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ABSTRACT
Game-theoretic solution concepts, such as Nash equilibrium,
are playing an ever increasing role in the study of systems of
autonomous computational agents. A common criticism of
Nash equilibrium is that its existence relies on the possibility
of randomizing over actions, which in many cases is deemed
unsuitable, impractical, or even infeasible. In work dating
back to the early 1950s, Lloyd Shapley proposed ordinal set-
valued solution concepts for zero-sum games that he refers
to as strict and weak saddles. These concepts are intuitively
appealing, they always exist, and are unique in important
subclasses of games. We initiate the study of computational
aspects of Shapley’s saddles and provide polynomial-time al-
gorithms for computing strict saddles in normal-form games
and weak saddles in a subclass of symmetric zero-sum games.
On the other hand, we show that certain problems associ-
ated with weak saddles in bimatrix games are NP-complete.
Finally, we extend our results to mixed refinements of Shap-
ley’s saddles introduced by Duggan and Le Breton.
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F.2.2 [Analysis of Algorithms and Problem Com-
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1. INTRODUCTION
Game-theoretic solution concepts, such as Nash equilib-

rium, are playing an ever increasing role in the study of sys-
tems of autonomous computational agents. A common crit-
icism of Nash equilibrium is that its existence relies on the
possibility of randomizing over actions, which has been at-
tacked on various grounds [cf. 16, pp. 74-76]. Aumann chal-
lenges the suitability of randomized strategies in one-shot
games: “When randomized strategies are used in a strategic
game, payoff must be replaced by expected payoff. Since
the game is played only once, the law of large numbers does
not apply, so it is not clear why a player would be interested
specifically in the mathematical expectation of his payoff”[1,

p. 63]. On top of that, players might simply be incapable of
executing reliable randomizations. This is particularly true
for games with more than two players, in which equilibrium
probabilities may be irrational numbers [19].

In work dating back to the early 1950s, Lloyd Shapley
proposed ordinal set-valued solution concepts for zero-sum
games that he refers to as saddles [21, 22, 23, 24]. What
makes these concepts intuitively appealing is that they are
based on the elementary notions of dominance and stability.
More formally, a generalized saddle point (GSP) is a tuple of
subsets of actions for each player such that every action not
contained in the GSP is dominated by some action in the
GSP, given that the remaining players choose actions from
the GSP. A saddle is an inclusion-minimal GSP, i.e., a GSP
that contains no other GSP. Depending on the underlying
notion of dominance, one can define strict and weak saddles.
Shapley [24] showed that every two-player zero-sum game
admits a unique strict saddle. Duggan and Le Breton [12]
proved that the same is true for the weak saddle in a certain
subclass of symmetric two-player zero-sum games.

Despite the fact that Shapley’s saddles were devised as
early as 1953 [21, 22] and are thus almost as old as Nash
equilibrium [19], surprisingly little is known about their com-
putational properties. In this paper, we provide polynomial-
time algorithms for computing strict saddles in normal-form
games (with any number of players) and weak saddles in
the subclass of symmetric two-player zero-sum games intro-
duced by Duggan and Le Breton [12]. On the other hand,
we show that certain problems associated with weak saddles
in bimatrix games, such as deciding whether there exists
a weak saddle with at most k actions for some player, are
NP-complete. Finally, we extend our results to mixed re-
finements of Shapley’s saddles introduced by Duggan and
Le Breton [11].

2. RELATED WORK
In recent years, the computational complexity of game-

theoretic solution concepts has come under increasing
scrutiny. One of the most prominent results in this stream
of research is that finding Nash equilibria in bimatrix games
is PPAD-complete [7, 10] and thus likely does not admit
a polynomial-time algorithm. Shapley’s saddles are based
on the notion of dominance, which has also been studied
from a computational perspective, in particular in the form
of iterated dominance [e.g., 15, 8, 9, 6]. Our algorithm for
computing strict saddles is interesting insofar as most solu-
tion concepts are not known to be efficiently computable in
general games, one of the few exceptions being iterated strict
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dominance. Strict saddles may be considered a “refinement”
of iterated strict dominance as all strict saddles of a normal-
form game are contained in the subgame that one obtains
by iterated elimination of strictly dominated strategies.

Another concept related to Shapley’s saddles are CURB
sets [2], for which Benisch et al. [3] have proposed
polynomial-time algorithms for bimatrix games. Both
CURB sets and Shapley’s saddles are set-valued concepts.
However, CURB sets are not ordinal as they are based on
randomized strategies. Every strict saddle represents the
support of a CURB set, and thus contains the support of
a minimal CURB set. In confrontation games, as defined
in Section 5.1, the support of a minimal CURB set and the
strict saddle trivially coincide. Moreover, in this particular
class of games, the strict mixed saddle is identical to the
support of the minimal CURB set when only allowing pure
strategies. There appears to be no such relationship between
weak saddles and CURB sets.

3. PRELIMINARIES
An accepted way to model situations of strategic interac-

tions is by means of a normal-form game [e.g., 20].

Definition 1 (Normal-Form Game). A (finite)
game in normal-form is a tuple Γ = (N, (Ai)i∈N , (pi)i∈N )
where N = {1, 2, . . . , n} is a set of players and for each
player i ∈ N , Ai is a nonempty set of actions available to
player i, and pi : ("i∈NAi)→ R is a function mapping each
action profile of the game (i.e., combination of actions) to
a real-valued payoff for player i.

