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Chaotic scalar fields as models for dark energy
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~Received 20 October 2003; revised manuscript received 14 January 2004; published 22 June 2004!

We consider stochastically quantized self-interacting scalar fields as suitable models to generate dark energy
in the Universe. Second quantization effects lead to new and unexpected phenomena if the self-interaction
strength is strong. The stochastically quantized dynamics can degenerate to a chaotic dynamics conjugated to
a Bernoulli shift in fictitious time, and the right amount of vacuum energy density can be generated without
fine-tuning. It is numerically observed that the scalar field dynamics distinguishes fundamental parameters such
as the electroweak and strong coupling constants as corresponding to local minima in the dark energy land-
scape. Chaotic fields can offer possible solutions to the cosmological coincidence problem, as well as to the
problem of uniqueness of vacua.
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I. INTRODUCTION

There is by now convincing observational evidence t
the Universe is currently in a phase of accelerated expan
@1,2#. The favored explanation for this behavior is the ex
tence of vacuum energy or, in a more general setting, of d
energy. The observations suggest that the Universe curre
consist of approximately 73% dark energy, 23% dark mat
and 4% ordinary matter@3#. The nature and origin of the
dominating dark energy component are not understood,
many different models co-exist. The simplest models ass
ate dark energy with the vacuum energy of some unkno
self-interacting scalar field, whose potential energy yield
cosmological constant@4#. In quintessence models slowl
evolving scalar fields with a nontrivial equation of state a
considered@5#. String theory also yields possible candidat
of scalar fields that might generate dark energy, in the fo
of runaway dilatons and moduli fields@6#. Various exotic
forms of matter such as phantom matter@7# and Born-Infeld
quantum condensates@8# are currently being discussed. F
some superstring cosmology ideas related to small cos
logical constants, see also@9#.

When trying to formulate a suitable model for dark e
ergy, at least two unsolved fundamental problems arise.

~1! The cosmological constant problem.Why is the ob-
served vacuum energy density so small, as compared to
cal predictions of particle physics models? From electrow
symmetry breaking via the Higgs mechanism one obtain
vacuum energy density prediction that is too large by a fac
1055 as compared to the currently observed value. Sponta
ous symmetry breaking in grand unified theory models
even worse, it yields a discrepancy by a factor of 10111.

~2! The cosmological coincidence problem.Why is the
order of magnitude of the currently observed vacuum ene
density the same as that of the matter density? A true cos
logical constant stays constant during the expansion of
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Universe, whereas the matter energy density decreases
a23, wherea(t) is the scale factor in the Robertson-Walk
metric. It looks like a very strange coincidence that right no
we live at an epoch where the vacuum energy density
matter density have the same order of magnitude, if dur
the evolution of the Universe one is constant and the ot
one decreases asa(t)23.

To this list one may add yet another fundamental probl
which we may call the uniqueness problem.

~3! The uniqueness problem.String theory allows for an
enormous amount of possible vacua after compactificat
In each of these states the fundamental constants of na
can take on different possible values. But what is the mec
nism that selects out of these infinitely many possibilities
physically relevant vacuum state, with its associated fun
mental constants that give rise to a Universe of the type
know ~that ultimately even enabled the development of life!?
Relating the answer purely to an anthropic principle see
unsatisfactory.

In this paper we consider a new model for dark ene
which, as compared to other models, is rather conserva
It just associates dark energy with self-interacting sca
fields corresponding to aw4 theory, which is second quan
tized. However, the fundamental difference from previo
approaches is that these fields are very strongly~rather than
weakly! self-interacting, and that 2nd quantization effec
play an important role. We will use as the relevant method
quantize the scalar fields the stochastic quantization me
introduced by Parisi and Wu@10#. In the fictitious time vari-
able of this approach, the fields will turn out to perform rap
deterministic chaotic oscillations, due to the fact that we c
sider not a weakly but a very strongly self-interacting fie
This chaotic behavior is a new effect not present in any c
sical treatment. It is generally well known that chaos pla
an important role in general relativity@11#, quantum field
theories@12–14#, and string theories@15#. The main result of
our consideration is that the chaotic field theories conside
naturally generate a small cosmological constant and h
the scope to offer simultaneous solutions to the cosmolog
coincidence and uniqueness problems.

