Generating all subsets of a finite set with disjoint unions

David Ellis†, Benny Sudakov‡

May 2011

Abstract

If \(X \) is an \(n \)-element set, we call a family \(G \subset \mathcal{P}X \) a \(k \)-generator for \(X \) if every \(x \subset X \) can be expressed as a union of at most \(k \) disjoint sets in \(G \). Frein, Lévêque and Sebô [10] conjectured that for \(n > 2k \), the smallest \(k \)-generators for \(X \) are obtained by taking a partition of \(X \) into classes of sizes as equal as possible, and taking the union of the power-sets of the classes. We prove this conjecture for all sufficiently large \(n \) when \(k = 2 \), and for \(n \) a sufficiently large multiple of \(k \) when \(k \geq 3 \).

Keywords: generator, disjoint unions.

2000 MSC: 05Dxx.

1 Introduction

Let \(X \) be an \(n \)-element set, and let \(\mathcal{P}X \) denote the set of all subsets of \(X \). We call a family \(G \subset \mathcal{P}X \) a \(k \)-generator for \(X \) if every \(x \subset X \) can be expressed as a union of at most \(k \) disjoint sets in \(G \). For example, let \((V_i)^k_{i=1}\) be a partition of \(X \) into \(k \) classes of sizes as equal as possible; then

\[
\mathcal{F}_{n,k} := \bigcup_{i=1}^{k} \mathcal{P}(V_i) \setminus \{\emptyset\}
\]
is a k-generator for X. We call a k-generator of this form canonical. If $n = qk + r$, where $0 \leq r < k$, then

$$|F_{n,k}| = (k - r)(2^q - 1) + r(2^{q+1} - 1) = (k + r)2^q - k.$$

Frein, Lévêque and Sebő [10] conjectured that for any $k \leq n$, this is the smallest possible size of a k-generator for X.

Conjecture 1 (Frein, Lévêque, Sebô). If X is an n-element set, $k \leq n$, and $G \subset P_X$ is a k-generator for X, then $|G| \geq |F_{n,k}|$. If $n > 2k$, equality holds only if G is a canonical k-generator for X.

They proved this for $k \leq n \leq 3k$, but their methods do not seem to work for larger n.

For $k = 2$, Conjecture 1 is a weakening of a conjecture of Erdős. We call a family $G \subset P_X$ a k-base for X if every $x \subset X$ can be expressed as a union of at most k (not necessarily disjoint) sets in G. Erdős (see [11]) made the following

Conjecture 2 (Erdős). If X is an n-element set, and $G \subset P_X$ is a 2-base for X, then $|G| \geq |F_{n,2}|$.

In fact, Frein, Lévêque and Sebő [10] made the analogous conjecture for all k.

Conjecture 3 (Frein, Lévêque, Sebô). If X is an n-element set, $k \leq n$, and $G \subset P_X$ is a k-base for X, then $|G| \geq |F_{n,k}|$. If $n > 2k$, equality holds only if G is a canonical k-generator for X.

Again, they were able to prove this for $k \leq n \leq 3k$.

In this paper, we study k-generators when n is large compared to k. Our main results are as follows.

Theorem 4. If n is sufficiently large, X is an n-element set, and $G \subset P_X$ is a 2-generator for X, then $|G| \geq |F_{n,2}|$. Equality holds only if G is of the form $F_{n,2}$.

Theorem 5. If $k \in \mathbb{N}$, n is a sufficiently large multiple of k, X is an n-element set, and G is a k-generator for X, then $|G| \geq |F_{n,k}|$. Equality holds only if G is of the form $F_{n,k}$.

In other words, we prove Conjecture 1 for all sufficiently large n when $k = 2$, and for n a sufficiently large multiple of k when $k \geq 3$. We use some ideas of Alon and Frankl [1], and also techniques of the first author from [5], in which asymptotic results were obtained.
As noted in [10], if \(G \subset \mathcal{P}X \) is a \(k \)-generator (or even a \(k \)-base) for \(X \), then the number of ways of choosing at most \(k \) sets from \(G \) is clearly at least the number of subsets of \(X \). Therefore \(|G|^k \geq 2^n \), which immediately gives

\[
|G| \geq 2^{n/k}.
\]

Moreover, if \(|G| = m \), then

\[
\sum_{i=0}^{k} \binom{m}{i} \geq 2^n. \tag{1}
\]

Crudely, we have

\[
\sum_{i=0}^{k-1} \binom{m}{i} \leq 2m^{k-1},
\]

so

\[
\sum_{i=0}^{k} \binom{m}{i} \leq \binom{m}{k} + 2m^{k-1}.
\]

Hence, if \(k \) is fixed, then

\[
(1 + O(1/m)) \binom{m}{k} \geq 2^n,
\]

so

\[
|G| \geq (k!)^{1/k}2^{n/k}(1 - o(1)). \tag{2}
\]

Observe that if \(n = qk + r \), where \(0 \leq r < k \), then

\[
|\mathcal{F}_{n,k}| = (k + r)^2^q - k < (k + r)^2^q = k2^{n/k}(1 + r/k)2^{-r/k} < c_0 k2^{n/k}, \tag{3}
\]

where

\[
c_0 := \frac{2}{2^{\log 2} \log 2} = 1.061 \text{ (to 3 d.p.)}.
\]

Now for some preliminaries. We use the following standard notation. For \(n \in \mathbb{N} \), \([n]\) will denote the set \(\{1, 2, \ldots, n\} \). If \(x \) and \(y \) are disjoint sets, we will sometimes write their union as \(x \uplus y \), rather than \(x \cup y \), to emphasize the fact that the sets are disjoint.

If \(k \in \mathbb{N} \), and \(G \) is a graph, \(K_k(G) \) will denote the number of \(k \)-cliques in \(G \). Let \(T_s(n) \) denote the \(s \)-partite Turán graph (the complete \(s \)-partite graph on \(n \) vertices with parts of sizes as equal as possible), and let \(t_s(n) = e(T_s(n)) \). For \(l \in \mathbb{N} \), \(C_l \) will denote the cycle of length \(l \).

If \(F \) is a (labelled) graph on \(f \) vertices, with vertex-set \(\{v_1, \ldots, v_f\} \) say, and \(t = (t_1, \ldots, t_f) \in \mathbb{N}^f \), we define the \(t \)-\textit{blow-up} of \(F \), \(F \otimes t \), to be the
graph obtained by replacing \(v_i \) with an independent set \(V_i \) of size \(t_i \), and joining each vertex of \(V_i \) to each vertex of \(V_j \) whenever \(v_i \sim v_j \) is an edge of \(F \). With slight abuse of notation, we will write \(F \otimes t \) for the symmetric blow-up \(F \otimes (t, \ldots, t) \).

If \(F \) and \(G \) are graphs, we write \(c_F(G) \) for the number of injective graph homomorphisms from \(F \) to \(G \), meaning injections from \(V(F) \) to \(V(G) \) which take edges of \(F \) to edges of \(G \). The density of \(F \) in \(G \) is defined to be

\[
d_F(G) = \frac{c_F(G)}{|G|(|G|-1)\cdots(|G|-|F|+1)},
\]

i.e. the probability that a uniform random injective map from \(V(F) \) to \(V(G) \) is a graph homomorphism from \(F \) to \(G \). Hence, when \(F = K_k \), the density of \(K_k \)'s in an \(n \)-vertex graph \(G \) is simply \(K_k(G)/\binom{n}{k} \).

Although we will be interested in the density \(d_F(G) \), it will sometimes be more convenient to work with the following closely related quantity, which behaves very nicely when we take blow-ups. We write \(\text{Hom}_F(G) \) for the number of homomorphisms from \(F \) to \(G \), and we define the homomorphism density of \(F \) in \(G \) to be

\[
h_F(G) = \frac{\text{Hom}_F(G)}{|G|^{|F|}},
\]

i.e. the probability that a uniform random map from \(V(F) \) to \(V(G) \) is a graph homomorphism from \(F \) to \(G \).

Observe that if \(F \) is a graph on \(f \) vertices, and \(G \) is a graph on \(n \) vertices, then the number of homomorphisms from \(F \) to \(G \) which are not injections is clearly at most

\[
\binom{f}{2} n^{f-1}.
\]

Hence,

\[
d_G(F) \geq \frac{h_G(F) n^f - \binom{f}{2} n^{f-1}}{n(n-1)\cdots(n-f+1)} \geq h_G(F) - O(1/n),
\]

if \(f \) is fixed. In the other direction,

\[
d_F(G) \leq \frac{n^f}{n(n-1)\cdots(n-f+1)} h_F(G) \leq (1 + O(1/n)) h_F(G)
\]

if \(f \) is fixed. Hence, when working inside large graphs, we can pass freely between the density of a fixed graph \(F \) and its homomorphism density, with an ‘error’ of only \(O(1/n) \).

Finally, we will make frequent use of the AM/GM inequality:
Theorem 6. If \(x_1, \ldots, x_n \geq 0 \), then
\[
\left(\prod_{i=1}^{n} x_i \right)^{1/n} \leq \frac{1}{n} \sum_{i=1}^{n} x_i.
\]

2 The case \(k \mid n \) via extremal graph theory.

For \(n \) a sufficiently large multiple of \(k \), it turns out to be possible to prove Conjecture 1 using stability versions of Turán-type results. We will prove the following

Theorem 5. If \(k \in \mathbb{N} \), \(n \) is a sufficiently large multiple of \(k \), \(X \) is an \(n \)-element set, and \(G \) is a \(k \)-generator for \(X \), then \(|G| \geq |\mathcal{F}_{n,k}| \). Equality holds only if \(G \) is of the form \(\mathcal{F}_{n,k} \).

We need a few more definitions. Let \(H \) denote the graph with vertex-set \(\mathcal{P}X \), where we join two subsets \(x, y \subset X \) if they are disjoint. With slight abuse of terminology, we call \(H \) the ‘Kneser’ graph on \(\mathcal{P}X \) (although this usually means the analogous graph on \(X^{(r)} \)). If \(\mathcal{F}, G \subset \mathcal{P}X \), we say that \(G \) \(k \)-generates \(\mathcal{F} \) if every set in \(\mathcal{F} \) is a disjoint union of at most \(k \) sets in \(G \).

The main steps of the proof: First, we will show that for any \(A \subset \mathcal{P}X \) with \(|A| \geq \Omega(2^{n/k}) \), the density of \(K_{k+1} \)'s in the induced subgraph \(H[A] \) is \(o(1) \).

Secondly, we will observe that if \(n \) is a sufficiently large multiple of \(k \), and \(G \subset \mathcal{P}X \) has size close to \(|\mathcal{F}_{n,k}| \) and \(k \)-generates almost all subsets of \(X \), then \(K_k(H[G]) \) is very close to \(K_k(T_k(|G|)) \), the number of \(K_k \)'s in the \(k \)-partite Turán graph on \(|G| \) vertices.

We will then prove that if \(G \) is any graph with small \(K_{k+1} \)-density, and with \(K_k(G) \) close to \(K_k(T_k(|G|)) \), then \(G \) can be made \(k \)-partite by removing a small number of edges. This can be seen as a (strengthened) variant of the Simonovits Stability Theorem [9], which states that any \(K_{k+1} \)-free graph \(G \) with \(e(G) \) close to the maximum \(e(T_k(|G|)) \), can be made \(k \)-partite by removing a small number of edges.

This will enable us to conclude that \(H[G] \) can be made \(k \)-partite by the removal of a small number of edges, and therefore the structure of \(H[G] \) is close to that of the Turán graph \(T_k(|G|) \). This in turn will enable us to show that the structure of \(G \) is close to that of a canonical \(k \)-generator \(\mathcal{F}_{n,k} \) (Proposition 9).