A two-player game ({1, 2}, (A1, A2), (p1, p2)) is alterna-
tively called a bimatrix game, because it can be represented
by two matrices M1 and M2 with rows and columns indexed
by A1 and A2, respectively, and Mi(a1, a2) = pi(a1, a2) for
all a1 ∈ A1, a2 ∈ A2. A bimatrix game is called zero-
sum or matrix game, and represented by a single matrix
M that just contains the payoffs for the first player, if
p1(a, b) = −p2(a, b) for all (a, b) ∈ A1 × A2. We denote by
ΓM be the matrix game with matrix M . Finally, a bimatrix
game is called symmetric if A1 = A2 and p1(a, b) = p2(b, a)
for all a, b ∈ A1. Observe that ΓM is symmetric if and only if
M is skew symmetric, i.e., MT = −M . We assume through-
out the paper that games are given explicitly, i.e., as a table
containing the payoffs for every possible action profile.

A solution concept identifies combinations of (sets of)
strategies that are significant in some specified sense. Here,
a strategy si for a player i ∈ N is a probability distribu-
tion over his set of actions, i.e., si ∈ ∆(Ai). Actions can
be identified with strategies that put probability 1 on that
action, often called pure strategies. There are plenty of so-
lution concepts for normal-form games, chief among them
Nash equilibrium [18]. A Nash equilibrium is a combination
of strategies, one for each player, such that no player can
achieve a higher payoff by unilaterally changing his strat-
egy. Formally, a vector s = (s1, s2, . . . , sn) is called a strat-
egy profile if si ∈ ∆(Ai) for all i ∈ N . For a strategy profile
s, denote by s−i be the vector that contains the strategies
of all players except player i, and by (s′i, s−i) the strategy
profile where player i plays strategy s′i and all other play-
ers play the same strategy as in s. Payoff functions can
naturally be extended to strategy profiles s in terms of the
expected payoff under the probability distribution generated
by s1, s2, . . . , sn.

Definition 2. A Nash equilibrium is a strategy profile
s = (s1, s2, . . . , sn) such that for all players i ∈ N and all
strategies s′i ∈ ∆(Ai), pi(si, s−i) ≥ pi(s

′
i, s−i).

A well-known drawback of Nash equilibrium is that its
existence is not guaranteed if strategies are required to be
pure. To illustrate this, define a saddle point of a matrix
game ΓM as a pair (i, j) of actions i ∈ A1, j ∈ A2 such that
entry M(i, j) is maximal in column j and minimal in row i.
If such a saddle point exists, it is also a Nash equilibrium
in pure strategies and constitutes a good prediction of the
outcome of the game. The problem is, of course, that there
are matrix games without a saddle point, for example the
well-known game of Matching Pennies given by the matrix„

1 −1
−1 1

«
.

The only Nash equilibrium of this game has both players
pick one of their actions uniformly at random.

As pointed out in the introduction, requiring randomiza-
tion in order to reach a stable outcome has been criticized
for various reasons. A possible solution is to consider set-
valued solution concepts that identify, for each player i, a
subset Si ⊆ Ai, such that the tuple (S1, S2, . . . , Sn) satisfies
some notion of stability. Shapley’s saddles generalize saddle
points by requiring that for every action ai of a player i ∈ N
that is not included in Si, there should be some reason for
its exclusion, namely an action in Si that is strictly better
than ai. To formalize this idea, we need some notation. Let
A = (A1, A2, . . . , An). For S = (S1, S2, . . . , Sn), we write
S ⊆ A and say that S is a subset of A if ∅ 6= Si ⊆ Ai for all
i ∈ N . Further let S−i = (S1, S2, . . . , Si−1, Si+1, . . . , Sn).
For a subset C ⊆ A, denote by Γ|C the induced subgame
with action set C. For a player i ∈ N and two actions
ai, bi ∈ Ai we say that

• ai strictly dominates bi with respect to S−i, denoted
ai �S−i bi , if p(ai, s−i) > p(bi, s−i) for all s−i ∈ S−i,
and that

• ai weakly dominates bi with respect to S−i, denoted
ai >S−i bi, if p(ai, s−i) ≥ p(bi, s−i) for all s−i ∈ S−i

with at least one strict inequality.

Based on these notions of dominance, strict and weak sad-
dles can be defined as follows.

Definition 3 (Strict Saddle). A generalized saddle
point (GSP) of the game (N, (Ai)i∈N , (pi)i∈N ) is a tuple
(S1, S2, . . . , Sn) ⊆ A, such that for each player i ∈ N and

∀ai ∈ Ai \ Si, ∃si ∈ Si such that si �S−i ai . (1)

A strict saddle is a GSP that contains no other GSP.

The interpretation of this definition is the following: Ev-
ery player i has a “chosen” set Si of actions such that for
every action ai that is not in the set Si, there is some action
si ∈ Si that dominates ai, provided all the other players
play only actions from their chosen sets.

When replacing strict dominance with weak dominance,
we obtain the concept of a weak saddle.