Our physical interpretation is to associate the chaotic
havior of the scalar fields with tiny vacuum fluctuation
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which are allowed within the bounds set by the uncertai
relation, due to the finite age of the Universe. This interp
tation naturally leads to the right amount of dark energy d
sity being generated, and fine-tuning can be avoided.
chaotic fields~presently! have a classical equation of sta
close tow521, and can thus account for the accelera
expansion of the Universe. However, during the early evo
tion of the Universe they behave in a different way: Th
effectively track radiation and matter. This property will he
to avoid the cosmological coincidence problem.

The chaotic model also contains an interesting symm
between gravitational and gauge couplings. In our model
role of a metric for the 5th coordinate~the fictitious time! is
taken over by dimensionless coupling constants which
given by the ratio of the fictious time lattice constant a
physical time lattice constant squared~both lattice constants
can still go to zero, just their ratio is fixed!. These coupling
constants do not occur in any classical treatment but are
tirely a consequence of our second quantized treatment.
vacuum energy generated depends on these couplings
non-trivial way. The physical significance of our model
illustrated by the fact that we numerically observe t
vacuum energy to have local minima for coupling consta
that numerically coincide with running electroweak coupli
strengths, evaluated at the known fermionic mass scale
well as running strong coupling constants evaluated at
known bosonic mass scales. This numerical observation,
viously reported in@14#, is now embedded into a cosmolog
cal context. The role of the chaotic fields in the Universe c
be understood in the sense that they are responsible for fi
and stabilizing fundamental parameters as local minima
the dark energy landscape. This is somewhat similar to
role the dilaton field plays in string theory after supersy
metry breaking.

Our numerical discovery of local minima that coincid
with known standard model coupling constants makes it v
unlikely that there are different Universes with different fu
damental parameters. In fact, the numerical results pro
strong evidence that there is a unique vacuum state of
Universe that possesses minimum vacuum energy prec
for the known set of standard model parameters.

This paper is organized as follows. In Sec. II we sh
how a second-quantized scalar field dynamics can degen
to a chaotic dynamics in fictitious time. Our main example
a chaoticw4 theory leading to 3rd order Tschebyscheff ma
which is dealt with in Sec. III. In Sec. IV we present
physical interpretation of the chaotic dynamics using the
certainty relation, which in a natural way fixes the order
magnitude of the vacuum energy density to be genera
Section V deals with the energy, pressure and classical e
tion of state of the chaotic fields. In Sec. VI we consider
Einstein equations associated with our model and discu
possible way to avoid the cosmological coincidence pr
lem. Section VII yields a prediction for the current ratio
matter energy density and dark energy density to the crit
energy density. In Sec. VIII we describe how local minima
the dark energy landscape generated by the chaotic fields
fix the fundamental parameters. Finally, in Sec. IX we d
12351
y
-
-
e

d
-

ry
e

re

n-
he

a

s

as
e
e-

n
ng
in
e

-

y

e
he
ly

ate
s
,

-
f
d.
a-

e
a

-

al
f
an
-

cuss spontaneous symmetry breaking phenomena for
chaotic fields.

II. STOCHASTIC QUANTIZATION OF STRONGLY
SELF-INTERACTING SCALAR FIELDS

Let us consider a self-interacting scalar fieldw in the
Robertson-Walker metric. For a complete theory describ
all quantum mechanical fluctuations we need to seco
quantize it. This can be done via stochastic quantization
the Parisi-Wu approach of stochastic quantization one c
siders a stochastic differential equation evolving in a fic
tious time variables, the drift term being given by the clas
sical field equation@10#. Quantum mechanical expectation
correspond to expectations with respect to the generated
chastic processes in the limits→`. The fictitious times is
different from the physical timet; it is just a helpful fifth
coordinate to do the 2nd quantization. Neglecting spatial g
dients the fieldw is a function of physical timet and ficti-
tious times. The 2nd quantized equation of motion is

]

]s
w5ẅ13Hẇ1V8~w!1L~s,t !, ~1!

whereH is the Hubble parameter,V is the potential under
consideration andL(s,t) is Gaussian white noise,d corre-
lated in boths andt. For e.g. a numerical simulation we ma
discretize Eq.~1! using

s5nt, ~2!

t5 id, ~3!

wheren and i are integers,t is a fictitious time lattice con-
stant, andd is a physical time lattice constant. The co
tinuum limit requirest→0, d→0, but we will later argue
that it makes physical sense to keep small but finite lat
constants of the order of the Planck length. We obtain

wn11
i 2wn

i

t
5

1

d2
~wn

i 1122wn
i 1wn

i 21!13
H

d
~wn

i 2wn
i 21!

