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Superstatistical distributions from a maximum entropy principle
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We deal with a generalized statistical description of nonequilibrium complex systems based on least biased
distributions given some prior information. A maximum entropy principle is introduced that allows for the
determination of the distribution of the fluctuating intensive parameter B of a superstatistical system, given
certain constraints on the complex system under consideration. We apply the theory to three examples: the
superstatistical quantum-mechanical harmonic oscillator, the superstatistical classical ideal gas, and velocity
time series as measured in a turbulent Taylor-Couette flow.
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I. INTRODUCTION

Many complex systems in physics, biology, medicine, and
economics exhibit a spatio-temporally inhomogeneous dy-
namics that can be effectively described by a superposition
of several statistics on different time scales, in short a “su-
perstatistics” [1-12]. The concept of such a superposition of
statistics was first systematically discussed in [1]; in the
mean time, many applications for a variety of complex sys-
tems have been pointed out [13-20]. Essential for this ap-
proach is the existence of an intensive parameter (3 that fluc-
tuates on a much larger time scale than the typical relaxation
time of the local dynamics. In a thermodynamic setting, 3
can be interpreted as a local inverse temperature of the sys-
tem, but much broader interpretations are possible. Locally,
the system is described by equilibrium statistical mechanics
with inverse temperature [, whereas globally there is yet
another statistics of the inverse temperature 8. The two ef-
fects produce a superposition of two statistics, or in short, a
“superstatistics.” Related statistical tools play an important
role in the theory of stochastic processes; see, e.g., [21-24].

The stationary distributions of superstatistical systems,
obtained by averaging over all B, typically exhibit non-
Gaussian behavior with fat tails, which can decay, e.g., with
a power law, or as a stretched exponential, or in a more
complicated way [4]. In general, the superstatistical param-
eter B need not be an inverse temperature but can also be
interpreted as an effective friction constant, a changing mass
parameter, a changing amplitude of Gaussian white noise,
the fluctuating energy dissipation in turbulent flows, a fluc-
tuating volatility in finance, an environmental parameter for
biological systems, or simply a local variance parameter ex-
tracted from a given experimental time series. Recent appli-
cations of the concept include hydrodynamic turbulence
[2,20,25,26], pattern-forming systems [13], cosmic rays [14],
solar flares [15], share price fluctuations [16,27-29], random
matrix theory [17,30], random networks [31], multiplicative-
noise stochastic processes [32], quantum systems at low tem-
peratures [6], wind velocity fluctuations [18], hydroclimatic
fluctuations [19], the statistics of train departure delays [33],
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and models of the metastatic cascade in cancerous systems
[34].

In equilibrium statistical mechanics, it is clear how to
obtain the relevant probability distributions describing the
long-term behavior of the system under consideration. These
are the canonical distributions and they follow from a maxi-
mum entropy principle. However, superstatistical systems
are nonequilibrium systems with a stationary state which is a
mixture of canonical distributions. It is a priori not clear how
to obtain the mixing distribution of the fluctuating parameter
from first principles. A promising idea to tackle this problem
is to develop a more general type of thermodynamics for
superstatistical systems, which leads to a generalized maxi-
mum entropy principle that fixes these distributions. Early
attempts in this direction were made by Tsallis and Souza [5]
and later by Abe et al. [35], Crooks [36], and Naudts [37].
Inspired by these early considerations, in this paper we de-
velop a generalized formalism that is (a) conceptually
simple, (b) applicable to both classical and quantum systems,
and (c) consistent with experimental observations. As a re-
sult, we obtain a statistical theory that can be applied to a
large variety of complex systems and which further develops
the earlier ideas of Abe, Beck, Cohen, Crooks, and Naudts.