Definition 4 (Weak Saddle). A weak generalized
saddle point (WGSP) of the game (N, (Ai)i∈N , (pi)i∈N ) is a
tuple (S1, S2, . . . , Sn) ⊆ A, such that for each player i ∈ N ,

∀ai ∈ Ai \ Si, ∃si ∈ Si such that si >S−i ai . (2)
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A weak saddle is a WGSP that contains no other WGSP.

Properties (1) and (2) are sometimes referred to as exter-
nal stability. Using this terminology, a (W)GSP is a tuple
S that is externally stable for every player. Since strict
dominance implies weak dominance, every strict saddle is
a WGSP and thus contains a weak saddle. Consider for
example the matrix game given by10BB@

3 3 4
2 3 3
1 2 3
2 0 5

1CCA .

The pair S = ({r1, r2}, {c1, c2}) is a strict saddle and a
WGSP. Since r1 weakly dominates r2 with respect to {c1, c2}
and both c1 and c2 dominate c3 with respect to r1, the pair
S′ = ({r1}, {c1, c2}) is also a WGSP. Indeed, S′ is a weak
saddle because it contains no smaller WGSP. Some reflection
reveals that S and S′ are in fact the unique strict and weak
saddle of this game, respectively.

It is easy to see that every normal-form game has a strict
and a weak saddle. By definition, the set A is a GSP. Fur-
thermore every GSP that is not a saddle must contain a
GSP that is strictly smaller. Finiteness of A implies that
there exists a minimal GSP, i.e., a strict saddle. An analo-
gous argument applies to the weak saddle. Strict saddles are
unique in matrix games but not in general games, whereas
weak saddles are not even unique in matrix games. We fi-
nally note that both strict and weak saddle are ordinal solu-
tion concepts, i.e., they are invariant under order-preserving
transformations of the payoff functions. This is in contrast
to Nash equilibrium, for which invariance holds only under
positive affine transformations.

4. STRICT SADDLE
Shapley [24] has shown that every matrix game possesses

a unique strict saddle, because the set of GSPs in such games
is closed under intersection, and describes an algorithm, at-
tributed to Harlan Mills, to compute this saddle. The idea
behind this algorithm is that given a subset of the saddle,
the saddle itself can be computed by iteratively adding ac-
tions that are maximal, i.e., not dominated with respect to
the current subset of actions of the other player. Shapley
[24] further points out that a subset of the strict saddle can
easily be found by taking all rows and columns that contain
a minimax or a maximin point, i.e., an entry that is min-
imal among all column maxima or maximal among all row
minima. This establishes that the strict saddle of a matrix
game can be computed in polynomial time.

Observe, however, that being able to find a subset of the
saddle is not crucial. Starting the above procedure from sin-
gleton sets of actions, and invoking it for every combination
of such sets, yields a number of candidates for the strict sad-
dle. The strict saddle can then be identified as the inclusion-
minimal set among these candidates. The correctness of this
procedure follows from the fact that every candidate set is a
GSP and that the unique strict saddle is contained in every
GSP. Furthermore, the iterative procedure itself is invoked
only a polynomial number of times.

In contrast to matrix games, strict saddles are no longer
unique in general n-player games. For example, take the
1Throughout the paper, the rows and columns of a matrix
are indexed by r1, r2, . . . and c1, c2, . . ., respectively.

Algorithm 1 Minimal GSP

procedure minGSP(Γ, (S0
1 , S0

2 , . . . , S0
n))

for all i ∈ N do
Si ← S0

i

end for
repeat

for all i ∈ N do
A′i ← { ai ∈ Ai \ Si : @si ∈ Ai with si �S−i ai }
Si ← Si ∪A′i

end for
until

Sn
i=0 A′i = ∅

return (S1, S2, . . . , Sn)

two-player coordination game given by matrices

M1 = M2 =

„
1 0
0 1

«
.

This game has two strict saddles: One where both players
play their first action, and one where both players play their
second action.2

From a computational point of view, however, the exis-
tence of multiple strict saddles does not have any serious
consequences. Indeed, we proceed to show how Mills’ algo-
rithm can be generalized to compute all strict saddles of an
arbitrary n-player game. To this end, recall that Mills’ iter-
ative procedure required as an input some non-empty subset
of the strict saddle. Algorithm 1 is a straightforward gen-
eralization of this procedure to the n-player case. Given a
tuple S0 = (S0

1 , S0
2 , . . . , S0

n) ⊆ A as input, it computes the
minimal GSP containing S0.

Lemma 1. Algorithm 1 computes the inclusion-minimal
GSP containing a given input set S0.

Proof. Let Smin be the minimal GSP containing S0.
We show that during the execution of Algorithm 1, the set
S is always a subset of Smin. At the end of the algorithm,Sn

i=0 A′i = ∅ implies that S is a GSP, and the statement of
the lemma follows.

We prove S ⊆ Smin by induction on |S| =
Pn

i=1 |Si|. At

the beginning of the algorithm, S = S0 ⊆ Smin by definition
of Smin. Now assume that S ⊆ Smin at the beginning of
a particular iteration. We have to show that for all i ∈ N ,
A′i ⊆ Smin

i . Let a ∈ A′i, and assume for contradiction that
a /∈ Smin

i . Since Smin is a GSP, there exists a∗ ∈ Smin
i ⊆

Ai with a∗ �Smin
−i

a. By the induction hypothesis, S−i ⊆
Smin
−i , which in turn implies a∗ �S−i a. This contradicts

the assumption that a ∈ A′i.