1V8~wn
i !1noise. ~4!

This can be written as the following recurrence relation
the fieldwn

i :

wn11
i 5~12a!H wn

i 1
t

12a
V8~wn

i !J 13
Ht

d
~wn

i 2wn
i 21!

1
a

2
~wn

i 111wn
i 21!1t•noise, ~5!

where a dimensionless coupling constanta is introduced as

aª
2t

d2
. ~6!

We also introduce a dimensionless field variableFn
i by writ-

ing wn
i 5Fn

i pmax, wherepmax is some~so far! arbitrary en-
5-2
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ergy scale. The above scalar field dynamics is equivalent
spatially extended dynamical system~a coupled map lattice
@16#! of the form

Fn11
i 5~12a!T~Fn

i !1
3

2
Hda~Fn

i 2Fn
i 21!

1
a

2
~Fn

i 111Fn
i 21!1t•noise, ~7!

where the local mapT is given by

T~F!5F1
t

pmax~12a!
V8~pmaxF!. ~8!

Here the prime means

]

]w
5

1

pmax

]

]F
. ~9!

Note that a symmetric diffusively coupled map lattice of t
form

Fn11
i 5~12a!T~Fn

i !1
a

2
~Fn

i 111Fn
i 21!1t•noise

~10!

is obtained ifHd!1, equivalent to

d!H21, ~11!

meaning that the physical time lattice constantd is much
smaller than the age of the Universe. In this case the t
proportional toH in Eq. ~7! can be neglected. The local ma
T depends on the potential under consideration. Since
restrict ourselves to real scalar fieldsw, T is a 1-dimensional
map.

The main result of our consideration is that iteration o
coupled map lattice of the form~10! with a given mapT has
physical meaning: It means that one is considering
second-quantized dynamics of a self-interacting real sc
field w with a forceV8 given by

V8~w!5
12a

t H 2w1pmaxTS w

pmax
D J . ~12!

Integration yields

V~w!5
12a

t H 2
1

2
w21pmaxE dwTS w

pmax
D J 1const.

~13!

In terms of the dimensionless fieldF this can be written as

V~w!5
12a

t
pmax

2 H 2
1

2
F21E dFT~F!J 1const.

~14!
12351
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III. CHAOTIC w4 THEORY

An interesting observation is the following one. The la
tice constantt of fictitious time should be small, in order t
approximate the continuum theory, which is ordinary qua
tum field theory. Ift is small one naively expects the mapT
given by Eq.~8! to be close to the identity for finite force
V8, since tV8/pmax is small. What about, however, ver
strong forcesV8 due to very strongly self-interacting fields
If pmax/t is of the same order of magnitude asV8 then a
nontrivial mapT can arise. In particular, this map may eve
exhibit chaotic behavior.

As a distinguished example of aw4 theory generating
strongest possible chaotic behavior, let us consider the m

Fn115T23~Fn!524Fn
313Fn ~15!

on the intervalFP@21,1#. T23 is the negative third-orde
Tschebyscheff map, a standard example of a map exhibi
strongly chaotic behavior. It is conjugated to a Bernou
shift, thus generating the strongest possible stochastic be
ior possible for a smooth low-dimensional deterministic d
namical system. The corresponding potential is given by

V23~w!5
12a

t H w22
1

pmax
2

w4J 1const, ~16!

or, in terms of the dimensionless fieldF,

V23~w!5
12a

t
pmax

2 ~F22F4!1const. ~17!

Apparently, starting from this potential we obtain by seco
quantization a fieldw that rapidly fluctuates in fictitious time
on some finite interval, provided that initiallyw0
P@2pmax,pmax#. The small noise term in Eq.~10! can be
neglected as compared to the deterministic chaotic fluc
tions of the field.