Finally, we will use a perturbation argument to show that if \(n \) is sufficiently large, and \(|G| \leq |\mathcal{F}_{n,k}| \), then \(G = \mathcal{F}_{n,k} \), completing the proof.
In fact, we will first show that if \(A \subset PX \) with \(|A| \geq \Omega(2^{n/k}) \), then the homomorphism density of \(K_{k+1} \otimes t \) in \(H[A] \) is \(o(1) \), provided \(t \) is sufficiently large depending on \(k \). Hence, we will need the following (relatively well-known) lemma relating the homomorphism density of a graph to that of its blow-up.

Lemma 7. Let \(F \) be a graph on \(f \) vertices, let \(t = (t_1, t_2, \ldots, t_f) \in \mathbb{N}^f \), and let \(F \otimes t \) denote the \(t \)-blow-up of \(F \). If the homomorphism density of \(F \) in \(G \) is \(p \), then the homomorphism density of \(F \otimes t \) in \(G \) is at least \(p^{t_1 t_2 \cdots t_f} \).

Proof. This is a simple convexity argument, essentially that of [9]. It will suffice to prove the statement of the lemma when \(t = (1, \ldots, 1, r) \) for some \(r \in \mathbb{N} \). We think of \(F \) as a (labelled) graph on vertex set \([f] = \{1, 2, \ldots, f\}\), and \(G \) as a (labelled) graph on vertex set \([n]\). Define the function \(\chi : [n]^f \to \{0, 1\} \) by

\[
\chi(v_1, \ldots, v_f) = \begin{cases} 1 & \text{if } i \mapsto v_i \text{ is a homomorphism from } F \text{ to } G, \\ 0 & \text{otherwise}. \end{cases}
\]

Then we have

\[
h_F(G) = \frac{1}{n^f} \sum_{(v_1, \ldots, v_f) \in [n]^f} \chi(v_1, \ldots, v_f) = p.
\]

The homomorphism density \(h_{F \otimes (1, \ldots, 1, r)}(G) \) of \(F \otimes (1, \ldots, 1, r) \) in \(G \) is:

\[
h_{F \otimes (1, \ldots, 1, r)}(G) = \frac{1}{n^{f-1+r}} \sum_{(v_1, \ldots, v_{f-1}, v_f^{(1)}, \ldots, v_f^{(r)}) \in [n]^{f-1+r}} \prod_{i=1}^{r} \chi(v_1, \ldots, v_{f-1}, v_f^{(i)})
\]

\[
= \frac{1}{n^{f-1}} \sum_{(v_1, \ldots, v_{f-1}) \in [n]^{f-1}} \left(\frac{1}{n} \sum_{v_f \in [n]} \chi(v_1, \ldots, v_f, v_f) \right)^r
\]

\[
\geq \left(\frac{1}{n^{f-1}} \sum_{(v_1, \ldots, v_{f-1}) \in [n]^{f-1}} \left(\frac{1}{n} \sum_{v_f \in [n]} \chi(v_1, \ldots, v_f, v_f) \right) \right)^r
\]

\[
= \left(\frac{1}{n^{f}} \sum_{(v_1, \ldots, v_{f-1}, v_f) \in [n]^f} \chi(v_1, \ldots, v_f) \right)^r = p^r.
\]

Here, the inequality follows from applying Jensen’s Inequality to the convex function \(x \mapsto x^r \). This proves the lemma for \(t = (1, \ldots, 1, r) \). By
symmetry, the statement of the lemma holds for all vectors of the form
\((1, \ldots, 1, r, 1, \ldots, 1)\). Clearly, we may obtain \(F \otimes t\) from \(F\) by a sequence
of blow-ups by these vectors, proving the lemma.

The following lemma (a rephrasing of Lemma 4.2 in Alon and Frankl [1])
gives an upper bound on the homomorphism density of \(K_{k+1} \otimes t\) in large
induced subgraphs of the Kneser graph \(H\).

Lemma 8. If \(A \subset \mathcal{P}X\) with \(|A| = m = 2^{(\delta + 1/(k+1))n}\), then
\[
h_{K_{k+1} \otimes t}(H[A]) \leq (k + 1)2^{-n(\delta t - 1)}.\]

Proof. We follow the proof of Alon and Frankl cited above. Choose \((k + 1)t\) members of \(A\) uniformly at random with replacement, \((A^{(j)}_i)_{1 \leq i \leq k+1, 1 \leq j \leq t}\). The homomorphism density of \(K_{k+1} \otimes t\) in \(H[A]\) is precisely the probability that the unions
\[
U_i = \bigcup_{j=1}^t A^{(j)}_i
\]
are pairwise disjoint. If this event occurs, then \(|U_i| \leq n/(k + 1)\) for some \(i\). For each \(i \in [k]\), we have
\[
\Pr\{|U_i| \leq n/(k + 1)\} = \Pr\left(\bigcup_{S \subset X: |S| \leq n/(k+1)} \left(\bigcap_{j=1}^t \{A^{(j)}_i \subset S\}\right)\right)
\leq \sum_{|S| \leq n/(k+1)} \Pr\left(\bigcap_{j=1}^t \{A^{(j)}_i \subset S\}\right)
= \sum_{|S| \leq n/(k+1)} (2^{|S|}/m)^t
\leq 2^n \left(2^{n/(k+1)}/m\right)^t
= 2^{-n(\delta t - 1)}.
\]

Hence,
\[
\Pr\left(\bigcup_{i=1}^k \{|U_i| \leq n/(k + 1)\}\right) \leq \sum_{i=1}^k \Pr\{|U_i| \leq n/(k + 1)\} \leq (k + 1)2^{-n(\delta t - 1)}.\]

Therefore,
\[
h_{K_{k+1} \otimes t}(H[A]) \leq (k + 1)2^{-n(\delta t - 1)},\]
as required.

\[\square\]
From the trivial bound above, any k-generator G has $|G| \geq 2^{n/k}$, so $\delta \geq 1/(k(k + 1))$, and therefore, choosing $t = t_k := 2k(k + 1)$, we see that

$$h_{k+1}(H[G]) \leq (k + 1)2^{-n}.$$

Hence, by Lemma 7,

$$h_{k+1}(H[G]) \leq O_k(2^{-n/t_k}).$$

Therefore, by (5),

$$d_{k+1}(H[G]) \leq O_k(2^{-n/t_k}) \leq 2^{-a_k n}$$ \hspace{1cm} (6)

provided n is sufficiently large depending on k, where $a_k > 0$ depends only on k.

Assume now that n is a multiple of k, so that $|F_{n,k}| = k2^{n/k} - k$. We will prove the following ‘stability’ result.

Proposition 9. Let $k \in \mathbb{N}$ be fixed. If n is a multiple of k, and $G \subset P_X$ has $|G| \leq (1 + \eta)|F_{n,k}|$ and k-generates at least $(1 - \epsilon)2^n$ subsets of X, then there exists an equipartition $(S_i)_{i=1}^k$ of X such that

$$|G \cap (\cup_{i=1}^k PS_i)| \geq (1 - C_k \epsilon^{1/k} - D_k \eta^{1/k} - 2^{-\xi_k n})|F_{n,k}|,$$

where $C_k, D_k, \xi_k > 0$ depend only on k.

We first collect some results used in the proof. We will need the following theorem of Erdős [7].

Theorem 10 (Erdős). If $r \leq k$, and G is a K_{k+1}-free graph on n vertices, then

$$K_r(G) \leq K_r(T_k(n)).$$

We will also need the following well-known lemma, which states that a dense k-partite graph has an induced subgraph with high minimum degree.

Lemma 11. Let G be an n-vertex, k-partite graph with

$$e(G) \geq (1 - 1/k - \delta)n^2/2.$$

Then there exists an induced subgraph $G' \subset G$ with $|G'| = n' \geq (1 - \sqrt{\delta})n$ and minimum degree $\delta(G') \geq (1 - 1/k - \sqrt{\delta})(n' - 1)$.

8
Proof. We perform the following algorithm to produce G'. Let $G_1 = G$. Suppose that at stage i, we have a graph G_i on $n-i+1$ vertices. If there is a vertex v of G_i with $d(v) < (1-1/k-\eta)(n-i)$, let $G_{i+1} = G_i - v$; otherwise, stop and set $G' = G_i$. Suppose the process terminates after $j = \alpha n$ steps. Then we have removed at most

$$(1-1/k-\eta)\sum_{i=1}^{j}(n-i) = (1-1/k-\eta)\left(\binom{n}{2} - \binom{n-j}{2}\right)$$

edges, and the remaining graph has at most

$$\binom{k}{2} \left(\frac{n-j}{k}\right)^2 = (1-\alpha)^2(1-1/k)n^2/2$$

edges. But our original graph had at least

$$(1-1/k-\delta)n^2/2$$

edges, and therefore

$$(1-1/k-\eta)(1-(1-\alpha)^2)n^2/2 + (1-\alpha)^2(1-1/k)n^2/2 \geq (1-1/k-\delta)n^2/2,$$

so

$$\eta(1-\alpha)^2 \geq \eta - \delta.$$

Choosing $\eta = \sqrt{\delta}$, we obtain

$$\eta(1-\alpha)^2 \geq \eta(1-\eta),$$

and therefore

$$(1-\alpha)^2 \geq 1 - \eta,$$

so

$$\alpha \leq 1 - (1 - \eta)^{1/2} \leq \eta.$$

Hence, our induced subgraph G' has order

$$|G'| = n' \geq (1 - \sqrt{\delta})n,$$

and minimum degree

$$\delta(G') \geq (1-1/k-\sqrt{\delta})(n' - 1).$$

We will also need Shearer’s Entropy Lemma.
Lemma 12 (Shearer’s Entropy Lemma, [4]). Let S be a finite set, and let \mathcal{A} be an r-cover of S, meaning a collection of subsets of S such that every element of S is contained in at least r sets in \mathcal{A}. Let \mathcal{F} be a collection of subsets of S. For $A \subset S$, let $\mathcal{F}_A = \{ F \cap A : F \in \mathcal{F} \}$ denote the projection of \mathcal{F} onto the set A. Then

$$|\mathcal{F}|^r \leq \prod_{A \in \mathcal{A}} |\mathcal{F}_A|.$$

In addition, we require two ‘stability’ versions of Turán-type results in extremal graph theory. The first states that a graph with a very small K_{k+1}-density cannot have K_r-density much higher than the k-partite Turán graph on the same number of vertices, for any $r \leq k$.

Lemma 13. Let $r \leq k$ be integers. Then there exist $C, D > 0$ such that for any $\alpha \geq 0$, any n-vertex graph G with K_{k+1}-density at most α has K_r-density at most

$$\frac{k(k-1)\cdots(k-r+1)}{k^r} \left(1 + C\alpha^{1/(k+2)} + D/n\right).$$

Proof. We use a straightforward sampling argument. Let G be as in the statement of the lemma. Let $\zeta(\binom{l}{k})$ be the number of l-subsets $U \subset V(G)$ such that $G[U]$ contains a copy of K_{k+1}, so that ζ is simply the probability that a uniform random l-subset of $V(G)$ contains a K_{k+1}. Simple counting (or the union bound) gives

$$\zeta \leq \binom{l}{k+1}^\alpha.$$

By Theorem 10, each K_{k+1}-free $G[U]$ contains at most

$$\binom{k}{r} \binom{l}{k}^r$$

K_r’s. Therefore, the density of K_r’s in each such $G[U]$ satisfies

$$d_{K_r}(G[U]) \leq \frac{k(k-1)\cdots(k-r+1)}{k^r} \frac{l^r}{l(l-1)\cdots(l-r+1)} \leq \frac{k(k-1)\cdots(k-r+1)}{k^r}(1 + O(1/l)). \quad (7)$$

Note that one can choose a random r-set in graph G by first choosing a random l-set U, and then choosing a random r-subset of U. The density of
K_r’s in G is simply the probability that a uniform random r-subset of $V(G)$ induces a K_r, and therefore
\[d_{K_r}(G) = \mathbb{E}_{U}[d_{K_k}(G[U])], \]
where the expectation is taken over a uniform random choice of U. If U is K_{k+1}-free, which happens with probability $1 - \zeta$, we use the upper bound (7); if U contains a K_{k+1}, which happens with probability ζ, we use the trivial bound $d_{K_k}(G[U]) \leq 1$. We see that the density of K_r’s in G satisfies:
\[
d_{K_r}(G) \leq (1 - \zeta) \frac{k(k-1) \cdots (k-r+1)}{k^r} (1 + O(1/l)) + \zeta \leq \frac{k(k-1) \cdots (k-r+1)}{k^r} + O(1/l) + \binom{l}{k+1} \alpha \leq \frac{k(k-1) \cdots (k-r+1)}{k^r} + O(1/l) + l^{k+1} \alpha.
\]
Choosing $l = \min\{\lceil \alpha^{-1/(k+2)} \rceil, n\}$ proves the lemma.