Whenever S0 is contained in a strict saddle, Algorithm 1
returns this strict saddle. This property can be used to con-
struct an algorithm to compute all strict saddles of a game:
Call Algorithm 1 for every possible combination of singleton
sets of actions of the different players. The result is a set of
GSPs, and the strict saddles of the game are the inclusion-
minimal elements of this set. Algorithm 2 implements this
idea.

2Also recall that strict saddles where every set Si is a sin-
gleton are pure Nash equilibria. For the converse statement
to be true we must require that the pure Nash equilibrium
is strict, i.e., every player strictly loses when deviating from
his equilibrium action.
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Algorithm 2 Strict saddle

procedure StrictSaddle(Γ)
for all S0 = ({s1}, {s2}, . . . , {sn}) ⊆ A do

C ← C ∪ minGSP(Γ, S0)
end for
return {S ∈ C : S is inclusion-minimal }

Theorem 1. All strict saddles of an n-player game can
be computed in polynomial time.

Proof. We show that Algorithm 2 computes all strict
saddles of game Γ and runs in time polynomial in the size of
Γ. Correctness follows from Lemma 1. For the running time,
observe that there are |A| =

Qn
i=1 |Ai| calls to Algorithm 1,

which clearly is polynomial in the size of Γ. Polynomial
running time of Algorithm 2 now follows directly from the
fact that at least one action is added in every iteration.

5. WEAK SADDLE
Somewhat surprisingly, computing weak saddles turns

out be much more complicated than computing strict sad-
dles, even in matrix games. In this section, we propose
a polynomial-time algorithm for finding the unique weak
saddle in a subclass of matrix games and give evidence for
the computational intractability of weak saddles in bimatrix
games.

5.1 Confrontation Games
Duggan and Le Breton [12] have put forward a subclass

of symmetric matrix games that is characterized by the fact
that the two players get the same payoff if and only if they
play the same action. Otherwise there will always be a win-
ner and a loser, and the outcome would be reversed if players
were to exchange actions. We therefore call these games con-
frontation games. Since this section is concerned exclusively
with symmetric games, in which all players have the same
set of actions, we slightly deviate from the notation used in
the rest of the paper and denote this set by A for notational
convenience.

Definition 5. Let Γ = ΓM be a symmetric matrix
game, and denote by A the set of row and column indices
of M . Γ is called confrontation game if for all a, b ∈ A,
M(a, b) = 0 only if a = b.3

Duggan and Le Breton [12] have shown that confrontation
games have a unique weak saddle S = (S1, S2), and that this
weak saddle is symmetric, i.e., S1 = S2. In the following, we
denote by WS(Γ) the weak saddle of a confrontation game
Γ. We proceed to show that WS(Γ) can be computed in
polynomial time. To this end, we leverage the concept of
quasi-strict equilibrium proposed by Harsanyi [14], which
refines the Nash equilibrium concept by requiring that ac-
tions played with positive probability must yield a strictly
higher payoff than actions played with probability zero.

Definition 6. Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a
normal-form game. A Nash equilibrium s = (s1, s2, . . . , sn)
is called quasi-strict if for all players i ∈ N and all a, b ∈ Ai

with si(a) > 0 and si(b) = 0, pi(a, s−i) > pi(b, s−i).

3Duggan and Le Breton [12] refer to this property as the
off-diagonal property.

Quasi-strict equilibrium is a very natural concept in that
it requires all best responses to be played with positive prob-
ability. Brandt and Fischer [5] have shown that quasi-strict
equilibria in matrix games have a unique support, and can
be found efficiently by linear programming. The unique sup-
port in a symmetric matrix game Γ is the same for both
players, and will henceforth be denoted by QS(Γ).

The following lemma establishes that QS(Γ), and thus the
support of any Nash equilibrium, is contained in WS(Γ) if
Γ is a confrontation game. The proof is adapted from Dutta
and Laslier [13], who show a slightly more general statement
in the context of tournament solutions.

Lemma 2. Let Γ be a confrontation game. Then,
QS(Γ) ⊆WS(Γ).

Proof. Let M be the payoff matrix of Γ, A the set of
actions available to the two players. Denote by N(Γ) the
set of Nash equilibrium strategies of Γ. Since the set of
equilibria of a matrix game is convex, it suffices to restrict
attention to symmetric equilibria, i.e.,

N(Γ) = { s ∈ ∆(A) : (s, s) is a Nash equilibrium of Γ }.

For an action a ∈ A and a strategy s ∈ ∆(A), denote by
M(a, s) the expected payoff from a if the opponent plays s.
The proof then relies on the following three facts:

(i) The support of a quasi-strict equilibrium contains ex-
actly those actions that are played with positive prob-
ability in some Nash equilibrium, i.e., QS(Γ) = {a ∈
A : s(a) > 0 for some s ∈ N(Γ)}

(ii) QS(Γ) = {a ∈ A : M(a, s) = 0 for all s ∈ N(Γ)}

(iii) N(Γ|S) ⊆ N(Γ), where S = WS(Γ).

