by which a player, and thus
all players, can obtain the same payoff p. We will extend this result by showing
that the existence of quasi-strict equilibria also holds for symmetric games where
each player has only two actions at his disposal. It follows from a theorem by
Nash [21] that every symmetric game has a symmetric Nash equilibrium, i.e.,
a Nash equilibrium where all players play the same strategy. Perhaps surpris-
ingly, it may be the case that all quasi-strict equilibria of a symmetric game are
asymmetric.

Theorem 3. Every symmetric game with two actions for each player has a
quasi-strict equilibrium. Such an equilibrium can be found in polynomial time.

Proof. Let Γ = (N, {0, 1}N , (pi)i∈N ) be a symmetric game. By Definition 2,
there exist 2(n− 1) numbers pm` ∈ R such that for all i, pi(s) = pm` whenever
si = ` and m is the number of players playing action 1 in s−i. We can fur-
ther assume w.l.o.g. that p00 = p01 and pn−1,0 ≥ pn−1,1, and that pm0 6= pm1 for

6 Similar phenomena were also observed by Aumann [2].
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some m. To see this, observe that Γ must possess a symmetric equilibrium s [21],
which we can assume to be the pure strategy profile where all players play ac-
tion 0 with probability 1. If all players played both of their actions with positive
probability, this would directly imply quasi-strictness of s. Now, if one of the for-
mer two equations was not satisfied, then one of the two symmetric pure strategy
profiles would be a quasi-strict equilibrium. If the latter condition were not to
hold, there would exist a quasi-strict equilibrium where all players randomize
between their actions.

We will now distinguish two different cases according to the relationship
between pm0 and pm1 for the different values of m. First assume that there
exists m such that pm0 > pm1 and for all m′ < m, pm′0 = pm′1. We claim that
in this case any strategy profile s in which m − 1 players randomize between
both actions and the remaining n − m + 1 players play action 0 is a quasi-
strict equilibrium. To see this, consider first any player i ∈ N who randomizes
between both of his actions. It is easily verified that for every action profile a
which is played with positive probability in s−i and in which exactly m′ players
play action 1, it must hold that pm′0 = pm′1. On the other hand, consider any
player i ∈ N who plays action 0 with probability 1. Then, for any action profile a
which is played with positive probability in s−i and in which exactly m′ players
play action 1, it must hold that pm′0 ≥ pm′1, and there exists one such action
profile for which the inequality is strict.

Now assume that there exists m such that pm0 < pm1, and choose m′ such
that for all m′′, m < m′′ < m′, pm′′0 = pm′′1, and either pm′0 > pm′1 or m′ = n.
We claim that in this case any strategy profile where n−m′ players play action 0,
m players play action 1, and the remaining m′ −m players randomize between
both of their actions is a quasi-strict equilibrium of Γ . For this, again consider
any player i ∈ N who plays both actions with positive probability. It is easily
verified that for every action profile a which is played with positive probability in
s−i and in which exactly m′ players play action 1, it must hold that pm′0 = pm′1.
On the other hand, for any player i ∈ N who plays action 0 with probability 1
and any action profile a which is played with positive probability in s−i and
in which exactly m′ players play action 1, it must hold that pm′0 ≥ pm′1, and
there exists one such action profile for which the inequality is strict. Finally, for
any player i ∈ N who plays action 1 with probability 1 and any action profile a
which is played with positive probability in s−i and in which exactly m′ players
play action 1, it must hold that pm′0 ≤ pm′1, and there exists one such action
profile for which the inequality is strict.

Since a symmetric equilibrium of a symmetric game with a constant number
of actions can be found in polynomial time [24], and since the proof of the first
part of the theorem is constructive, the second part follows immediately. ut

We leave it as an open problem whether all symmetric games contain a quasi-
strict equilibrium. If the symmetrization procedure due to Gale et al. [9] can be
extended to multi-player games while still preserving quasi-strictness, a counter-
example could be constructed from one of the known examples of games without
quasi-strict equilibria. Of course, in light of Theorem 3, the number of actions
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b1 · · · b|V | b0

a1 (0, 0, 0)

... (mij , eij ,mij)i,j∈V

...

a|V | (0, 0, 0)

a0 (0, 0, 0) · · · (0, 0, 0) (0, 1, 0)

c1

b1 · · · b|V | b0

a1 (0, 0,K) · · · (0, 0,K) (0, 0, 0)

...
...

. . .
...

...

a|V | (0, 0,K) · · · (0, 0,K) (0, 0, 0)

a0 (1, 0, 0) · · · (1, 0, 0) (0, 0, 0)

c2

Fig. 5. Three-player game Γ used in the proof of Theorem 4. Players 1, 2, and 3 choose
rows columns, and matrices, respectively.

per player in such a counter-example has to be greater than two (and may very
well be substantially greater than that).