The second result states that an n-vertex graph with a small K_{k+1}-density, a K_k-density not too much less than that of $T_k(n)$, and a K_{k-1}-density not too much more than that of $T_k(n)$, can be made into a k-partite graph by the removal of only a small number of edges.

Theorem 14. Let G be an n-vertex graph with K_{k+1}-density at most α, K_{k-1}-density at most
\[(1 + \beta) \frac{k!}{k^{k-1}}, \]
and K_k-density at least
\[(1 - \gamma) \frac{k!}{k^k}, \]
where $\gamma \leq 1/2$. Then G can be made into a k-partite graph G_0 by removing at most
\[
\left(2\beta + 2\gamma + \frac{8k^{k+1}k(k+1)}{k!} \sqrt{\alpha} + 2k/n\right) \left(\begin{array}{c} n \end{array}\right) \left(\begin{array}{c} \frac{n}{k} \end{array}\right)
\]
edges, which removes at most
\[
\left(2\beta + 2\gamma + \frac{8k^{k+1}k(k+1)}{k!} \sqrt{\alpha} + 2k/n\right) \left(\begin{array}{c} k \end{array}\right) \left(\begin{array}{c} n \end{array}\right) \left(\begin{array}{c} \frac{n}{k} \end{array}\right)
\]
K_k’s.
Proof. If \(k \in \mathbb{N} \), and \(G \) is a graph, let
\[
K_k(G) = \{ S \in V(G)^{(k)} : G[S] \text{ is a clique} \}
\]
denote the set of all \(k \)-sets that induce a clique in \(G \). If \(S \subset V(G) \), let \(N(S) \) denote the set of vertices of \(G \) joined to all vertices in \(S \), i.e. the intersection of the neighbourhoods of the vertices in \(S \), and let \(d(S) = |N(S)| \). For \(S \in K_k(G) \), let
\[
f_G(S) = \sum_{T \subset S, |T| = k-1} d(T).
\]
We begin by sketching the proof. The fact that the ratio between the \(K_k \)-density of \(G \) and the \(K_{k-1} \)-density of \(G \) is very close to \(1/k \) will imply that the average \(\mathbb{E} f_G(S) \) over all sets \(S \in K_k(G) \) is not too far below \(n \). The fact that the \(K_{k+1} \)-density of \(G \) is small will mean that for most sets \(S \in K_k(G) \), every \((k-1) \)-subset \(T \subset S \) has \(N(T) \) spanning few edges of \(G \), and any two distinct \((k-1) \)-subsets \(T, T' \subset S \) have \(|N(T) \cap N(T')| \) small. Hence, if we pick such a set \(S \) which has \(f_G(S) \) not too far below the average, the sets \(\{N(T) : T \subset S, |T| = k-1\} \) will be almost pairwise disjoint, will cover most of the vertices of \(G \), and will each span few edges of \(G \). Small alterations will produce a \(k \)-partition of \(V(G) \) with few edges of \(G \) within each class, proving the theorem.

We now proceed with the proof. Observe that
\[
\mathbb{E} f_G = \frac{\sum_{S \in K_k(G)} \sum_{T \subset S, |T| = k-1} d(T)}{K_k(G)}
\geq \frac{\left(\sum_{T \in K_{k-1}(G)} d(T) \right)^2}{K_{k-1}(G)K_k(G)}
= \frac{(kK(G))^2}{K_{k-1}(G)K_k(G)}
= k^2 \frac{K_k(G)}{K_{k-1}(G)}
\geq k^2 (1 - \gamma) \frac{k!}{k^k} \frac{1}{1+\beta} \frac{k^{k-1}}{k!} \frac{\binom{n}{k}}{\binom{n}{k-1}}
= \frac{1 - \gamma}{1+\beta} (n - k + 1).
\]
(The first inequality follows from Cauchy-Schwarz, and the second from our assumptions on the \(K_k \)-density and the \(K_{k-1} \)-density of \(G \).)
We call a set $T \in \mathcal{K}_{k-1}(G)$
dangerous if it is contained in at least
\[\sqrt{\alpha} \binom{n-k+1}{2} K_{k+1} \text{'s.} \]
Let D denote the number of dangerous $(k-1)$-sets. Double-counting the number of times a $(k-1)$-set is contained in a K_{k+1}, we obtain:
\[D \sqrt{\alpha} \binom{n-k+1}{2} \leq (k+1) \alpha \binom{n}{k+1}, \]
since there are at most $\alpha \binom{n}{k+1} K_{k+1}$’s in G. Hence,
\[D \leq \sqrt{\alpha} \binom{n}{k-1}. \]

Similarly, we call a set $S \in \mathcal{K}_k(G)$
treacherous if it is contained in at least
\[\sqrt{\alpha} (n-k) K_{k+1} \text{'s.} \]
Double-counting the number of times a k-set is contained in a K_{k+1}, we see that there are at most $\sqrt{\alpha} \binom{n}{k}$ treacherous k-sets.

Call a set $S \in \mathcal{K}_k(G)$
bad if it is treacherous, or contains at least one dangerous $(k-1)$-set; otherwise, call S **good**. Then the number of bad k-sets is at most
\[\sqrt{\alpha} \binom{n}{k} + (n-k+1) \sqrt{\alpha} \binom{n}{k-1} = (k+1) \sqrt{\alpha} \binom{n}{k}, \]
so the fraction of sets in $\mathcal{K}_k(G)$ which are bad is at most
\[\frac{(k+1) \sqrt{\alpha}}{(1-\gamma) \frac{k!}{k^k}} \leq \frac{k^k (k+1) \sqrt{\alpha}}{(1-\gamma) k!}. \]

Suppose that
\[\max\{|f_G(S)| : S \text{ is good}\} < (1-\psi)(n-k+1). \]
Observe that for any $S \in \mathcal{K}_k(G)$, we have
\[f_G(S) \leq k(n-k+1), \]
since $d(T) \leq n-k+1$ for each $T \in S^{(k-1)}$. Hence,
\[\mathbb{E} f_G < \left(1 - \frac{k^k (k+1) \sqrt{\alpha}}{(1-\gamma) k!} \right) (1-\psi) + \frac{k^k (k+1) \sqrt{\alpha}}{(1-\gamma) k!} (n-k+1) \]
\[\leq \left(1 - \psi + \frac{k^{k+1} (k+1) \sqrt{\alpha}}{(1-\gamma) k!} \right) (n-k+1), \]
a contradiction if
\[\psi = \psi_0 := 1 - \frac{1-\gamma}{1+\beta} + \frac{k^{k+1} (k+1) \sqrt{\alpha}}{(1-\gamma) k!} \leq \gamma + \beta + \frac{2k^{k+1} (k+1)}{k!} \sqrt{\alpha}. \]
Let $S \in K_k(G)$ be a good k-set such that $f_G(S) \geq (1 - \psi_0)(n - k + 1)$. Write $S = \{v_1, \ldots, v_k\}$, let $T_i = S \setminus \{v_i\}$ for each i, and let $N_i = N(T_i)$ for each i. Observe that $N_i \cap N_j = N(S)$ for each $i \neq j$, and $|N(S)| = d(S) \leq \sqrt{\alpha}(n - k)$.

Let $W_i = N_i \setminus N(S)$ for each i; observe that the W_i’s are pairwise disjoint. Let

$$R = V(G) \setminus \bigcup_{i=1}^{k} W_i$$

be the set of ‘leftover’ vertices.

Observe that

$$\sum_{i=1}^{k} |N_i \setminus N(S)| = f_G(S) - kN(S) \geq (1 - \psi)(n - k + 1) - k\sqrt{\alpha}(n - k),$$

and therefore the number of leftover vertices satisfies

$$|R| < (\psi + k\sqrt{\alpha})n + k.$$

We now produce a k-partition $(V_i)_{i=1}^{k}$ of $V(G)$ by extending the partition $(W_i)_{i=1}^{k}$ of $V(G) \setminus R$ arbitrarily to R, i.e., we partition the leftover vertices arbitrarily. Now delete all edges of G within V_i for each i. The number of edges within N_i is precisely the number of K_{k+1}’s containing T_i, which is at most $\sqrt{\alpha}\binom{n-k+1}{2}$. The number of edges incident with R is trivially at most $(\psi + k\sqrt{\alpha})n(n - 1) + k(n - 1)$. Hence, the number of edges deleted was at most

$$(\psi + k\sqrt{\alpha})n(n - 1) + k(n - 1) + k\sqrt{\alpha}\binom{n-k+1}{2} \leq \left(2\beta + 2\gamma + \frac{8k^{k+1}(k+1)}{k!}\sqrt{\alpha} + 2k/n\right)\binom{n}{2}.$$\]

Removing an edge removes at most $\binom{n-2}{k-2}$ K_k’s, and therefore the total number of K_k’s removed is at most

$$\left(2\beta + 2\gamma + \frac{8k^{k+1}(k+1)}{k!}\sqrt{\alpha} + 2k/n\right)\binom{n}{2} \binom{n-2}{k-2} = \left(2\beta + 2\gamma + \frac{8k^{k+1}(k+1)}{k!}\sqrt{\alpha} + 2k/n\right)\binom{k}{2} \binom{n}{k},$$

completing the proof.

Note that the two results above together imply the following
Corollary 15. For any \(k \in \mathbb{N} \), there exist constants \(A_k, B_k > 0 \) such that the following holds. For any \(\alpha \geq 0 \), if \(G \) is an \(n \)-vertex graph with \(K_{k+1} \)-density at most \(\alpha \), and \(K_k \)-density at least \((1 - \gamma) \frac{k!}{k^k} \), where \(\gamma \leq \frac{1}{2} \), then \(G \) can be made into a \(k \)-partite graph \(G_0 \) by removing at most

\[
(2\gamma + A_k \alpha^{1/(k+2)} + B_k/n) \binom{n}{2} \]

edges, which removes at most

\[
(2\gamma + A_k \alpha^{1/(k+2)} + B_k/n) \binom{k}{2} \binom{n}{k} \]

\(K_k \)'s.

Proof of Proposition 9. Suppose \(G \subset \mathcal{P}X \) has \(|G| = m \leq (1 + \eta)|\mathcal{F}_{n,k}| \), and \(k \)-generates at least \((1 - \epsilon)2^n\) subsets of \(X \). Our aim is to show that \(G \) is close to a canonical \(k \)-generator. We may assume that \(\epsilon \leq 1/C_k \) and \(\eta \leq 1/D_k \), so by choosing \(C_k \) and \(D_k \) appropriately large, we may assume throughout that \(\epsilon \) and \(\eta \) are small. By choosing \(\xi_k \) appropriately small, we may assume that \(n \geq n_0(k) \), where \(n_0(k) \) is any function of \(k \).

We first apply Lemma 13 and Theorem 14 with \(G = H[G] \), where \(H \) is the Kneser graph on \(\mathcal{P}X \), \(G \subset \mathcal{P}X \) with \(|G| = m \leq (1 + \eta)|\mathcal{F}_{n,k}| \), and \(G \) \(k \)-generates at least \((1 - \epsilon)2^n\) subsets of \(X \). By (6), we have

\[
d_{K_{k+1}}(H[G]) \leq 2^{-a_k n},
\]

and therefore we may take \(\alpha = 2^{-a_k n} \). Applying Lemma 13 with \(r = k - 1 \), we may take \(\beta = 2^{-b_n} \) for some \(b_k > 0 \).