(i) and (ii) were shown by Brandt and Fischer [5] and Dutta
and Laslier [13], respectively. For (iii), let s ∈ N(Γ|S). In
order to establish that s is a Nash equilibrium of Γ, it suffices
to show that M(a, s) ≤ 0 for all actions a ∈ A. This is
obvious for actions in S, since s is a Nash equilibrium in Γ|S .
Thus consider an action a ∈ A \S. Since S = WS(Γ), there
exists â ∈ S with â ≥S a. Since s places positive probability
only on actions in S, it follows that M(a, s) ≤M(â, s) ≤ 0,
as desired.

We now show that QS(Γ) ⊆ WS(Γ). Assume for con-
tradiction that there exists an action a that is contained in
QS(Γ) but not in S = WS(Γ). Since S is the weak saddle of
Γ, there exists some â ∈ S such that â ≥S a. We distinguish
two different cases:

If â ∈ QS(Γ|S), consider a Nash equilibrium strategy
s ∈ N(Γ|S) of Γ|S in which â is played with a positive prob-
ability. Such an equilibrium is guaranteed to exist by (i).
Since Γ is a confrontation game, M(a, â) 6= 0 = M(â, â), and
thus M(a, s) < M(â, s). By (iii) s is also a Nash equilib-
rium of Γ, and thus M(a, s) < M(â, s) = 0, which together
with (ii) contradicts the assumption that a ∈ QS(Γ).

If on the other hand â /∈ QS(Γ|S), there has to be some
s ∈ N(Γ|S with M(a, s) ≤M(â, s) < 0, leading to the same
contradiction as above.

We are now ready to describe Algorithm 3 for computing
the weak saddle of a confrontation game. It is similar in
spirit to Mills’ algorithm in that it starts with a subset of the
set to be computed, in this case with QS(A), and iteratively
adds actions that are not yet dominated. In contrast to the

4



Draft – October 16, 2008

Algorithm 3 Weak saddle of a confrontation game

procedure WeakSaddle(Γ)
S ← QS(A)
repeat

A′ ← { a ∈ A \ S : @s ∈ S with s�S a }
S ← S ∪QS(A′)

until A′ = ∅
return (S, S)

strict saddle, however, it is no longer obvious which actions
to choose, because an action that is currently undominated
might become dominated later on for a larger set of actions
of the other player. As we will see, the latter can not happen
for actions in the weak saddle of the subgame induced by the
undominated actions. Since a non-empty subset of the weak
saddle of any game can be found efficiently, this completes
the algorithm.4

More formally, let Γ = ΓM be a confrontation game
with actions A. Obviously, Γ|C for any C ⊆ A is also a
confrontation game. For notational convenience, we some-
times identify Γ|C and C, and write QS(A) = QS(Γ) and
WS(A) = WS(Γ). The following is our key lemma.

Lemma 3. Let S be a subset of WS(A), A′ is the subset
of actions that are not weakly dominated by S, i.e.,

A′ = { a ∈ A \ S : @s ∈ S with s�S a }.

Then WS(Γ|A′) ⊆WS(Γ).

Proof. In order to prove the lemma, we first make the
following observation. Let Γ be a confrontation game with
actions A. Further let C1 and C2 be nonempty subsets of
A, and x, y ∈ A. Then the following holds:

(i) if x >C1 y and C2 ⊆ C1 with C2 ∩ {x, y} 6= ∅, then
x >C2 y; and

(ii) if x >C1 y, y >C2 z, and x ∈ C1∩C2, then x >C1∩C2 y.

We can assume that A′ is nonempty, since otherwise
WS(Γ|A′) is empty and there is nothing to prove.

Now, partition A′, the set of undominated elements, into
two sets C = A′ ∩WS(A) and C′ = A′ \WS(A) of elements
contained in WS(A) and elements not contained in WS(A).
We will show that C is a WGSP of the game Γ|A′ . This im-
plies WS(A′) ⊆ C ⊆ WS(A), because WS(A′) is contained
in every WGSP of Γ|A′ .

It suffices to show that C is a WGSP of Γ|A′ , i.e., that for
all y ∈ C′ = A′\C, there exists x ∈ C such that x >A′ y. Let
y ∈ C′. Since y /∈WS(A), there has to be some x ∈WS(A)
that dominates y with respect to WS(A), i.e., x >WS(A) y.
It is easy to see that x /∈ S, since otherwise (i) would imply
that x >S y, contradicting the assumption that y ∈ A′.
On the other hand, assume that x ∈ WS(A) \ (S ∪ C).
Then there is some s ∈ S such that s >S x. However,
according to (ii), s >S x and x >WS(A) y imply s >S y,
again contradicting the assumption that y ∈ A′. Thus x ∈
C, and using (i) again, x >WS(A) y and y ∈ A′ imply x >A′

y. Hence C is a WGSP of Γ|A′ .

4The same idea was used in an algorithm by Brandt and
Fischer [4] to compute the minimal bidirectional covering
set of an oriented graph.

Theorem 2. The weak saddle of a confrontation game
can be computed in polynomial time.

Proof. We prove that Algorithm 3 computes the weak
saddle and runs in time polynomial in the size of the game.