This paper is organized as follows. In Sec. II, we clarify
our notation and recall the basic concept of time-scale sepa-
ration that lies at the heart of any superstatistical description.
In Sec. III, we introduce our generalized maximum entropy
principle and discuss the relation between our formalism and
the previous approaches of Abe, Beck, Cohen, Crooks, and
Naudts. In Sec. IV, we discuss some physically relevant con-
ditions on the relevant class of probability densities. In the
following sections, we apply our theory to three important
examples: The superstatistical quantum-mechanical har-
monic oscillator (Sec. V), the superstatistical ideal gas (Sec.
VI), and velocity fluctuations as observed in a turbulent time
series (Sec. VII). Our concluding remarks are given in Sec.
VIIL

II. BASIC CONCEPTS

The crucial assumption of superstatistics is that the statis-
tical description of certain classes of complex nonequilib-
rium systems can be split into two levels that have a large
time-scale separation. The total system is divided into spatial
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cells, each in local equilibrium, but the temperatures of the
different cells do not have to be equal. As a consequence, in
very good approximation the local properties of the different
cells can be described using the standard Boltzmann-Gibbs
formalism. The main problem is then the determination of
the distribution of the temperature at the higher level of the
total nonequilibrium system. Clearly, the Boltzmann-Gibbs
formalism is not applicable at this level.

Locally, in each cell the average (A)y of an observable A
is calculated with respect to the Boltzmann-Gibbs probability
measure

1
zp°

where B is the inverse temperature, H is the Hamiltonian that
describes the properties of each spatial cell of the system,
and Z(p) is the partition function. In classical statistical me-
chanics, p(H;B) is a probability distribution and the local
average (A)y is defined by

p(H;p) = A, (1)

(Ap= j dU'p(H;B)A, (2)

with I" being the phase space. In quantum statistical mechan-
ics, p(H; B) is a density operator and the local average (A)y
is defined by

(Ap=Tip(H: PA, 3)

with H and A being operators acting on the corresponding
Hilbert space. We introduce the following shorthand notation
for the local energy E(B) and local entropy S(B):

E(B) =(H)y and S(B) == (In p(H:B))p. (4)

From a thermodynamic point of view, the Hamiltonian is an
observable and the temperature is the corresponding control
parameter (intensive variable). By measurement of the aver-
age value of the observable, one can estimate the value of the
corresponding control parameter. We are interested in the
statistical average of an observable A of the total nonequilib-
rium system, which has a different inverse temperature in
each cell. For this global average, we will use the following
notation:

<<A>H>ﬁ=f dBf(B:\){A)y. (5)
0

Here f(B;\;) is the probability density of B in the various
spatial cells, which depends on a set of parameters {\;} (in
our notation, we suppress the brackets { }). The parameters \;
can be interpreted as the control parameters corresponding
with some measurable nonequilibrium observables. Our goal
in the following is to find a general principle for the deter-
mination of f(8;X\;), given certain information that we have
on the complex system.

III. MAXIMUM ENTROPY

Let us first recall the maximum entropy principle for equi-
librium statistical mechanics, after which we will proceed to
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the superstatistical extension. An impressive amount of ex-
perimental results shows that assuming the Boltzmann-Gibbs
distribution as the equilibrium distribution of a system is a
very good approximation. Information theory gives a deeper
understanding of this success [38]. Usually, the only experi-
mental information that is available about a system is the
average value of some observables. Therefore, it is natural to
use the least biased distribution, given this prior information,
as the equilibrium distribution of the system. The practical
tool to obtain this least biased distribution is the maximum
entropy principle. Every observable that one can measure is
interpreted as a constraint. Then one introduces Lagrange
multipliers and maximizes the entropy (or negative informa-
tion) under these constraints. Using the laws of thermody-
namics, one shows that the Lagrange multipliers are related
to the thermodynamic control parameters. When one uses
only the constraint that the average energy of the system has
to take on a certain value, one ends up with the Boltzmann-
Gibbs canonical distribution.