We have \(|G| = m \leq (1 + \eta)(k2^{n/k} - k) \), so

\[
\binom{m}{k} \leq \frac{m^k}{k!} < \frac{(1 + \eta)^k k^k}{k!} 2^n.
\]

Notice that

\[
\sum_{i=0}^{k-1} \binom{m}{i} \leq km^{k-1} \leq k((1 + \eta)k2^{n/k})^{k-1} < (1 + \eta)^{k-1}k^k 2^{(1-1/k)n}.
\]

Since \(G \) \(k \)-generates at least \((1 - \epsilon)2^n\) subsets of \(X \), we have

\[
K_k(H[G]) \geq (1 - \epsilon)2^n - (1 + \eta)^{k-1}k^k 2^{(1-1/k)n}.
\]
Hence,
\[
d_{K_k}(H[G]) = \frac{K_k(H[G])}{\binom{m}{k}} \\
\geq \frac{(1 - \epsilon)2^n - (1 + \eta)^{k-1}k^k2^{(1-1/k)n}}{(1 + \eta)^{k2^{n/k}k!}} \\
\geq \frac{1 - \epsilon - (1 + \eta)^{k-1}k^k2^{n/k}}{(1 + \eta)^{k}k!} \\
\geq (1 - k\eta - k^22^{-n/k})k!k^k,
\]
where the last inequality follows from
\[
\frac{1 - \epsilon}{(1 + \eta)^k} \geq (1 - \epsilon)(1 - \eta)^k \geq (1 - \epsilon)(1 - k\eta) \geq 1 - \epsilon - k\eta.
\]
Therefore, the K_k-density of $H[G]$ satisfies
\[
d_{K_k}(H[G]) \geq (1 - \gamma)\frac{k!}{k^k},
\]
where
\[
\gamma = \epsilon + k\eta + k^22^{-n/k}.
\]

Let
\[
\psi = \left(2\beta + 2\gamma + \frac{8k^{k+1}(k + 1)}{k!}\sqrt{\alpha} + 2k/n\right)\binom{k}{2}.
\]
By Theorem 14, there exists a k-partite subgraph G_0 of $H[G]$ with
\[
K_k(G_0) \geq K_k(H[G]) - \psi\binom{m}{k} \\
\geq (1 - \epsilon)2^n - (1 + \eta)^{k-1}k^k2^{(1-1/k)n} - \psi\binom{m}{k} \\
\geq \left(1 - \epsilon - \frac{(1 + \eta)^{k-1}k^k}{k!}\psi - (1 + \eta)^{k-1}k^k2^{-k/n}\right)2^n.
\]
Writing
\[
\phi = \epsilon + \frac{(1 + \eta)^{k}k^k}{k!}\psi + (1 + \eta)^{k-1}k^k2^{-k/n},
\]
we have
\[
K_k(G_0) \geq (1 - \phi)2^n.
\]
Let \(V_1, \ldots, V_k \) be the vertex-classes of \(G_0 \). By the AM/GM inequality,

\[
K_k(G_0) \leq \prod_{i=1}^{k} |V_i| \leq \left(\frac{\sum_{i=1}^{k} |V_i|}{k} \right)^k = (m/k)^k,
\]

and therefore

\[
|G| = m \geq k(K_k(G_0))^{1/k} \geq k(1 - \phi)^{1/k}2^{n/k},
\]

recovering the asymptotic result of [5].

Moreover, any \(k \)-partite graph \(G_0 \) satisfies

\[
e(G_0) \geq \binom{k}{2} (K_k(G_0))^{2/k}.
\]

To see this, simply apply Shearer’s Entropy Lemma with \(S = V(G_0) \), \(\mathcal{F} = K_k(G_0) \), and \(\mathcal{A} = \{V_i \cup V_j : i \neq j\} \). Then \(\mathcal{A} \) is a \((k-1)\)-cover of \(V(G_0) \).

Note that \(\mathcal{F}_{V_i \cup V_j} \subseteq E_{G_0}(V_i, V_j) \), and therefore

\[
(K_k(G_0))^{k-1} \leq \prod_{\{i,j\} \in [k]^{(2)}} e_{G_0}(V_i, V_j).
\]

Applying the AM/GM inequality gives:

\[
(K_k(G_0))^{k-1} \leq \prod_{\{i,j\}} e_{G_0}(V_i, V_j) \leq \left(\frac{\sum_{\{i,j\}} e_{G_0}(V_i, V_j)}{\binom{k}{2}} \right)^{\binom{k}{2}} = \left(\frac{e(G_0)}{\binom{k}{2}} \right)^{\binom{k}{2}},
\]

and therefore

\[
e(G_0) \geq \binom{k}{2} (K_k(G_0))^{2/k},
\]

as required.

It follows that

\[
e(G_0) \geq \frac{k}{2}(1 - \phi)^{2/k}2^{2n/k}
\]

\[
\geq \frac{k}{2}(1 - \phi)^{2/k} \left(\frac{m}{(1 + \eta)k} \right)^2
\]

\[
\geq (1 - \eta)^2(1 - \phi)^{2/k}(1 - 1/k)m^2/2
\]

\[
\geq (1 - 2\eta - \phi^{2/k})(1 - 1/k)m^2/2
\]

\[
= (1 - \delta)(1 - 1/k)m^2/2,
\]

17
where $\delta = 2\eta + \phi^{2/k}$.

Hence, G_0 is a k-partite subgraph of $H[G]$ with $|G_0| = |G| = m$, and $e(G_0) \geq (1 - \delta - 1/k)m^2/2$. Applying Lemma 11 to G_0, we see that there exists an induced subgraph H' of G_0 with

$$|H'| \geq (1 - \sqrt{\delta})|G|,$$

and

$$\delta(H') \geq (1 - 1/k - \sqrt{\delta})(|H'| - 1).$$

Let Y_1, \ldots, Y_k be the vertex-classes of H'; note that these are families of subsets of X. Clearly, for each $i \in [k],

$$|Y_i| \leq |H'|(1 - (k - 1)/(1/k + \sqrt{\delta})|H'| + 1).$$

Hence, for each $i \in [k],

$$|Y_i| \geq |H'|(1 - (k - 1)/(1/k + \sqrt{\delta})|H'| + 1) \geq (1 - (k - 1)/(1/k - \sqrt{\delta})|H'|- k + 1).$$

For each $i \in [k]$, let

$$S_i = \bigcup_{y \in Y_i} y$$

be the union of all sets in Y_i. We claim that the S_i’s are pairwise disjoint. Suppose for a contradiction that $S_1 \cap S_2 \neq \emptyset$. Then there exist $y_1 \in Y_1$ and $y_2 \in Y_2$ which both contain some element $p \in X$. Since

$$\delta(H') \geq (1 - 1/k - \sqrt{\delta})(|H'| - 1),$$

at least $(1 - 1/k - \sqrt{\delta})(|H'|- 1)$ sets in $\cup_{i \neq 1} Y_i$ do not contain p. By (10),

$$|\cup_{i \neq 1} Y_i| = \sum_{i \neq 1} |Y_i| \leq (1 - 1/k + (k - 1)\sqrt{\delta})|H'| + k - 1,$$

and therefore the number of sets in $\cup_{i \neq 1} Y_i$ containing p is at most

$$(1 - 1/k + (k - 1)\sqrt{\delta})|H'| + k - 1 - (1 - 1/k - \sqrt{\delta})(|H'| - 1) \leq k\sqrt{\delta}|H'| + k.$$

The same holds for the number of sets in $\cup_{i \neq 2} Y_i$ containing p, so the total number of sets in H' containing p is at most

$$2k\sqrt{\delta}|H'| + 2k.$$

Hence, the total number of sets in G containing p is at most

$$(2k + 1)\sqrt{\delta}m + 2k.$$
But then the number of ways of choosing at most k disjoint sets in G with one containing p is at most

$$(1 + m^{k-1})(2k + 1)\sqrt{\delta m} + 2k) = O_k(\sqrt{\delta})2^n + O_k(2^{(1-1/k)n}) < 2^{n-1} - \epsilon 2^n,$$

contradicting the fact that G k-generates all but $\epsilon 2^n$ of the sets containing p.

Hence, we may conclude that the S_i's are pairwise disjoint. By definition, $Y_i \subset PS_i$, and therefore $|Y_i| \leq 2^{|S_i|}$. But from (11),

$$|Y_i| \geq (1 - k(k - 1)\sqrt{\delta})|H'|/k - k + 1$$

$$\geq (1 - k(k - 1)\sqrt{\delta})(1 - \sqrt{\delta})|G|/k - k + 1$$

$$\geq (1 - (k(k - 1) + 1)\sqrt{\delta} - \phi^{1/k})2^{n/k} - k + 1$$

$$> (1 - k^2\sqrt{\delta} - \phi^{1/k})2^{n/k} - k$$

$$> 2^{n/k - 1},$$

using (9) and (8) for the second and third inequalities respectively. Hence, we must have $|S_i| \geq n/k$ for each i, and therefore $|S_i| = n/k$ for each i, i.e. $(S_i)_{i=1}^k$ is an equipartition of X. Putting everything together and recalling that $\delta = 2\eta + \phi^{2/k}$ and $\phi = O_k(\epsilon + \eta + 2^{-\epsilon_n})$, we have

$$|G \cap (\cup_{i=1}^k Ps_i)| \geq \sum_{i=1}^k |Y_i|$$

$$\geq (1 - k^2\sqrt{\delta} - \phi^{1/k})2^{n/k} - k^2$$

$$\geq (1 - C_k\epsilon^{1/k} - D_k\eta^{1/k} - 2^{-\epsilon_n})2^{n/k}$$

(provided n is sufficiently large depending on k), where $C_k, D_k, \xi_k > 0$ depend only on k. This proves Proposition 9.

We now prove the following

Proposition 16. Let $\nu(n) = o(1)$. If G is a k-generator for X with $|G| \leq |\mathcal{F}_{n,k}|$, and

$$|G \cap (\cup_{i=1}^k Ps_i)| \geq (1 - \nu)|\mathcal{F}_{n,k}|,$$

where $(S_i)_{i=1}^k$ is a partition of X into k classes of sizes as equal as possible, then provided n is sufficiently large depending on k, we have $|G| = |\mathcal{F}_{n,k}|$ and

$$G = \cup_{i=1}^k Ps_i \setminus \{\emptyset\}.$$
Proof. Let \(G \) and \((S_i)_{i=1}^k\) be as in the statement of the proposition. For each \(i \in [k] \), let \(\mathcal{F}_i = (\mathcal{P} S_i \setminus \{\emptyset\}) \setminus G \) be the collection of all nonempty subsets of \(S_i \) which are not in \(G \). By our assumption on \(G \), we know that \(|\mathcal{F}_i| \leq o(2^{|S_i|}) \) for each \(i \in [k] \). Let

\[
\mathcal{E} = G \setminus \bigcup_{i=1}^k \mathcal{P}(S_i)
\]

be the collection of ‘extra’ sets in \(G \); let \(|\mathcal{E}| = M \).

By relabeling the \(S_i \)’s, we may assume that \(|\mathcal{F}_1| \geq |\mathcal{F}_2| \geq \cdots \geq |\mathcal{F}_k| \). By our assumption on \(|G| \), \(M \leq k|\mathcal{F}_1| \).

Let \(R = \{ y_1 \sqcup s_2 \sqcup \cdots \sqcup s_k : y_1 \in \mathcal{F}_1, s_i \subset S_i \forall i \geq 2 \} \);

observe that the sets \(y_1 \sqcup s_2 \sqcup \cdots \sqcup s_k \) are all distinct, so \(|R| = |\mathcal{F}_1|2^{n-|S_1|} \). By considering the number of sets in \(\mathcal{E} \) needed for \(G \) to \(k \)-generate \(R \), we will show that \(M > k|\mathcal{F}_1| \) unless \(\mathcal{F}_1 = \emptyset \). (In fact, our argument would also show that \(M > p_k|\mathcal{F}_1| \) unless \(\mathcal{F}_1 = \emptyset \), for any \(p_k > 0 \) depending only on \(k \).)