In each iteration, at least one action is added to the set
S, so the algorithm is guaranteed to terminate after at most
|A| iterations. Each iteration consists of a single call to QS ,
which requires only polynomial time as was shown by Brandt
and Fischer [5].

As for correctness, we show by induction on the number
of iterations that S ⊆WS(A) holds at any time. When the
algorithm terminates, S is a WGSP, which, together with
the induction hypothesis, implies that S = WS(A). The
base case follows directly from Lemma 2, i.e., from the fact
that QS(A) ⊆ WS(A). Now assume that S ⊆ WS(A) at
the beginning of a particular iteration. Then S ∪QS(A′) ⊆
S ∪WS(A′) ⊆ WS(A), where the first inclusion is due to
Lemma 2 and the second inclusion follows from Lemma 3
and the induction hypothesis.

In the remainder of this section, we present a family of
symmetric matrix games that are not confrontation games
and have an exponential number of weak saddles. Define
two matrices D and 1 as

D =

0BB@
0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

1CCA and 1 =

0BB@
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1CCA .

Observe that D has the following five weak saddles:
({r1, r2}, {c1, c2}), ({r3, r4}, {c3, c4}), ({r1, r3}, {c1, c3}),
({r2, r3}, {c1, c4}), and ({r1, r4}, {c2, c3}).

For an odd integer k ≥ 1, define Mk as the block matrix
whose diagonal blocks are D and whose remaining blocks are
arranged in a checker-board pattern consisting of 1 and −1,
i.e.,

Mk =

0BBBBBBB@

D −1 1 −1 · · · 1
1 D −1 1 −1
−1 1 D −1 1

1 −1 1 D −1
...

. . .
...

−1 1 −1 1 · · · D

1CCCCCCCA
.

For any ordered multiset of k weak saddles of D, consider the
sets of rows and columns of Mk containing for each i ≤ k, the
rows and columns of Mk obtained by identifying the ith weak
saddle in the set in the ith diagonal block of Mk. We leave
it to the reader to verify that the latter forms a weak saddle
of Mk, such that total number of weak saddles of Mk is at
least 5k. An immediate consequence of this example is that
computing all weak saddles of a game requires exponential
time in the worst case, even for matrix games.

5.2 Bimatrix Games
In this section, we establish a relationship between weak

saddles of bimatrix games and inclusion-maximal cliques of
undirected graphs. Our construction is inspired by McLen-
nan and Tourky [17] and will be used to derive results con-
cerning the computational hardness of weak saddles.

Let G = (V, E) be an undirected graph, and A =
(aij)i,j∈V its adjacency matrix. A clique in a graph G is
a subset C ⊆ V such that (i, j) ∈ E for all i, j ∈ V . Define a

5
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bimatrix game ΓG where both players have V as their set of
actions, and payoffs are given by matrices M1 = 2A− 1 + I
and M2 = I, where I is the identity matrix and 1 is the
matrix where every entry is 1. More formally,

p1(i, j) =

8><>:
1 if {i, j} ∈ E

0 if i = j

−1 otherwise,

p2(i, j) =

(
1 if i = j

0 otherwise.

Theorem 3. A pair (S1, S2) is a weak saddle in ΓG if
and only if S1 = S2 and S1 is an inclusion-maximal clique
in G.

The proof consists of three lemmas. Recall that a WGSP
is a pair of subsets of V that is externally stable for
both players. For v ∈ V and S ⊆ V , define pi(v, S) =
(pi(v, s))s∈S as the vector of payoffs for player i if he plays
v and the other player plays some s ∈ S.

Lemma 4. (S1, S2) is externally stable for player 2 if and
only if ∅ 6= S1 ⊆ S2.

Proof. For the direction from left to right, assume that
(S1, S2) is externally stable for player 2. Obviously, S 6= ∅.
Now consider any s ∈ S1 and assume s /∈ S2. Then there
exists s∗ ∈ T with s∗ >S s, contradicting the fact that
p2(s∗, s) = 0 < 1 = p2(s, s).

For the direction from right to left, let (S1, S2) be a pair
of subsets of V such that ∅ 6= S ⊆ T . We have to show that
for all s ∈ V \ T , there exists s∗ ∈ T with s∗ >S s. Let
s ∈ V \ T . Since S ⊆ T , it follows that s /∈ S and thus
p2(s, S) = (0, . . . , 0). Now let s∗ ∈ S. Then p2(s∗, S) =
(0, . . . , 0, 1, 0, . . . , 0) with entry 1 at position s∗, implying
that s∗ >S s.

Lemma 5. If S is a maximal clique in G, then (S, S) is
a weak saddle in ΓG.

Proof. We have to show that (S, S) is a WGSP, i.e., ex-
ternally stable for both players, and that there is no WGSP
strictly contained in (S, S).

External stability for player 2 follows from Lemma 4. For
external stability for player 1, consider any v ∈ V \S. Since
S is a maximal clique, there must exist some s ∈ S with
(s, v) /∈ E or, equivalently, p1(s, v) = −1. Then, s >S

v because p1(s, S) = (1, . . . , 1, 0, 1, . . . , 1) with entry 0 at
position s.