We conclude by showing that deciding whether a given normal-form game
contains a quasi-strict equilibrium is NP-complete.

Theorem 4. Deciding whether a game in normal-form possesses a quasi-strict
equilibrium is NP-complete, even if there are just three players and a constant
number of payoffs.

Proof. Membership in NP is obvious. We can simply guess a strategy profile and
verify that it is an equilibrium and that the payoff is strictly lower for all actions
that are not played.

For hardness, we provide a reduction from the NP-complete problem
CLIQUE [see, e.g., 10] reminiscent to a construction used by McLennan and
Tourky [18] to give simplified NP-hardness proofs for various problems related
to Nash equilibria in bimatrix games. Given an undirected graph G = (V,E) and
a positive integer k ≤ |E|, CLIQUE asks whether G contains a clique of size at
least k, i.e., a subset V ′ ⊆ V such that |V ′| ≥ k and for all v, w ∈ V ′, (v, w) ∈ E.
Given a particular CLIQUE instance ((V,E), k) with V = {1, . . . ,m}, we con-
struct a game Γ with three players, actions A1 = { ai | i ∈ V } ∪ {a0},
A2 = { bi | i ∈ V } ∪ {b0} and A3 = {c1, c2}, and payoffs pi illustrated in
Figure 5. If player 3 plays c1 and players 1 and 2 play ai and bj , respectively, for
i, j ∈ V , payoffs are given by a matrix (mij)i,j∈V defined according to G, and
by the identity matrix (eij)i,j∈V , where

mij =


1 if (i, j) ∈ E
0 if i = j

−1 otherwise
and eij =

{
1 if i = j

0 otherwise.

If player 3 instead plays c2, he obtains a payoff of K = (2k − 3)/2k. We claim
that Γ possesses a quasi-strict equilibrium if and only if there exists a clique of
size at least k in G.

Assume there exists a clique V ′ ⊆ V , |V ′| ≥ k, and consider the strategy
profile s with s(c1) = 1, and s(ai) = s(bi) = 1/|V ′| if i ∈ V ′ and s(ai) = s(bi) = 0
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otherwise. By construction of Γ , for all i ∈ V ∪{0}, p2(s−2, bi) < p2(s) whenever
s(ai) = 0. Furthermore, by maximality of V ′, p1(s−1, ai) < p1(s) for all i /∈ V ′.
Finally, p3(s) = (k − 1)/k > (2k − 3)/2k = p3(s−3, c2). Thus, s is a quasi-strict
equilibrium of Γ .

Now assume for contradiction that there is no clique of size at least k in G,
and that s is a quasi-strict equilibrium of Γ . In equilibrium, for all b, b′ ∈ A2,
we must have p2(s−2, b) = p2(s−2, b

′) whenever s(b) > 0 and s(b′) > 0, and
thus, for all a, a′ ∈ A1, s(a) = s(a′) whenever s(a) > 0 and s(a′) > 0. As a
consequence, for s to be quasi-strict, s(bi) > 0 whenever s(ai) for all i ∈ V ∪{0}.
First consider the case where s(c1) > 0. If s(a0) = s(b0) = 1, s cannot be quasi-
strict for player 1. If on the other hand s(ai) > 0 or s(bi) > 0 for some i ∈ V ,
then there would have to be a set V ′ ⊆ V , |V ′| ≥ k, such that for all i ∈ V
with s(ai) > 0 and all j ∈ V ′, j 6= i, p1(ai, bj , c1) = 1. By construction of Γ , V ′

would be a clique of size at least k in G, a contradiction. Now consider the case
where s(c2) = 1. If s(a0) = 1 or s(b0) = 1, s is not quasi-strict for player 3. If, on
the other hand, s(ai) > 0 and s(bj) > 0 for some i, j ∈ V , then player 1 could
deviate to a0 to get a higher payoff. This completes the proof. ut

It follows that the problem of finding a quasi-strict equilibrium in games with
more than two players is NP-hard (under polynomial-time Turing reductions),
whereas no such statement is known for Nash equilibrium.

5 Conclusion

We investigated the computational properties of an attractive equilibrium refine-
ment known as quasi-strict equilibrium. It turned out that quasi-strict equilibria
in zero-sum games have a unique support and can be computed efficiently via
linear programming. In games with more than two players, finding a quasi-strict
equilibrium is NP-hard.

As pointed out in Section 1, classes of games that always admit a quasi-strict
equilibrium, such as bimatrix games, are of vital importance to justify rational
play based on elementary assumptions. We specifically looked at symmetric and
anonymous games and found that self-anonymous games (and thus also anony-
mous games) may not contain a quasi-strict equilibrium while symmetric games
with two actions for each player always possess a quasi-strict equilibrium. Other
classes of multi-player games for which this question might be of interest include
unilaterally competitive games, potential games, single-winner games where all
players have positive security levels, and graphical games with bounded neigh-
borhood.
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