Let \(N \) be the number of sets in \(\mathcal{R} \) which may be expressed as a disjoint union of two sets in \(\mathcal{E} \) and at most \(k-2 \) other sets in \(G \). Then

\[
N \leq \binom{M}{2} \sum_{i=0}^{k-2} \binom{m}{i}
\]

\[
\leq \frac{1}{2} k^2 |\mathcal{F}_1|^2(k-1)^{\left(c_0 k 2^n/k\right)^{k-2}}
\]

\[
\leq 4c_0^{k-2} k^k \left(\frac{|\mathcal{F}_1|}{2^{|S_1|}} \right)^2 |\mathcal{F}_1|2^{n-|S_1|}
\]

\[
= o(1)|\mathcal{F}_1|2^{n-|S_1|}
\]

\[
= o(|\mathcal{R}|),
\]

where we have used \(|\mathcal{E}| = |\mathcal{F}_n,k| \leq c_0 k 2^n/k \) (see (3)), \(|S_1| \leq \lceil n/k \rceil \), and \(|\mathcal{F}_1| = o(2^{|S_1|}) \) in the second, third and fourth lines respectively.

Now fix \(x_1 \in \mathcal{F}_1 \). For \(j \geq 1 \), let \(\mathcal{A}_j(x_1) \) be the collection of \((k-1)\)-tuples \((s_2, \ldots, s_k) \in \mathcal{P}S_2 \times \cdots \times \mathcal{P}S_k\) such that

\[
x_1 \sqcup s_2 \sqcup \cdots \sqcup s_k
\]

may be expressed as a disjoint union

\[
y_1 \sqcup y_2 \sqcup \cdots \sqcup y_k
\]

with \(y_j \in \mathcal{E} \) but \(y_i \subset S_i \forall i \neq j \). Let \(\mathcal{A}^*(x_1) \) be the collection of \((k-1)\)-tuples \((s_2, \ldots, s_k) \in \mathcal{P}S_2 \times \cdots \times \mathcal{P}S_k\) such that

\[
x_1 \sqcup s_2 \sqcup \cdots \sqcup s_k
\]

may be expressed as a disjoint union

\[
y_1 \sqcup y_2 \sqcup \cdots \sqcup y_k
\]

with \(y_j \in \mathcal{E} \) but \(y_i \subset S_i \forall i \neq j \). Let \(\mathcal{A}^*(x_1) \) be the collection of \((k-1)\)-tuples \((s_2, \ldots, s_k) \in \mathcal{P}S_2 \times \cdots \times \mathcal{P}S_k\) such that

\[
x_1 \sqcup s_2 \sqcup \cdots \sqcup s_k
\]
may be expressed as a disjoint union of two sets in \(\mathcal{E} \) and at most \(k - 2 \) other sets in \(\mathcal{G} \).

Now fix \(j \neq 1 \). For each \((s_2, \ldots, s_k) \in \mathcal{A}_j(x_1)\), we may write

\[
x_1 \sqcup s_2 \sqcup \cdots \sqcup s_k = s'_1 \sqcup s_2 \sqcup \cdots \sqcup s_{j-1} \sqcup y_j \sqcup s_{j+1} \sqcup \cdots \sqcup s_k,
\]

where \(y_j = s_j \sqcup (x_1 \setminus s'_1) \in \mathcal{E} \). Since \(y_j \cap S_j = s_j \), different \(s_j \)'s correspond to different \(y_j \)'s in \(\mathcal{E} \), and so there are at most \(|\mathcal{E}| = M \) choices for \(s_j \). Therefore,

\[
|\mathcal{A}_j(x_1)| \leq 2^{n - |S_1|} M \leq 2^{n - |S_1|} |\mathcal{F}_1| \leq 2k \left(\frac{|\mathcal{F}_1|}{2|S_1|} \right) 2^{n - |S_1|},
\]

the last inequality following from the fact that \(|S_j| \geq |S_1| - 1 \). Hence,

\[
\sum_{j=2}^{k} |\mathcal{A}_j(x_1)| \leq 2k(k - 1) \left(\frac{|\mathcal{F}_1|}{2|S_1|} \right) 2^{n - |S_1|} = o(1)2^{n - |S_1|}. \tag{13}
\]

Observe that for each \(x_1 \in \mathcal{F}_1 \),

\[
\mathcal{A}^*(x_1) \cup \bigcup_{j=1}^{k} \mathcal{A}_j(x_1) = \mathcal{P}S_2 \times \mathcal{P}S_3 \times \cdots \times \mathcal{P}S_k,
\]

and therefore

\[
|\mathcal{A}^*(x_1)| + |\mathcal{A}_1(x_1)| + \sum_{j=2}^{k} |\mathcal{A}_j(x_1)| \geq 2^{n - |S_1|},
\]

so by (13),

\[
|\mathcal{A}^*(x_1)| + |\mathcal{A}_1(x_1)| \geq (1 - o(1))2^{n - |S_1|}.
\]

Call \(x_1 \in \mathcal{F}_1 \) ‘bad’ if \(|\mathcal{A}^*(x_1)| \geq 2^{-(k+2)}2^{n - |S_1|} \); otherwise, call \(x_1 \) ‘good’. By (12), at most a \(o(1) \)-fraction of the sets in \(\mathcal{F}_1 \) are bad, so at least a \(1 - o(1) \) fraction are good. For each good set \(x_1 \in \mathcal{F}_1 \), notice that

\[
|\mathcal{A}_1(x_1)| \geq (1 - 2^{-(k+2)} - o(1))2^{n - |S_1|}.
\]

Now perform the following process. Choose any \((s_2, \ldots, s_k) \in \mathcal{A}_1(x_1)\); we may write

\[
x_1 \sqcup s_2 \sqcup \cdots \sqcup s_k = z^{(1)} \sqcup s'_2 \sqcup \cdots \sqcup s'_k
\]

with \((s'_2, \ldots, s'_k) \in \mathcal{P}S_2 \times \cdots \times \mathcal{P}S_k\), \(z^{(1)} \in \mathcal{E} \), \(z^{(1)} \cap S_1 = x_1 \), and \(z^{(1)} \setminus S_1 \neq \emptyset \). Pick \(p_1 \in z^{(1)} \setminus S_1 \). At most \(\frac{1}{2}2^{n - |S_1|} \) of the members of \(\mathcal{A}_1(x_1) \) have union containing \(p_1 \), so there are at least

\[
(1 - \frac{1}{2} - 2^{-(k+2)} - o(1))2^{n - |S_1|}
\]
remaining members of $A_1(x_1)$. Choose one of these, (t_2, \ldots, t_k) say. By definition, we may write

$$x_1 \sqcup t_2 \sqcup \cdots \sqcup t_k = z^{(2)} \sqcup t'_2 \sqcup \cdots \sqcup t'_k$$

with $(t'_2, \ldots, t'_k) \in \mathcal{P}S_2 \times \cdots \times \mathcal{P}S_k$, $z^{(2)} \in \mathcal{E}$, $z^{(2)} \cap S_1 = x_1$, and $z^{(2)} \setminus S_1 \neq \emptyset$. Since $p_1 \notin z^{(2)}$, we must have $z^{(2)} \neq z^{(1)}$. Pick $p_2 \in z^{(2)} \setminus S_1$, and repeat. At most $\frac{3}{4}2^{n-|S_1|}$ of the members of $A_1(x_1)$ have union containing p_1 or p_2; there are at least $\frac{1}{4}2^{n-|S_1|}$ members remaining. Choose one of these, (u_2, \ldots, u_k) say. By definition, we may write

$$x_1 \sqcup u_2 \sqcup \cdots \sqcup u_k = z^{(3)} \sqcup u'_2 \sqcup \cdots \sqcup u'_k$$

with $(u'_2, \ldots, u'_k) \in \mathcal{P}S_2 \times \cdots \times \mathcal{P}S_k$, $z^{(3)} \in \mathcal{E}$, $z^{(3)} \cap S_1 = x_1$, and $z^{(3)} \setminus S_1 \neq \emptyset$. Note that again $z^{(3)}$ is distinct from $z^{(1)}$, $z^{(2)}$, since $p_1, p_2 \notin z^{(3)}$. Continuing this process for $k + 1$ steps, we end up with a collection of $k + 1$ distinct sets $z^{(1)}, \ldots, z^{(k+1)} \in \mathcal{E}$ such that $z^{(l)} \cap S_1 = x_1 \forall l \in [k + 1]$. Do this for each good set $x_1 \in \mathcal{F}_1$; the collections produced are clearly pairwise disjoint. Therefore,

$$|\mathcal{E}| \geq (k + 1)(1 - o(1))|\mathcal{F}_1|.$$

This is a contradiction, unless $\mathcal{F}_1 = \emptyset$. Hence, we must have $\mathcal{F}_2 = \cdots = \mathcal{F}_k = \emptyset$, and therefore

$$\mathcal{G} = \bigcup_{i=1}^k \mathcal{P}(S_i) \setminus \{\emptyset\},$$

proving Proposition 16, and completing the proof of Theorem 5.

\[\square \]

3 \hspace{1em} The case $k = 2$ via bipartite subgraphs of H.

Our aim in this section is to prove the $k = 2$ case of Conjecture 1 for all sufficiently large odd n, which together with the $k = 2$ case of Theorem 5 will imply

Theorem 4. If n is sufficiently large, X is an n-element set, and $\mathcal{G} \subset \mathcal{P}X$ is a 2-generator for X, then $|\mathcal{G}| \geq |\mathcal{F}_{n,2}|$. Equality holds only if \mathcal{G} is of the form $\mathcal{F}_{n,2}$.

Recall that

$$|\mathcal{F}_{n,2}| = \begin{cases}
2 \cdot 2^{n/2} - 2 & \text{if } n \text{ is even;} \\
3 \cdot 2^{(n-1)/2} - 2 & \text{if } n \text{ is odd.}
\end{cases}$$

22
Suppose that X is an n-element set, and $G \subset P_X$ is a 2-generator for X with $|G| = m \leq |\mathcal{F}_{n,2}|$. The counting argument in the Introduction gives
\[
1 + m + \binom{m}{2} \geq 2^n,
\]
which implies that
\[
|G| \geq (1 - o(1))\sqrt{2}2^{n/2}.
\]
For n odd, we wish to improve this bound by a factor of approximately 1.5.

Our first aim is to prove that induced subgraphs of the Kneser graph H which have order $\Omega(2^{n/2})$ are $o(1)$-close to being bipartite (Proposition 18).

Recall that a graph $G = (V, E)$ is said to be ϵ-close to being bipartite if it can be made bipartite by the removal of at most $\epsilon|V|^2$ edges, and ϵ-far from being bipartite if it requires the removal of at least $\epsilon|V|^2$ edges to make it bipartite.

Using Szemerédi’s Regularity Lemma, Bollobás, Erdős, Simonovits and Szemerédi [3] proved the following.

Theorem 17 (Bollobás, Erdős, Simonovits, Szemerédi). For any $\epsilon > 0$, there exists $g(\epsilon) \in \mathbb{N}$ depending on ϵ alone such that for any graph G which is ϵ-far from being bipartite, the probability that a uniform random induced subgraph of G of order $g(\epsilon)$ is non-bipartite is at least $1/2$.