Now assume for contradiction that there exists a WGSP
(S′1, S

′
2) with S′1 ⊆ S and S′2 ⊆ S, such that at least one

inclusion is strict. By Lemma 4, S′1 ⊆ S′2, which means
that S′1 must be a strict subset of S1, because otherwise
(S′1, S

′
2) = (S, S). Consider some s ∈ S \ S′1. Since (S′1, S

′
2)

is a WGSP, there must exist some s∗ ∈ S′1 with s∗ >T ′ s.
This is a contradiction, since s∗ ∈ S′2 and p1(s∗, s∗) = 0 <
1 = p1(s, s∗), where the last equality is due to the fact that
both s and s∗ are in the clique S.

Lemma 6. If (S1, S2) is a weak saddle of ΓG, then S1 =
S2 and S1 is a maximal clique in G.

Proof. Let (S1, S2) be a weak saddle in ΓG, Let C be
an inclusion-maximal clique in the induced subgraph G|S1

of G with vertex set S1. We claim that C is also inclusion-
maximal in G.

Assume for contradiction that there exists some v ∈ V \
C that is connected to every vertex in C, i.e., p1(v, C) =

(1, . . . , 1). Since (S1, S2) is a weak saddle, there exists s ∈ S
with s >S2 v. In particular, p1(s, C) = (1, . . . , 1), implying
that s /∈ C and that s is connected to all vertices in C. This
obviously contradicts the assumption that C is an inclusion-
maximal clique in S.

Thus, C is a maximal clique in G and Lemma 5 implies
that (C, C) is a weak saddle. Furthermore, by Lemma 4,
S1 ⊆ S2. From the inclusion-minimality of saddles and from
C ⊆ S1 ⊆ S2, we conclude that (S1, S2) = (C, C).

This completes the proof of Theorem 3. The main result
of this section now follows as a corollary.

Corollary 1. Deciding whether there exists a weak sad-
dle with any of the following properties is NP-complete, even
in bimatrix games with only three different payoffs:

• at most k actions for some player,

• at least k actions for some player, or

• an average payoff of at least p for a particular player.

Proof Sketch. It is not hard to see that the first prob-
lem is equivalent to the second one under polynomial-time
Turing reductions, which in turn is equivalent to the prob-
lem of deciding the existence of a clique of size at least k
in an undirected graph. NP-hardness of the former under
polynomial-time many-one reductions can be shown via a
reduction from the exact cover problem, which we omit due
to space constraints. Hardness of the third problem follows
by observing that the average payoff of player 1 in our con-
struction is a strictly increasing function of the size of the
weak saddle.

6. MIXED REFINEMENTS OF SADDLES
Duggan and Le Breton [11] introduce refinements of Shap-

ley’s saddles, motivated by the possibility that players may
use randomized strategies. For an action to be excluded
from a mixed saddle, it suffices to find a mixture of saddle
actions that dominates it.

Definition 7 (Strict Mixed Saddle). A Mixed
Generalized Saddle Point (MGSP) of the game
(N, (Ai)i∈N , (pi)i∈N ) is a tuple (S1, S2, . . . , Sn) ⊆ A,
such that for each player i ∈ N

∀ai ∈ Ai \ Si, ∃si ∈ ∆(Si) such that si �S−i ai .

A strict mixed saddle is a MGSP that contains no other
MGSP.

Weak mixed generalized saddle points and weak mixed
saddles are defined analogously, replacing strict by weak
domination. Unlike strict and weak saddles, mixed saddles
are not ordinal solution concepts. They are, however, invari-
ant under positive affine transformations of the payoff func-
tions and we can therefore restrict our attention to games
in which all payoffs are positive.

6.1 Strict Mixed Saddle
Since every strict saddle contains a strict mixed saddle,

strict mixed saddles are not unique in non-zero-sum games.
Nevertheless, we present an algorithm that computes all
strict mixed saddles of an arbitrary n-player game. Simi-
lar to Algorithm 2 in Section 4, we use as a subroutine an
algorithm that computes the minimal MGSP that contains
a given subset.

6
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Algorithm 4 Minimal MGSP

procedure minMGSP(Γ, (S0
1 , S0

2 , . . . , S0
n))

for all i ∈ N do
Si ← S0

i

end for
repeat

for all i ∈ N do
A′i ← { ai ∈ Ai \ Si : @si ∈ ∆(Ai) with si �S−i ai }
Si ← Si ∪A′i

end for
until

Sn
i=0 A′i = ∅

return (S1, S2, . . . , Sn)

Lemma 7. Algorithm 4 computes the inclusion-minimal
MGSP containing a given input set S0.

Proof. The following geometric interpretation will be
useful. For an action ai of player i ∈ N , define pi(ai, S−i) =
(pi(ai, s−i))s−i∈S−i as the vector of possible payoffs for
player i if he plays ai and the other player plays some
s−i ∈ S−i. For a set Bi ⊆ Ai of actions of player i, denote
by pi(Bi, S−i) = ∪bi∈Bi pi(Bi, S−i) the union of all such
vectors, and write m = |S−i| for their dimension. For a set
of vectors V ⊆ Rm

≥0, define L(V ) to be the lower contour set
of conv(V ), i.e.,

L(V ) =
[
{x ∈ Rm

≥0 : ∃v ∈ conv(V ) with v ≥ x },

where v ≥ x is to be read componentwise.
The underlying intuition is that each action whose vec-

tor of payoffs lies in the interior of L(V ) is strictly dom-
inated by some strategy in ∆(V ). More formally, ai is
strictly dominated by Si with respect to S−i if and only
if pi(ai, S−i) ∈ L(pi(Si, S−i)).