We will now extend these considerations and use the
maximum entropy principle to obtain the least biased distri-
bution for f(B;\;). As a likelihood estimator, we use the
Shannon entropy, though in principle other choices such as
the Tsallis entropy [39] are possible as well. The entropy
associated with the distribution f is

S(N) == (In f(B:\)g- (6)

Clearly the distribution f(8;\;) has to be normalized. So a
first property of the distribution f(3;\;) that one has to take
into account is (1)g=1. Given some complex system in a
stationary nonequilibrium state, one may have additional in-
formation on the system that imposes some additional con-
straints. To obtain appropriate constraints for superstatistical
systems, we briefly repeat the general idea of this theory. In
each cell, the value of the temperature is fixed. For the entire
nonequilibrium system, this condition is relaxed and the tem-
perature is allowed to vary between the different cells. The
crucial assumption of superstatistics is that these temperature
fluctuations have a slow time scale compared with the time
scale of relaxation to local equilibrium. The slow fluctuations
of the temperature cause extra (slow) fluctuations of vari-
ables such as the entropy and the energy in each cell. So it is
reasonable to constrain that the averages of these variables
should take on certain values. One can still add further con-
straints in terms of some function g(8), whose precise form
depends on the nature of the complex system considered, i.e.,
its dynamics, symmetries, and boundary conditions. Thus, in
the most general case the quantity to be optimized is

SO0 = LS8~ S2BEBN s~ M8(B)~ N1
™)

with V being an arbitrary constant (taking out a common
factor out of the definition of \; and N, will turn out to be
useful in the following). Using the well-known formula
S(B)=In Z(B)+ BE(B) and renaming (\;+\,) —\,, one ob-
tains
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S(N) = )\—Vlﬂn Z(B»B - )\_VZ</3E(,3)>3 - )\3(g(,8)>3 - )\4<1>/3~

(8)

The optimization of this expression results in the following
distribution:

EB)

AV
2B CXP(— ,3)\27 - )\38(3)) )

f(B:\) = Z()\i)

with Z(\;) a normalization constant that is fixed by the con-
dition (1)g=1.

We now relate our general result (9) to previous work
obtained in the literature. In [35], the authors maximize the
sum of S(\;) and (S(B))z under the constraint of the normal-
ization of f(B;\;) only. This coincides with our approach in
case the Lagrange multipliers of expression (8) are chosen in
the following way: N;/V=N\,/V=-1 and N\3=0. This results
in a distribution that is usually not normalizable. For this
reason in [35] the domain of B is restricted to a finite range
when simple examples are studied, such as n noninteracting
classical Brownian particles. Closely related is also the re-
search of Crooks [36]. He studies general nonequilibrium
systems, without assuming that the system can be divided
into different cells that reach local equilibrium. Crooks ad-
vocates that instead of trying to obtain the probability distri-
bution of the entire nonequilibrium system, one has to try to
estimate the “metaprobability,” the probability of the mi-
crostate probability distribution. Crooks also uses a maxi-
mum entropy principle but puts A;=0. A main difference is
that Crooks does not assume local equilibrium in the cells,
hence his approach, though an interesting theoretical con-
struction, does not give a straightforward physical interpre-
tation to the fluctuating parameter 8. The advantage of our
approach is that one obtains a local fluctuating temperature
that coincides with the thermodynamic temperature and that
can in principle be measured. The work of Crooks is used by
Naudts [37] to describe equilibrium systems. The author
shows that some well-known results of equilibrium statistical
mechanics can be reformulated in a very general context
with the use of the concepts introduced in [1,36].

IV. PHYSICALLY RELEVANT DISTRIBUTIONS

We now discuss some physical properties that should be
satisfied by the distribution coming out of the entropy maxi-
mization procedure. Physically one would expect the super-
statistical distribution f(3;\;) to vanish at very low and very
high temperatures. Assume for the moment that no additional
constraint exists, i.e., g(8)=0. In this case, one can immedi-
ately obtain the sign of the various Lagrange multipliers by
studying the limiting behavior of f(B;\;) for —0 and B
— 0, In the high-temperature limit, the distribution is pro-
portional to

zp™"

Z0) (10)

The partition function Z(8) usually diverges at high tempera-
tures (the entropy becomes infinite). As a consequence, for
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physical reasons, the sign of A\; must be positive. In the low-
temperature limit, the energy and the entropy go to a con-
stant, lir.nﬁﬁm S(B):SO agd limg_,.. E(B)=E,. In this limit,
the distribution is proportional to

exP(‘M&—B()\z—M)ﬂ) (11)

Z(\) Vv Vv

Therefore, the sign of (A;—\)Ey/V must be positive.
Clearly, when a nontrivial function g(8) # 0 is implemented,
one has to take into account the limiting behavior of this
function as well. For a lot of models Ey=0. In these cases,
the temperature dependence of limg_... f(B;\;) is solely de-
termined by g(8). This shows that implementing a nontrivial
function g(B) #0 as an extra constraint can be important.