Building on methods of Goldreich, Goldwasser and Ron [12], Alon and Krivelevich [2] proved without using the Regularity Lemma that in fact, one may take
\[
g(\epsilon) \leq \frac{(\log(1/\epsilon))^b}{\epsilon}
\]
where $b > 0$ is an absolute constant. As observed in [2], this is tight up to the poly-logarithmic factor, since necessarily,
\[
g(\epsilon) \geq \frac{1}{6\epsilon}.
\]

We will first show that for any fixed $c > 0$ and $l \in \mathbb{N}$, if $A \subset PX$ with $|A| \geq c2^{n/2}$, then the density of C_{2l+1}’s in $H[A]$ is at most $o(1)$. To prove this, we will show that for any $l \in \mathbb{N}$, there exists $t \in \mathbb{N}$ such that for any fixed $c > 0$, if $A \subset PX$ with $|A| \geq c2^{n/2}$, then the homomorphism density of $C_{2l+1} \otimes t$ in $H[A]$ is $o(1)$. Using Lemma 7, we will deduce that the homomorphism density of C_{2l+1} in $H[A]$ is $o(1)$, implying that the density of C_{2l+1}’s in $H[A]$ is $o(1)$. This will show that $H[A]$ is $o(1)$-close to being bipartite (Proposition 18). To obtain a sharper estimate for the $o(1)$ term
in Proposition 18, we will use (14), although to prove Theorem 4, any $o(1)$ term would suffice, so one could in fact use Theorem 17 instead of (14).

We are now ready to prove the following

Proposition 18. Let $c > 0$. Then there exists $b > 0$ such that for any $\mathcal{A} \subset \mathcal{P}X$ with $|\mathcal{A}| \geq c2^{n/2}$, the induced subgraph $H[\mathcal{A}]$ can be made bipartite by removing at most

\[
\frac{(\log_2 \log_2 n)^b}{\log_2 n}|\mathcal{A}|^2
\]

edges.

Proof. Fix $c > 0$; let $\mathcal{A} \subset \mathcal{P}X$ with $|\mathcal{A}| = m \geq c2^{n/2}$. First, we show that for any fixed $l \in \mathbb{N}$, there exists $t \in \mathbb{N}$ such that the homomorphism density of $C_{2l+1} \otimes t$’s in $H[\mathcal{A}]$ is at most $o(1)$. The argument is a strengthening of that used by Alon and Frankl to prove Lemma 4.2 in [1].

Let $t \in \mathbb{N}$ to be chosen later. Choose $(2l+1)t$ members of \mathcal{A} uniformly at random with replacement, $(A_i^{(j)})_{1 \leq i \leq 2l+1, 1 \leq j \leq t}$. The homomorphism density of $C_{2l+1} \otimes t$ in $H[\mathcal{A}]$ is precisely the probability that the unions

\[
U_i = \bigcup_{j=1}^{t} A_i^{(j)}
\]

satisfy $U_i \cap U_{i+1} = \emptyset$ for each i (where the addition is modulo $2l + 1$).

We claim that if this occurs, then $|U_i| < (\frac{1}{2} - \eta)n$ for some i, provided $\eta < 1/(4l + 2)$. Suppose for a contradiction that $U_i \cap U_{i+1} = \emptyset$ for each i, and $|U_i| \geq (\frac{1}{2} - \eta)n$ for each i. Then $|U_{i+2} \setminus U_i| \leq n - |U_{i+1}| - |U_i| \leq 2\eta n$ for each $i \in [2l - 1]$. Since $U_{2l+1} \setminus U_1 \subset \cup_{j=1}^{l} (U_{2j+1} \setminus U_{2j-1})$, we have $|U_{2l+1} \setminus U_1| \leq \sum_{j=1}^{l} |U_{2j+1} \setminus U_{2j-1}| \leq 2l\eta n$. It follows that $|U_1 \cap U_{2l+1}| \geq (1/2 - (2l + 1)\eta)n > 0$ if $\eta < 1/(4l + 2)$, a contradiction.

We now show that the probability of this event is very small. Fix $i \in [k]$.

24
Observe that

\[
\Pr\{|U_i| \leq (1/2 - \eta)n\} = \Pr\left(\bigcup_{S \subseteq X: |S| \leq (1/2 - \eta)n} \left(\bigcap_{j=1}^{t} \{A_i^{(j)} \subseteq S\}\right)\right)
\leq \sum_{|S| \leq (1/2 - \eta)n} \Pr\left(\bigcap_{j=1}^{t} \{A_i^{(j)} \subseteq S\}\right)
= \sum_{|S| \leq (1/2 - \eta)n} \frac{(2|S|/m)^t}{(2|S|/m)^t}
\leq 2^n \left(\frac{2(1/2 - \eta)n}{m}\right)^t
= 2^{-(\eta t - 1)n}c^{-t}
\leq 2^{-n}c^{-t},
\]

provided \(t \geq 2/\eta\). Hence,

\[
\Pr\left(\bigcup_{i=1}^{2l+1} \{|U_i| \leq (1/2 - \eta)n\}\right) \leq \sum_{i=1}^{2l+1} \Pr\{|U_i| \leq (1/2 - \eta)n\} \leq (2l + 1)2^{-n}c^{-t}.
\]

Therefore,

\[
h_{C_{2t+1} \otimes t}(H[A]) \leq (2l + 1)2^{-n}c^{-t}.
\]

Choose \(\eta = \frac{1}{8}\) and \(t = 2/\eta = 16l\). By Lemma 7,

\[
h_{C_{2t+1}}(H[A]) \leq ((2l + 1)2^{-n}c^{-1})^{1/2t+1}
= (2l + 1)^{1/(16l)^{2t+1}}2^{-n/(16l)^{2t+1}}c^{-1/(16l)^{2t}}
= O(2^{-n/(16l)^{2t+1}}).
\]

Observe that the number of \((2s + 1)\)-subsets of \(A\) containing an odd cycle of \(H\) is at most

\[
\sum_{l=1}^{s} m^{2l+1} h_{C_{2t+1}}(H[A]) \left(\frac{m - (2l + 1)}{2(s - l)}\right).
\]

Hence, the probability that a uniform random \((2s + 1)\)-subset of \(A\) contains an odd cycle of \(H\) is at most

\[
\sum_{l=1}^{s} \frac{m^{2l+1}}{m(m-1)\cdots(m-2l)}(2s + 1)(2s)\cdots(2(s - l) + 1)h_{C_{2t+1}}(H[A])
\leq s(2s + 1)!O(2^{-n/(16s)^{2s+1}}),
\]

25
(provided $s \leq O(\sqrt{m})$). This can be made $< 1/2$ by choosing

$$s = a \log_2 n / \log_2 \log_2 n,$$

for some suitable $a > 0$ depending only on c. By (14), it follows that $H[A]$ is $((\log_2 \log_2 n)^b / \log_2 n)$-close to being bipartite, for some suitable $b > 0$ depending only on c, proving the proposition.

Before proving Theorem 4 for n odd, we need some more definitions. Let X be a finite set. If $A \subset \mathcal{P}X$, and $i \in X$, we define

$$A_i^- = \{x \in A : i \notin x\},$$

$$A_i^+ = \{x \setminus \{i\} : x \in A, i \in x\};$$

these are respectively called the lower and upper i-sections of A.

If Y and Z are disjoint subsets of X, we write $H[Y, Z]$ for the bipartite subgraph of the Kneser graph H consisting of all edges between Y and Z. If B is a bipartite subgraph of H with vertex-sets Y and Z, and $\mathcal{F} \subset \mathcal{P}X$, we say that B 2-generates \mathcal{F} if for every set $x \in \mathcal{F}$, there exist $y \in Y$ and $z \in Z$ such that $y \cap z = \emptyset$, $yz \in E(B)$, and $y \sqcup z = x$, i.e. every set in \mathcal{F} corresponds to an edge of B.

Proof of Theorem 4 for n odd. Suppose that $n = 2l + 1 \geq 3$ is odd, X is an n-element set, and $G \subset \mathcal{P}X$ is a 2-generator for X with $|G| = m \leq |\mathcal{F}_{n,2}| = 3 \cdot 2^l - 2$. Observe that

$$e(H[G]) \geq 2^{2l+1} - |G| - 1 \geq 2^{2l+1} - 3 \cdot 2^l + 1,$$

and therefore $H[G]$ has edge-density at least

$$\frac{2^{2l+1} - 3 \cdot 2^l + 1}{\binom{n}{2}} \geq \frac{2^{2l+1} - 3 \cdot 2^l + 1}{\frac{1}{2}(3 \cdot 2^l - 2)(3 \cdot 2^l - 3)} > \frac{4}{9}.$$

(Here, the last inequality rearranges to the statement $l > 0$.) By Proposition 18 applied to G, we can remove at most

$$\frac{(\log_2 \log_2 n)^b |G|^2}{\log_2 n} < \frac{(\log_2 \log_2 n)^b b}{\log_2 n} 9 \cdot 2^{2l}$$

edges from $H[G]$ to produce a bipartite graph B. Let Y, Z be the vertex-classes of B; we may assume that $Y \sqcup Z = G$. Define $\epsilon > 0$ by

$$|\{y \sqcup z : y \in Y, z \in Z, y \cap z = \emptyset\}| = (1 - \epsilon)2^{2l+1};$$

26
then clearly, we have
\[e(B) \geq (1 - \epsilon)2^{2l+1}. \] (15)

Note that
\[\epsilon \leq \theta_{\epsilon} = \frac{9}{2} \left(\frac{\log_2 \log_2 n}{\log_2 n} \right)^b + 3 \cdot 2^{-(l+1)} = O\left(\left(\frac{\log_2 \log_2 n}{\log_2 n} \right)^b \right) = o(1). \]

Let
\[\alpha = |Y|/2^l, \quad \beta = |Z|/2^l. \]
By assumption, \(\alpha + \beta \leq 3 - 2^{-l} < 3. \) Since \(|Y||Z| \geq e(B) \geq (2 - \epsilon)2^{2l}, \) we have \(\alpha \beta \geq 2 - 2\epsilon. \) This implies that
\[1 - 2\epsilon < \alpha, \beta < 2 + 2\epsilon. \] (16)

(To see this, simply observe that to maximize \(\alpha \beta \) subject to the conditions \(\alpha \leq 1 - 2\epsilon \) and \(\alpha + \beta \leq 3, \) it is best to take \(\alpha = 1 - 2\epsilon \) and \(\beta = 2 + 2\epsilon, \) giving \(\alpha \beta = 2 - 2\epsilon - 4\epsilon^2 < 2 - 2\epsilon, \) a contradiction. It follows that we must have \(\alpha > 1 - 2\epsilon, \) so \(\beta < 2 + 2\epsilon; \) (16) follows by symmetry.)

From now on, we think of \(X \) as the set \([n] = \{1, 2, \ldots, n\}. \) Let
\[W_1 = \{i \in [n] : |Y_i| \geq |Y|/3\}, \]
\[W_2 = \{i \in [n] : |Z_i| \geq |Z|/3\}. \]

First, we prove the following

Claim 1. \(W_1 \cup W_2 = [n]. \)

Proof. Suppose for a contradiction that \(W_1 \cup W_2 \neq [n]. \) Without loss of generality, we may assume that \(n \notin W_1 \cup W_2. \) Let
\[\theta = |Y_n^+|/|Y|, \quad \phi = |Z_n^+|/|Z|; \]
then we have \(\theta, \phi \leq 1/3. \) Observe that the number \(e_n \) of edges between \(Y \) and \(Z \) which generate a set containing \(n \) satisfies
\[(1 - 2\epsilon)2^{2l} \leq e_n \leq (\theta \alpha (1 - \phi) + \phi \beta (1 - \theta) \alpha)2^{2l} = (\theta + \phi - 2\theta \phi)\alpha \beta 2^{2l}. \] (17)
(Here, the left-hand inequality comes from the fact that \(B \) 2-generates all but at most \(e2^{2l+1} \) subsets of \([n], \) and therefore \(B \) 2-generates at least \((1 - 2\epsilon)2^{2l} \) sets containing \(n. \))

