Roots $x_k(y)$ of a formal power series

\[f(x, y) = \sum_{n=0}^{\infty} a_n(y) x^n, \]

with applications to graph enumeration and q-series

\textbf{Alan Sokal}

(New York University and University College London)

\textbf{Abstract}

Many problems in combinatorics, statistical mechanics, number theory and analysis give rise to power series (whether formal or convergent) of the form

\[f(x, y) = \sum_{n=0}^{\infty} a_n(y) x^n, \]

where \{a_n(y)\} are formal power series or analytic functions satisfying $a_n(0) \neq 0$ for $n = 0, 1$ and $a_n(0) = 0$ for $n \geq 2$. Furthermore, an important role is played in some of these problems by the roots $x_k(y)$ of $f(x, y)$ — especially the “leading root” $x_0(y)$, i.e. the root that is of order y^0 when $y \to 0$. Among the interesting series $f(x, y)$ of this type are the “partial theta function”

\[\Theta_0(x, y) = \sum_{n=0}^{\infty} x^n y^{n(n-1)/2}, \]

which arises in the theory of q-series and in particular in Ramanujan’s “lost” notebook; and the “deformed exponential function”

\[F(x, y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} y^{n(n-1)/2}, \]
which arises in the enumeration of connected graphs.

In this talk I will describe recent (and mostly unpublished) work concerning these problems — work that lies on the boundary between analysis, combinatorics and probability. In addition to explaining my (very few) theorems, I will also describe some amazing conjectures that I have verified numerically to high order but have not yet succeeded in proving — my hope is that one of you will succeed where I have not!

62,0-1 Bot