Our reasoning assumes that the low-temperature limits of
S(B) and E(B) are finite constants. This is generally true, and
is known as the third law of thermodynamics, but this limit is
only taken care of in an appropriate way if one uses quantum
statistical mechanics. For example, it is well known that the
entropy of the classical ideal gas diverges at low tempera-
tures. Therefore, we will now illustrate the general theory
with two examples, namely the quantum harmonic oscillator
and the classical ideal gas. We will come back to the issue of
the low-temperature limit when we study the classical ideal
gas.

V. SUPERSTATISTICAL QUANTUM HARMONIC
OSCILLATOR

As a first example, we study n one-dimensional noninter-
acting quantum harmonic oscillators with temperature fluc-
tuations. The Hamiltonian of a single oscillator with mass m
and frequency o is

1 1
H= EPZ + Emwzxz, (12)

with p the momentum operator and x the position operator.
The energy levels of the oscillator are well known to be

1
Ei=hw<—+i>,
2

with i=0,1,2,.... The partition function and the energy of
the n oscillators become

Z(B) — (ehw,B/Z _ e—ﬁw,B/Z)—n’

(13)

1 1
E(B):nhw<5+—eﬁwﬁ_1). (14)

Inserting these formulas into the expression for the distribu-
tion of the inverse temperature (9) results in
eﬁwﬁ(}\l_)\z)/z ( ﬁwﬂ)\z ) (15)
= exp|— 5
ZO00)(1 = e heB) ™ P\ ghos

with A ;=0 and V=n. The high- and low-temperature behav-
ior of this distribution is

lim f(B;\,) ~ (hwB)™,
B—0

f(B:\)
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FIG. 1. Plot of the distribution of the inverse temperature ob-

tained for a set of noninteracting harmonic oscillators. The values of
the parameters are iw=1, \,=2, and A =1.

lim f(B:\) ~ " PN, (16)

B—®
Clearly, the distribution f(8;\;) vanishes at high and low
temperatures when A, >\ ; > 0. For this quantum-mechanical
example, the low-temperature limit of the energy E,
=limg . E(B)=nfiw/2 is a finite constant. As a conse-
quence, no extra constraint (\;=0) is necessary to obtain a
physically relevant distribution. The distribution f(8;\;) is
plotted in Fig. 1 for the example A,=2 and A\ =1.

VI. SUPERSTATISTICAL CLASSICAL IDEAL GAS

As a second example, we study a three-dimensional clas-
sical ideal gas. The gas consists of n particles with mass m
and is enclosed in a box with a volume equal to unity. The
partition function and the energy of the ideal gas are

27m

3n/2
Z(B) = (7) and E(B) (17)

=25
Inserting these formulas into the expression for the distribu-
tion (9) results in

3n\,/2V

Z(\)

F(B:N) = exp[- N\;8(B)]. (18)
The special case N/ V=-1 and N\3=0 was already studied in
[35]. As mentioned before, in that case the distribution (18)
is not normalizable and one has to restrict the values of 8 to
a finite range. In [37], the author noticed that an inverse
gamma distribution is obtained for the choice \;/V=-1,
¢(B)=E(B), and A\3>0.

Let us now comment on physically reasonable choices of
the function g(B). On physical grounds, in the various ex-
perimental applications of the superstatistics concept so far
[13,19,26,30,33,34], essentially three relevant distributions
f(B;\,) were observed for examples described by the super-
statistical classical ideal gas: the gamma distribution, the in-
verse gamma distribution, and the lognormal distribution.
Some theoretical reasoning can be given [2] why this is so
and why the above three distributions span up three relevant
universality classes. It is now interesting to see that our gen-
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eralized maximum entropy principle, in contrast to previous
theoretical work, contains all these physically relevant cases.
Depending on the choice of the function g(8) and the values
of the Langrange multipliers \;, one can extract the three
relevant universal distributions out of expression (18). For
convenience, we put V=3n/2. The gamma distribution is
obtained for g(B8)=6, \; >0, and \;>0,