Notice that the function
\[f(\theta, \phi) = \theta + \phi - 2\theta \phi, \quad 0 \leq \theta, \phi \leq 1/3 \]
is a strictly increasing function of both θ and ϕ for $0 \leq \theta, \phi \leq 1/3$, and therefore attains its maximum of $4/9$ at $\theta = \phi = 1/3$. Therefore,

$$1 - 2 \epsilon \leq \frac{1}{9} \alpha \beta;$$

since $\alpha + \beta \leq 3$, we have

$$3/2 - 3\sqrt{\epsilon/2} \leq \alpha, \beta \leq 3/2 + 3\sqrt{\epsilon/2}.$$

Moreover, by the AM/GM inequality, $\alpha \beta \leq 9/4$, so

$$1 - 2 \epsilon \leq \frac{9}{4} f(\theta, \phi),$$

and therefore

$$1/3 - 8 \epsilon / 3 \leq \theta, \phi \leq 1/3.$$

Thus $|Y|, |Z| = (3/2 - o(1))2^l$ and $\theta, \phi = 1/3 - o(1)$. Therefore, we have

$$|Y_n^+| = 2^{l-1}(1 - o(1)),
|Z_n^+| = 2^{l-1}(1 - o(1)),
|Y_n^-| = 2^l(1 + o(1)),
|Z_n^-| = 2^l(1 + o(1)).$$

Observe that $G_n^- = Y_n^- \cup Z_n^-$ must 2-generate all but at most $o(2^l)$ of the sets in $\mathcal{P}\{1, 2, \ldots, n-1\} = \mathcal{P}\{1, 2, \ldots, 2l\}$, and therefore, by Proposition 9 for $k = 2$ and n even, there exists an equipartition $S_1 \cup S_2$ of $\{1, 2, \ldots, 2l\}$ such that Y_n^- contains at least $(1 - o(1))2^l$ members of $\mathcal{P}S_1$, and Z_n^- contains at least $(1 - o(1))2^l$ members of $\mathcal{P}S_2$. Define

$$U = \{y \in Y : y \cap S_2 = \emptyset\},
V = \{z \in Z : z \cap S_1 = \emptyset\}.$$

Since $|U_n^-| = (1 - o(1))2^l$ and $|V_n^-| = (1 - o(1))2^l$, we must have $|Y_n^- \setminus U_n^-| = o(2^l)$, and $|Z_n^- \setminus V_n^-| = o(2^l)$. Our aim is now to show that $|Y_n^+ \setminus U_n^+| = o(2^l)$, and $|Z_n^+ \setminus V_n^+| = o(2^l)$.

Clearly, we have $U_n^- \subset \mathcal{P}S_1$, and $V_n^- \subset \mathcal{P}S_2$, so $|U_n^-| \leq 2^l$ and $|V_n^-| \leq 2^l$. Moreover, each set $x \in Y_n^+ \setminus U_n^+$ contains an element of S_2, and therefore $x \cup \{n\}$ is disjoint from at most 2^{l-1} sets in $V_n^- \subset \mathcal{P}S_2$. Similarly, each set $x \in Z_n^+ \setminus V_n^+$ contains an element of S_1, and therefore $x \cup \{n\}$ is disjoint from at most 2^{l-1} sets in $U_n^- \subset \mathcal{P}S_1$. It follows that

$$e_n \leq |U_n^+||V_n^-| + |Y_n^+ \setminus U_n^+|2^{l-1} + |Y_n^-||U_n^-| + |Z_n^+ \setminus V_n^+|2^{l-1}
+ |Y_n^- \setminus U_n^-||Z_n^+| + |Z_n^- \setminus V_n^-||Y_n^+|
\leq |U_n^+|2^l + |Y_n^+ \setminus U_n^+|2^{l-1} + |V_n^+|2^l + |Z_n^+ \setminus V_n^+|2^{l-1} + o(2^l).$$
On the other hand, by (17), we have $e_n \geq (1 - o(1))2^{2l}$. Since $|Y_n^+| = 2^{l-1}(1 - o(1))$ and $|Z_n^+| = 2^{l-1}(1 - o(1))$, we must have $|Y_n^+ \setminus U_n^+| = o(2^l)$ and $|Z_n^+ \setminus V_n^+| = o(2^l)$, as required.

We may conclude that $|Y \setminus U| = o(2^l)$ and $|Z \setminus V| = o(2^l)$. Hence, there are at most $o(2^l)$ sets in $Y \cup Z = G$ that intersect both S_1 and S_2. On the other hand, since $|Y_n^+| = (1 - o(1))2^{l-1}$ and $|Z_n^+| = (1 - o(1))2^{l-1}$, there are at least $(1 + o(1))2^{l-1}$ sets $s_1 \subset S_1$ such that $s_1 \cup \{n\} \notin Y$, and there are at least $(1 + o(1))2^{l-1}$ sets $s_2 \subset S_2$ such that $s_2 \cup \{n\} \notin Z$. Taking all pairs s_1, s_2 gives at least $(1 + o(1))2^{2l-2}$ sets of the form

$$\{n\} \cup s_1 \cup s_2 \quad (s_1 \subset S_1, \ s_1 \cup \{n\} \notin Y, \ s_2 \subset S_2, \ s_2 \cup \{n\} \notin Z).$$

Each of these requires a set intersecting both S_1 and S_2 to express it as a disjoint union of two sets from G. Since there are $o(2^l)$ members of G intersecting both S_1 and S_2, G generates at most

$$(|G| + 1)o(2^l) = o(2^{2l})$$

sets of the form (19), a contradiction. This proves the claim.

We now prove the following

Claim 2. $W_1 \cap W_2 = \emptyset$.

Proof. Suppose for a contradiction that $W_1 \cap W_2 \neq \emptyset$. Without loss of generality, we may assume that $n \in W_1 \cap W_2$. As before, let

$$\theta = |Y_n^+|/|Y|, \ \phi = |Z_n^+|/|Z|;$$

this time, we have $\theta, \phi \geq 1/3$. Observe that

$$(2 - 2\epsilon)2^{2l} \leq e(B) \leq (1 - \theta\phi)\alpha\beta 2^{2l}. \quad (20)$$

Here, the left-hand inequality is (15), and the right-hand inequality comes from the fact that there are no edges between pairs of sets $(y, z) \in Y \times Z$ such that $n \in y \cap z$. Since $1 - \theta\phi \leq 8/9$, we have

$$2 - 2\epsilon \leq \frac{8}{9}\alpha\beta.$$

Since $\alpha + \beta \leq 3$, it follows that

$$\frac{3}{2}(1 - \sqrt{\epsilon}) \leq \alpha, \beta \leq \frac{3}{2}(1 + \sqrt{\epsilon}).$$

Since $\alpha\beta \leq 9/4$, we have

$$2 - 2\epsilon \leq \frac{9}{3}(1 - \theta\phi),$$

bold text
and therefore
\[\frac{1}{3} \leq \theta, \phi \leq \frac{1}{3} + \frac{8\epsilon}{3}. \]

Hence, we have
\[
\begin{align*}
|Y_n^+| &= 2^{l-1}(1 - o(1)), \\
|Z_n^+| &= 2^{l-1}(1 - o(1)), \\
|Y_n^-| &= 2^l(1 + o(1)), \\
|Z_n^-| &= 2^l(1 + o(1)),
\end{align*}
\]

so exactly as in the proof of Claim 1, we obtain a contradiction.

Claims 1 and 2 together imply that \(W_1 \cup W_2 \) is a partition of \(\{1, 2, \ldots, n\} = \{1, 2, \ldots, 2l + 1\} \). We will now show that at least a \(\left(\frac{2}{3} - o(1)\right) \)-fraction of the sets in \(Y \) are subsets of \(W_1 \), and similarly at least a \(\left(\frac{2}{3} - o(1)\right) \)-fraction of the sets in \(Z \) are subsets of \(W_2 \). Let
\[
\sigma = \frac{|Y \setminus P(W_1)|}{|Y|}, \quad \tau = \frac{|Z \setminus P(W_2)|}{|Z|}.
\]

Let \(y \in Y \setminus P W_1 \), and choose \(i \in y \cap W_2 \); since at least \(|Z|/3 \) of the sets in \(Z \) contain \(i \), \(y \) has at most \(2|Z|/3 \) neighbours in \(Z \). Hence,
\[
(2-2\epsilon)2^l \leq e(B) \leq \left(\frac{3}{2}\sigma \alpha \beta + (1 - \sigma)\alpha \beta\right)2^l = (1 - \sigma/3)\alpha \beta 2^l \leq (1 - \sigma/3)\frac{2}{3}2^l,
\]
and therefore
\[
\sigma \leq \frac{1}{3} + \frac{8\epsilon}{3},
\]
so
\[
|Y \cap P(W_1)| \geq (2/3 - 8\epsilon/3)|Y|.
\]

Similarly, \(\tau \leq 1/3 + 8\epsilon/3 \), and therefore \(|Z \cap P(W_2)| \geq (2/3 - 8\epsilon/3)|Z| \).

If \(|W_1| \leq l - 1 \), then \(|Y \cap P(W_1)| \leq 2^{l-1} \), so
\[
|Y| \leq \frac{2^{l-1}}{2/3 - 8\epsilon/3} = \frac{3}{4} \frac{2^l}{1 - 4\epsilon} < (1 - 2\epsilon)2^l,
\]
contradicting (16). Hence, we must have \(|W_1| \geq l \). Similarly, \(|W_2| \geq l \), so \(\{|W_1|, |W_2|\} = \{l, l + 1\} \). Without loss of generality, we may assume that \(|W_1| = l \) and \(|W_2| = l + 1 \).

We now observe that
\[
|Z| \geq (3/2 - 6\epsilon)2^l
\]
First, let \(\eta = (3/2 - \epsilon)2^l \). Since \(|Z| + |Y| < 3 \cdot 2^l\), we have \(|Y| \leq (3/2 + \eta)2^l\). Recall that any \(y \in Y \setminus PW_1 \) has at most \(2|Z|/3 \) neighbours in \(Z \). Thus, we have

\[
(2 - 2\epsilon)2^{2l} \leq e(B) \\
\leq |Y \cap PW_1||Z| + |Y \setminus PW_1| \frac{3}{2}|Z| \\
\leq 2^l \left(\frac{3}{2} - \eta \right)2^l + \left(\frac{1}{2} + \eta \right)2^l \frac{3}{2} \left(\frac{3}{2} - \eta \right)2^l \\
= (2 - \frac{1}{2}\eta - \frac{2}{3}\eta^2)2^{2l}.
\]

Therefore \(\eta \leq 6\epsilon \), i.e. \(|Z| \geq (3/2 - 6\epsilon)2^l\), as claimed. Since \(|Z| + |Y| < 3 \cdot 2^l\), we have

\[
|Y| \leq (3/2 + 6\epsilon)2^l. \quad (24)
\]

We now prove the following

Claim 3. (a) \(|P(W_1) \setminus Y| \leq 22\epsilon 2^l; \)
(b) \(|Z \setminus PW_2| \leq (\sqrt{\epsilon} + 2\epsilon)2^l\).