Of physical relevance are the expectations of suitable
servables with respect to the ergodic chaotic dynamics.
example, the expectation̂V23(w)& of the potential is a pos-
sible candidate for vacuum energy in our Universe. One
tains

^V23~w!&5
12a

t
pmax

2 ~^F2&2^F4&!1const. ~18!

For uncoupled Tschebyscheff maps (a50), expectations of
any observableA can be evaluated as the ergodic averag

^A&5E
21

11

A~F!dm~F!, ~19!

with the natural invariant measure being given by

dm~F!5
dF

pA12F2
~20!
5-3
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~see any textbook on chaotic dynamics, e.g.@17#!. This mea-
sure describes the probability distribution of the iterates
der long-term iteration. From Eq.~20! one obtainŝ F2&5 1

2

and ^F4&5 3
8 ; thus

^V23~w!&5
1

8

pmax
2

t
1const. ~21!

Alternatively, we may consider the positive Tschebysch
map T3(F)54F323F. This basically exhibits the sam
dynamics asT23, up to a sign. Repeating the same calcu
tion we obtain

V3~w!5
12a

t H 22w21
1

pmax
2

w4J 1const ~22!

and

V3~w!5
12a

t
pmax

2 ~22F21F4!1const. ~23!

For the expectation of the vacuum energy one gets

^V3~w!&5
12a

t
pmax

2 ~22^F2&1^F4&!1const, ~24!

which for a50 reduces to

^V3~w!&52
5

8

pmax
2

t
1const. ~25!

Symmetry considerations betweenT23 and T3 suggest to
take the additive constant const as

const51
12a

t
pmax

2 1

2
^F2&. ~26!

In this case one obtains the fully symmetric equation

^V63~w!&56
12a

t
pmax

2 H 2
3

2
^F2&1^F4&J , ~27!

which for a→0 reduces to

^V63~w!&56
pmax

2

t S 2
3

8D . ~28!

The simplest model for dark energy in the Universe,
generated by a chaoticw4 theory, would be to identify
3
8 pmax

2 /t5rL , the constant vacuum energy density cor
sponding to a classical cosmological constantL, which stays
constant during the expansion of the Universe. This is c
tainly a possible simple model. On the other hand, such
approach would solve neither the cosmological constant
the cosmological coincidence problem. For this reason
will turn to a more advanced model in the following section
which will naturally produce the right amount of vacuu
energy density in the Universe.

Before proceeding to this model, let us provide some g
eral comments on the physical meaning of the parametet.
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The vacuum energy generated by the chaotic fields is
versely proportional tot @see Eq.~28!#. Strict equivalence of
the stochastic quantization method with quantum field the
requires the continuum limitt→0. In this limit Eq.~28! can
still generate a finite amount of vacuum energy, provid
both t→0 and pmax→0 such that the ratiopmax

2 /t stays
finite. In fact, many of the results presented in this pa
depend only on the ratiopmax

2 /t and not on the individual
values attributed tot andpmax.

From the viewpoint of ordinary quantum field theory, th
limit t→0 andpmax→0 means that one formally considers
potential V(w)5m2w21lw4 for which both potential pa-
rametersm2;t21 and l;t21pmax

22 diverge @see Eq.~22!#;
moreover the fieldw lives on an infinitely small suppor
@2pmax,pmax#. Clearly, this is a very singular type of quan
tum field theory, which in principle can also be studied
other means than stochastic quantization, although pertu
tion theory will not be applicable. The advantage of our fo
mulation in terms of stochastic quantization is that for t
dimensionless chaotically evolving fieldF the potential re-
mains finite@see, e.g., Eq.~23!#. If there is no fictitious time,
then the parametert enters in the form of the~singular!
potential parametersm2;t21 andl;t21pmax

22 . In the next
section we will argue that on physical grounds it makes se
to consider very small but finitet.

IV. REPRODUCING THE CURRENTLY MEASURED
DARK ENERGY DENSITY

To obtain quantitative statements on the dark energy d
sity as generated by some chaotically evolving fieldw, let us
fix the free parameterst and pmax by some physical argu
ments. Let us start with the parametert. It is the lattice
constant of fictitious times and has dimension GeV22. Or-
dinary stochastic quantization based on Gaussian white n
requires the continuum limitt→0. But since quantum field
theory runs into difficulties at the Planck scalemPl and is
expected to be replaced by a more advanced theory at
scale, it is most reasonable to take the small but finite va

t;mPl
22 . ~29!