ﬁ\)\ﬂ
f(,3,7\i)=m exp(= BIA3)). (19)

The inverse gamma distribution is obtained for g(B)=1/8,
N <0, and A3>0,

g ( M)
f(ﬁ’)\i)—z()\i) exp\ =75 ) (20)

The lognormal distribution is obtained for g(8)=(In 8)* and
Ay>0,

B
F(B:N) = Z00 exp[— [\5](In B)*]
o Y
=700 Bexp[ INsl(n 8=y, (21)
with
1
)\4=m()\1+1). (22)

Unlike the quantum-mechanical case, for classical complex
systems usually g(B)#0 is needed to make expectations
formed with f(B;\;) converge. This function g(8) is deter-
mined by additional information that one has on the complex
system under consideration (an example will be treated in the
next section).

Unlike the quantum-mechanical case, for the classical
ideal gas one has to be careful with a range of § that goes
from O to . For this example, the limiting behavior of the
energy and the entropy at low temperatures is

lim E(B)=0 and lim S(B)=-—cc. (23)
o e

The limit of the energy is acceptable from a thermodynamic
point of view; the limit of the entropy is not. Clearly, the
problem arises from the fact that the classical treatment of an
ideal gas in the low-temperature limit does not make sense;
one certainly has to take quantum corrections into account.
However, when f(8;\;) is vanishing in this limit, the contri-
bution of the quantum region to the average values of the
observables will be negligible. Notice that the three afore-
mentioned distributions (19)—(21) all have a single peak at a
well-defined temperature. So as long as this single peak is
situated in the classical region, one can use classical models
in the context of superstatistics, although one has to be care-
ful in evaluating the low-temperature behavior of f(8;\;)
itself.

VII. TURBULENT TAYLOR-COUETTE FLOW

As a final example, we now apply our methods to a com-
plex system that is not analytically solvable anymore: turbu-
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p(u)

FIG. 2. Stationary distribution p(u) of velocity differences u(r)
as measured in the experiment of Swinney er al. [40] at Reynolds
number Re=69 000 and scale 6=64. The dashed-dotted line is a
Gaussian distribution 0.1280 exp(—0.0SlSuz), whereas the solid line
corresponds to the superstatistical formula (24).

lent Taylor-Couette flow. Ideally, for a superstatistical statis-
tical mechanics description of this system, one would
measure the set of all positions and velocities of a large
number of test particles in the flow. This is not possible and
hence, as in previous papers [2], we restrict ourselves to the
information that one can get out of a scalar time series, a
single measured velocity component v(#) as a function of
time 7. We use data from an experiment performed by Lewis
and Swinney [40]. The stationary probability distribution
p(u) of the velocity difference u(f)=v(t+8)—v(r) at a given
scale & is well known to exhibit non-Gaussian behavior; see
Fig. 2 for an example.

It has been previously shown that superstatistical tech-
niques can be successfully used to model the statistics of
turbulent velocity fluctuations [2,20,25,26]. For a measured
time series u(r), the parameter B simply corresponds to a
local inverse variance of the measured signal, and the “cells”
of the superstatistics approach correspond to time slices of a
suitable length where this variance is measured. The turbu-
lent velocities are well approximated by the model of a clas-
sical ideal superstatistical gas, meaning that for certain time
intervals, the signal is Gaussian with a given variance, then it
changes to another Gaussian with a different variance, and so
on. The validity of the above approximation and the neces-
sary time-scale separation has been checked in a previous
paper [2]. In that paper, also a general method was intro-
duced for extracting the relevant time slicing (the superstatis-
tical cell size) and how to extract the distributions f(3;\;)
from the signal. We do not describe this here in detail, but
refer to Ref. [2]. Using these techniques, we determined the
distribution f(8;\;) from the measured time series, using the
experimental data of Swinney et al. for various scales ¢ and
Reynolds numbers Re. In all cases, a lognormal distribution
turns out to be a reasonable fit for the experimentally ob-
served distribution f(3;\,); see Fig. 3 for an example. How-
ever, the parameters of this lognormal distribution depend on
6 and Re in a nontrivial way. Our results are summarized in
Fig. 4.