Proof. We prove this by constructing another bipartite subgraph \(B_2 \) of \(H \) with the same number of vertices as \(B \), and comparing \(e(B_2) \) with \(e(B) \). First, let

\[
D = \min\{|P(W_2) \setminus Z|, |Z \setminus PW_2|\},
\]

add \(D \) new members of \(P(W_2) \setminus Z \) to \(Z \), and delete \(D \) members of \(Z \setminus PW_2 \), producing a new set \(Z' \) and a new bipartite graph \(B_1 = H[Y, Z'] \). Since \(|Z'| = |Z| \leq (2 + 2\epsilon)2^l\), we have \(|Z' \setminus PW_2| \leq e2^{l+1} \), i.e. \(Z' \) is almost contained within \(PW_2 \). Notice that every member \(z \in Z \setminus PW_2 \) had at most \(2|Y'|/3 \) neighbours in \(Y' \), and every new member of \(Z' \) has at least \(|Y \cap P(W_1)| \geq (2/3 - 8\epsilon/3)|Y| \) neighbours in \(Y \), using (22). Hence,

\[
e(B) - e(B_1) \leq \frac{8\epsilon}{3}|Y|D \leq \frac{8\epsilon}{3}|Y|\frac{2}{3}|Z| \leq \frac{16\epsilon 9}{9} \frac{4}{2^{2l}} = 4\epsilon 2^{2l},
\]

and therefore

\[
e(B_1) \geq e(B) - 2\epsilon 2^{2l+1} \geq (1 - 3\epsilon)2^{2l+1}.
\]

Second, let

\[
C = \min\{|PW_1 \setminus Y|, |Y \setminus PW_1|\},
\]

add \(C \) new members of \(P(W_1) \setminus Y \) to \(Y \), and delete \(C \) members of \(Y \setminus PW_1 \), producing a new set \(Y' \) and a new bipartite graph \(B_2 = H[Y', Z'] \). Since \(|Y| \geq (1 - 2\epsilon)2^l\), we have \(|Y' \cap PW_1| \geq (1 - 2\epsilon)2^l \). Since every deleted member of \(Y \) contained an element of \(W_2 \), it had at most \((1 + 2\epsilon)2^l \) neighbours in \(Z' \). (Indeed, such member of \(Y \) intersects \(2^l \) sets in \(PW_2 \), so has at most \(2^l \) neighbours in \(Z' \cap PW_2 \); there are \(|Z' \setminus PW_2| \leq e2^{l+1} \) other sets in \(Z' \).) On
the other hand, every new member of \(Y' \) is joined to all of \(Z' \cap \mathcal{P}W_2 \), which
has size at least \(|Z' \cap \mathcal{P}W_2| \geq (3/2 - 8\epsilon)2^l \). It follows that
\[
e(B_2) \geq e(B_1) + C(1 - 10\epsilon)2^l \geq (1 - 3\epsilon)2^{2l+1} + C(1 - 10\epsilon)2^l. \tag{25}
\]

We now show that \(e(B_2) \leq (1 + \epsilon)2^{2l+1} \). If \(|Y'| \geq 2^l \), then write \(|Y'| = (1 + \phi)2^l \) where \(\phi \geq 0 \); \(Y' \) contains all of \(\mathcal{P}W_1 \), and \(\phi 2^l \) ‘extra’ sets. We have
\(|Z'| \leq (2 - \phi)2^l \), and therefore by (23), \(\phi \leq 1/2 + 6\epsilon < 1 \). Note that every
‘extra’ set in \(Y' \setminus \mathcal{P}W_1 \) has at most \(2^l \) neighbors in \(\mathcal{P}W_2 \), and therefore at
most \((1 + 2\epsilon)2^l \) neighbors in \(Z' \). Hence,
\[
e(B_2) \leq 2^l(2 - \phi)2^l + \phi 2^l(1 + 2\epsilon)2^l = (1 + \phi\epsilon)2^{2l+1} \leq (1 + \epsilon)2^{2l+1}.
\]

If, on the other hand, \(|Y'| \leq 2^l \), then since \(|Y'| + |Z'| \leq 3 \cdot 2^l \), we have
\(e(B_2) \leq |Y'| |Z'| \leq 2^{2l+1} \). Hence, we always have
\[
e(B_2) \leq (1 + \epsilon)2^{2l+1}. \tag{26}
\]

Combining (25) and (26), we see that
\[
C \leq \frac{8\epsilon}{1/2 - 10\epsilon} 2^l \leq 20\epsilon 2^l,
\]

provided \(\epsilon \leq 1/100 \).

This implies (a). Indeed, if \(|\mathcal{P}W_1 \setminus Y| \leq C \leq 20\epsilon 2^l \), then we are done. Otherwise, by the definition of \(C \), we have \(|Y \setminus \mathcal{P}W_1| \leq 20\epsilon 2^l \). Recall that
by (16), \(|Y| \geq (1 - 2\epsilon)2^l \), and therefore
\[
|Y \cap \mathcal{P}W_1| = |Y| - |Y \setminus \mathcal{P}W_1| \geq (1 - 2\epsilon)2^l - 20\epsilon 2^l = (1 - 22\epsilon)2^l.
\]

Hence,
\[
|\mathcal{P}(W_1) \setminus Y| \leq 22\epsilon 2^l, \tag{27}
\]

proving (a).

Since \(e(B) \geq (1 - \epsilon)2^{2l+1} \), \(e(B_2) \leq (1 + \epsilon)2^{2l+1} \), and \(e(B_2) \geq e(B_1) \), we have
\[
e(B_1) - e(B) \leq e(B_2) - e(B) \leq (1 + \epsilon)2^{2l+1} - (1 - \epsilon)2^{2l+1} = \epsilon 2^{2l+2} \tag{28}
\]

We now use this to show that
\[
D = \min\{|\mathcal{P}(W_2) \setminus Z|, |Z \setminus \mathcal{P}W_2|\} \leq \sqrt{\epsilon} 2^l.
\]

Suppose for a contradiction that \(D \geq \sqrt{\epsilon} 2^l \); then it is easy to see that there must exist \(z \in Z \setminus \mathcal{P}W_2 \) with at least
\[
2|Y|/3 - 8\sqrt{\epsilon} 2^l
\]

32
neighbours in Y. Indeed, suppose that every $z \in Z \setminus P W_2$ has less than $2|Y|/3 - 8\sqrt{\epsilon}2^l$ neighbors in Y. Recall that every new member of Z' has at least $(2/3 - 8\epsilon)|Y|$ neighbors in Y. Hence,

$$e(B_1) - e(B) > 8D(\sqrt{\epsilon} - \epsilon)|Y| \geq 8\sqrt{\epsilon}2^l(\sqrt{\epsilon} - \epsilon)(1 - 2\epsilon)2^l \geq \epsilon 2^{2l+1}$$

since $\epsilon < 1/16$, contradicting (28).

Hence, we may choose $z \in Z \setminus P W_2$ with at least

$$2|Y|/3 - 8\sqrt{\epsilon}2^l$$

neighbours in Y. Without loss of generality, we may assume that $n \in z \cap W_1$; then none of these neighbours can contain n. Hence, Y contains at most

$$|Y|/3 + 8\sqrt{\epsilon}2^l$$

sets containing n. But by (27), Y contains at least $(1-44\epsilon)2^{l-1}$ of the subsets of W_1 that contain n, and therefore $|Y| \geq (3/2 - o(1))2^l$. By (23), it follows that $|Y| = (3/2 - o(1))2^l$ and $|Z| = (3/2 + o(1))2^l$, so Y contains $(1-o(1))2^{l-1}$ sets containing n. Hence, by (18), so does Z. As in the proof of Claim 1, we obtain a contradiction. This implies that

$$D = \min\{|P(W_2) \setminus Z|, |Z \setminus P W_2|\} \leq \sqrt{\epsilon}2^l,$$

as desired.

This implies (b). Indeed, if $|Z \setminus P W_2| \leq \sqrt{\epsilon}2^l$, then we are done. Otherwise, by the definition of D, $|P(W_2) \setminus Z| \leq \sqrt{\epsilon}2^l$, and therefore

$$|Z \cap P W_2| \geq (2 - \sqrt{\epsilon})2^l.$$

Since $|Z| \leq (2 + 2\epsilon)2^l$, we have

$$|Z \setminus P W_2| = |Z| - |Z \cap P W_2| \leq (2 + 2\epsilon)2^l - (2 - \sqrt{\epsilon})2^l = (\sqrt{\epsilon} + 2\epsilon)2^l,$$

proving (b).

We conclude by proving the following

Claim 4.

$$|P(W_2) \setminus Z| \leq 4\sqrt{\epsilon}2^l.$$

Proof. Let

$$\mathcal{F}_2 = P(W_2) \setminus Z$$

be the collection of sets in $P W_2$ which are missing from Z, and let

$$\mathcal{E}_1 = Y \setminus P W_1$$

33
be the set of ‘extra’ members of \(Y \).

Since \(G \) is a 2-generator for \(X \), we can express all \(|\mathcal{F}_2|2^l\) sets of the form

\[
w_1 \sqcup f_2 \ (w_1 \subset W_1, f_2 \in F_2)
\]

as a disjoint union of two sets in \(G \). All but at most \(\epsilon 2^{2l+1} \) of these unions correspond to edges of \(B \). Since \(|Z \setminus \mathcal{P}W_2| \leq (\sqrt{\epsilon} + 2\epsilon)2^l\), there are at most \((\sqrt{\epsilon} + 2\epsilon)2^l|Y|\) edges of \(B \) meeting sets in \(Z \setminus \mathcal{P}W_2 \). Call these edges of \(B \) ‘bad’, and the rest of the edges of \(B \) ‘good’. Fix \(f_2 \in F_2 \); we can express all \(2^l \) sets of the form

\[
w_1 \sqcup f_2 \ (w_1 \subset W_1)
\]

as a disjoint union of two sets in \(G \). If \(w_1 \sqcup f_2 \) is represented by a good edge, then we may write

\[
w_1 \sqcup f_2 = y_1 \sqcup w_2
\]

where \(y_1 \in \mathcal{E}_1 \) with \(y_1 \cap W_1 = w_1 \), and \(w_2 \subset W_2 \), so for every such \(w_1 \), there is a different \(y_1 \in \mathcal{E}_1 \). By (24), \(|Y| \leq (3/2 + 6\epsilon)2^l\), and by (27), \(|Y \cap \mathcal{P}W_1| \geq (1 - 22\epsilon)2^l\), so

\[
|\mathcal{E}_1| = |Y| - |\mathcal{P}(W_1) \cap Y| \leq (3/2 + 6\epsilon)2^l - (1 - 22\epsilon)2^l = (1/2 + 28\epsilon)2^l.
\]

Thus, for any \(f_2 \in \mathcal{F}_2 \), at most \((1/2 + 28\epsilon)2^l\) unions of the form \(w_1 \sqcup f_2 \) correspond to good edges of \(B \). All the other unions are generated by bad edges of \(B \) or are not generated by \(B \) at all, so

\[
(1/2 - 28\epsilon)2^l|\mathcal{F}_2| \leq (2\epsilon + \sqrt{\epsilon})2^l|Y| + \epsilon 2^{2l+1}.
\]

Since \(|Y| \leq (3/2 + 6\epsilon)2^l\) and \(\epsilon \) is small, \(|\mathcal{F}_2| \leq 4\sqrt{\epsilon}2^l\), as required. \(\square \)

We now know that \(Y \) contains all but at most \(o(2^l) \) of \(\mathcal{P}W_1 \), and \(Z \) contains all but at most \(o(2^l) \) of \(\mathcal{P}W_2 \). Since \(|Y| + |Z| < 3 \cdot 2^l\), we may conclude that \(|Y| = (1 - o(1))2^l\) and \(|Z| = (2 - o(1))2^l\). It follows from Proposition 16 that provided \(n \) is sufficiently large, we must have \(G = \mathcal{P}(W_1) \cup \mathcal{P}(W_2) \setminus \{\emptyset\} \), completing the proof of Theorem 4. \(\square \)

4 Conclusion

We have been unable to prove Conjecture 1 for \(k \geq 3 \) and all sufficiently large \(n \). Recall that if \(G \) is a \(k \)-generator for an \(n \)-element set \(X \), then

\[
|G| \geq 2^{n/k}.
\]
In view of Proposition 18, it is natural to ask whether for any fixed k, all induced subgraphs of the Kneser graph H with $\Omega(2^{n/k})$ vertices can be made k-partite by removing at most $o(2^{2n/k})$ edges. This is false for $k = 3$, however, as the following example shows. Let n be a multiple of 6, and take an equipartition of $[n]$ into 6 sets T_1, \ldots, T_6 of size $n/6$. Let

$$\mathcal{A} = \bigcup_{\{i,j\} \in [6]^2} (T_i \cup T_j);$$

then $|\mathcal{A}| = 15(2^{n/3})$, and $H[\mathcal{A}]$ contains a $2^{n/3}$-blow-up of the Kneser graph $K(6, 2)$, which has chromatic number 4. It is easy to see that $H[\mathcal{A}]$ requires the removal of at least $2^{2n/3}$ edges to make it tripartite. Hence, a different argument to that in Section 3 will be required.

We believe Conjecture 1 to be true for all n and k, but it would seem that different techniques will be required to prove this.

References

David Ellis
D.Ellis@dpmms.cam.ac.uk

Benny Sudakov
b.sudakov@math.ucla.edu