A network is said to have a clustering property if the number of triangles it contains is much larger than that of a typical instance of a random graph having the same edge density and independent edges. Newman, Watts and Strogatz (PNAS,2002) argued that clustering properties of some social networks could be explained by the presence of a bipartite structure: people with similar interests tend to cluster into groups. Such networks can be modeled with the help of random intersection graphs, where actors/nodes are represented by random subsets of a finite auxiliary set of attributes and where two nodes are declared adjacent whenever their subsets intersect. In my talk I will tell about clustering properties of a random intersection graph (and random intersection graph process) and discuss how well does this model fit the real network data.