The relevance of lognormal distributions is to be expected
due to the multiplicative random processes underlying the
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f(B:k)

10
B

FIG. 3. Example of a probability distribution f(B;\;) as ex-
tracted from the measured turbulent time series of velocity differ-
ences for Re=69 000 and 6=64. The solid line is a fit to the log-
normal distribution (21), with \3=3.8516, A\;=-2.303, and Z'(\;)
=1/ \3.

fluctuating energy dissipation in turbulent flows. In other
words, the cascade picture of turbulence suggests that the
constraint g(8) in the generalized maximum entropy prin-
ciple should be of the form g(8)=(In 8)?, leading to lognor-
mal distributions. More surprising is the fact that our data

.
250 L ~ e T

In 7»3

(b) In§

FIG. 4. Dependence of the Lagrange multipliers A3 and A4 on
the scale § and Reynolds number Re, Re=540000 (solid lines),
26 6000 (dotted lines), 13 3000 (dashed-dotted lines), and 69 000
(dashed lines). The inset shows a magnification for large values of
0.
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analysis indicates that there is a distinguished scale In &*
~3.5, or 0"=~32, where the obtained fitting parameters
N\3,\,4 are independent of Reynolds number. For 6<%, \3
increases with increasing Reynolds number, whereas for &
> §* it decreases. A4 shows the opposite behavior, in that it
decreases with Re for 6<<J* and increases for 6> &*.

One may check the quality of the superstatistical model
approximation by numerically evaluating the distribution [2]

p(u) = f mf(ﬁ;k,-) \/ﬁe-“’”ﬁuzdﬂ (24)
0 2

and comparing it with the measured stationary distribution
p(u). Here f(B;\,) is a lognormal distribution with param-
eters as given in Fig. 4. The solid line in Fig. 2 shows this
curve (24) for the example Re=69 000, 5=64. Clearly, there
is an excellent agreement between the experimentally mea-
sured distribution p(u) and the superstatistical approximation
(24).

Our turbulence example illustrates that the Lagrange mul-
tipliers in the generalized entropy maximization principle, A3
and A4, do have physical meaning. Under different condi-
tions, in our case fixed by the scale § under consideration as
well as the Reynolds number of the flow, these intensive
parameters have different values (see Fig. 4). In fact, one
could go as far as regarding the results in Fig. 4 to describe
a kind of “equation of state” of the turbulent Taylor-Couette
flow, providing the dependence of the intensive parameters
N3 and A4 on given parameters of the flow pattern, such as
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scale 6 and Re. All this illustrates that the generalized maxi-
mum entropy principles developed in this paper are not only
a mathematical exercise, but of true physical relevance for a
variety of classes of complex systems, when only a certain
limited amount of information on the system is available.

VIII. CONCLUSION

In this paper, we developed a maximum entropy principle
for superstatistical systems of various kinds. This principle
allows for the determination of the superstatistical distribu-
tion f(B;\;) of the fluctuating intensive parameter B, given
some prior information on the complex system under consid-
eration. Our formalism further develops previous work of
Abe et al., Crooks, and Naudts, and contains physically rel-
evant superstatistical universality classes, such as lognormal
superstatistics, gamma superstatistics, and inverse gamma
superstatistics, as special cases. We dealt with three impor-
tant physical examples: the superstatistical quantum har-
monic oscillator, the superstatistical classical ideal gas, and
time series as generated by a turbulent Taylor-Couette flow.
For the quantum case, a new single-peaked distribution
f(B;\;) as displayed in Fig. 1 arises quite naturally out of our
maximum entropy approach, whose physical relevance can
be checked in future experiments. For classical systems,
other types of distributions are relevant, such as the lognor-
mal distribution for turbulent flows, as displayed in Fig. 3.
Our approach is a further step to arrive at a generalized sta-
tistical formalism relevant for large classes of complex sys-
tems with time-scale separation.
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