Let Smin be the minimal MGSP containing S0. It suffices
to show that (i) during the execution of Algorithm 4, the set
S is always a subset of Smin, and that (ii) upon termination
of the algorithm, S is a MGSP.

For (i), perform an induction on the size of S. Initially,
S = S0 ⊆ Smin by definition of Smin. Now assume that S ⊆
Smin at the beginning of a particular iteration. We have to
show that for all i ∈ N , A′i ⊆ Smin

i . Let a ∈ A′i and assume
for contradiction that a /∈ Smin

i . Since Smin is an MGSP,
there exists some a∗ ∈ ∆(Smin

i ) ⊆ ∆(Ai) with a∗ �Smin
−i

a.

By the induction hypothesis, S−i ⊆ Smin
−i , which in turn

implies a∗ �S−i a. This contradicts the assumption that
a ∈ A′i.

For (ii), observe that upon termination of the algorithm,
∪n

i=0A
′
i = ∅, and thus A′i = ∅ for all i ∈ N . We need to

show that S is a MGSP, i.e., that for all i ∈ N and for all
ai ∈ Ai \ Si, there exists si ∈ ∆(Si) with si �S−i ai. Since
A′i = ∅, we know that there must be some si ∈ ∆(Ai) with
si �S−i ai. It thus suffices to show that L(pi(Si, S−i)) =
L(pi(Ai, S−i)).

The inclusion from left to right is trivial since Si ⊆ Ai. For
the inclusion from right to left, recall Minkowski’s Theorem,
which states that a convex and compact set in Rm is equal
to the convex hull of the set of its extreme points. As both
L(pi(Ai, S−i)) and L(pi(Si, S−i)) are compact and convex,
it remains to be shown that no point in pi(Ai \Si, S−i) is an
extreme point of L(pi(Ai, S−i)). This follows from the fact
that A′i = ∅, which means that for all ai ∈ Ai \ Si, there
exists a∗i ∈ ∆(Ai) with a∗i �S−i ai.

Algorithm 5 Strict Mixed Saddle

procedure StrictMixedSaddle(Γ)
for all S0 = ({s1}, {s2}, . . . , {sn}) ⊆ A do

C ← C ∪ minMGSP(Γ, S0)
end for
return {S ∈ C : S is inclusion-minimal }

Whenever S0 is contained in a strict mixed saddle, Algo-
rithm 4 returns a strict mixed saddle. If we call Algorithm 4
for every possible combination of singleton sets of actions of
the different players, we get as a result a set of MGSPs. The
strict mixed saddles of the game are the inclusion-minimal
elements of this set. We thus obtain the main result of this
section.

Theorem 4. All strict mixed saddles of an n-player game
can be computed in polynomial time.

Proof. We show that Algorithm 5 computes all strict
mixed saddles of an n-player game Γ and runs in time poly-
nomial in the size of Γ. Correctness follows from Lemma 7.
Concerning time complexity, observe that the number of
calls to Algorithm 4 is |A| =

Qn
i=1 |Ai|, which obviously

is polynomial in the size of the game. Furthermore, at least
one action is added in every iteration of Algorithm 4, and
each iteration takes only polynomial time because the set
of undominated actions can be computed efficiently by lin-
ear programming (see, e.g., Proposition 1 by Conitzer and
Sandholm [8]).

6.2 Weak Mixed Saddle
It turns out that some of the results we obtained for weak

saddles can be extended to weak mixed saddles. For exam-
ple, in confrontation games where payoffs are restricted to
{−1, 0, 1}, the possibility of mixing does not affect the set of
dominated actions. As a consequence, the weak mixed sad-
dle and the weak saddle coincide in such games. In general
confrontation games, it is still true that a subset of a weak
mixed saddle can be found efficiently, namely the sign essen-
tial set introduced by Dutta and Laslier [13]. Whether this
property can be used to efficiently construct a weak mixed
saddle remains an open problem.

On the other hand, it can be shown that weak mixed
saddles and weak saddles coincide in all games ΓG used in
Section 5.2. All hardness results for weak saddles in bimatrix
games thus also apply to weak mixed saddles.

7. CONCLUSION
We have initiated the study of computational aspects of

Shapley’s saddles – ordinal set-valued solution concepts dat-
ing back to the early 1950s – by proposing polynomial-time
algorithms for computing pure and mixed strict saddles in
general normal-form games and pure weak saddles in a sub-
class of symmetric two-player zero-sum games. The latter
algorithm is highly non-trivial and surprisingly relies on lin-
ear programs that determine the support of Nash equilibria
in certain subgames of the original game. We also showed
that, in general bimatrix games, natural problems associated
with weak (pure or mixed) saddles, such as deciding the ex-
istence of a weak saddle with at most k actions for some
player, are NP-complete. Several open questions with re-
spect to weak saddles remain. In particular, it is not known
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whether weak saddles can be computed efficiently in general
two-player zero-sum games. Furthermore, the aforemen-
tioned NP-completeness results do not imply that finding
an arbitrary weak saddle is NP-hard.
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