Next, consider the parameterpmax. It has dimension GeV
and describes the maximum energy scale of our rapidly fl
tuating scalar fieldsw, which take on values on the finit
interval @2pmax,pmax#. A natural value ofpmax follows if
one associates the rapidly fluctuating chaotic fieldswn

i with
vacuum fluctuations that are allowed due to the uncerta
relation

DEDt5O~\!. ~30!

Taking Dt;t of the order of the age of the Universe, a co
responding energy uncertaintyDE arises. ThisDE is very
large for a very young Universe, and then decreases to
tremely small values for the current age of the Universe
about 13.7 Gyr. Any finite aget of the Universe implies tha
spontaneous vacuum fluctuations with energies of orderDE
;t21 can occur. It is physically plausible to identify thes
5-4
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energy fluctuationsDE with the rapidly fluctuating chaotic
fields w5pmaxFn

i , since bothDE and w live on a finite
interval, and both fluctuate in an unpredictable way. The
certainty relation~30! together withDt;t implies ~in units
where\5c51)

pmax;
1

t
. ~31!

In this way the energy scalepmax occurring in the chaotic
field theories is most naturally identified with the inverse a
of the Universe. However, note that this quantum mechan
interpretation in terms of vacuum fluctuations requires acha-
otic map T, since some regularly evolvingFn

i cannot be
associated with fluctuations at all.

It is remarkable that by taking Eq.~29! and Eq.~31! to-
gether, the right amount of vacuum energy follows witho
any fine-tuning. One has for generic chaotic mapsT

^V~w!&;
pmax

2

t
;H2mPl

2 , ~32!

sincet21;H. Moreover,

H25
8pG

3
rc;

1

mPl
2

rc ~33!

whererc denotes the critical density of a flat Universe a
G5mPl

22 is the gravitational constant. Combining Eqs.~32!
and ~33! one obtains

^V~w!&;rc , ~34!

as required and confirmed by current astronomical obse
tions. Our simple physical interpretation, namely to interp
the chaotic fluctuations as vacuum fluctuations allowed
to the finite age of the Universe, thus yields the right orde
magnitude of dark energy density.

In general, Eq.~34! yields only order of magnitude est
mates. Nevertheless, it is instructive to work out some c
crete numbers, based on simple model assumptions. Fo
ample, we may assume that the entire vacuum energy o
Universe is due to one chaotic field described byV23. The
current age of the Universe ist05(13.760.2) Gyr5(4.32
60.06)31017 s @3#. Using an uncertainty relation of th
form DEDt5\/2 we get pmax51/(2t0)5(7.6260.08)
310243 GeV. Choosingt5kmPl

22 , wherek is some dimen-
sionless number ofO(1), we get

^V~w!&5
3

8

pmax
2

t
5~3.1960.05!310247k21 GeV4.

~35!

The current observational estimate of dark energy densit
the Universe is@3#

rw
obs5~2.960.3!310247 GeV4, ~36!
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which is consistent withk'1. If the observed dark energy i
the Universe is produced by our chaotic theory, then
measured data imply

k51.1060.10. ~37!

Once again, this estimate is based on concrete mode
sumptions. In general, we do not know the precise value
the proportionality constants in Eqs.~29! and~31!; moreover
we do not know how many different chaotic fields may co
tribute to the dark energy of the Universe.

Of course, the actual properties of the chaotic dark ene
component depend on the classical equation of state of
chaotic fields, which will be dealt with in the next section

V. ENERGY DENSITY, PRESSURE, AND EQUATION OF
STATE

The kinetic energy term of our chaotic fields is given b

Tkin5
1

2 S ]

]t
w D 2

. ~38!

Discretized with lattice constantd we obtain for the expec-
tation of Tkin

^Tkin&5
1

2

pmax
2

d2
^~Fn

i 2Fn
i 21!2&

5
pmax

2

t

1

2
a~^F2&2^Fn

i Fn
i 21&!.

~39!

In particular, fora→0 the expectation of kinetic energy van
ishes, and a Universe mainly filled with such a field
vacuum energy dominated.

In general, the expectation of the total energy density^r&
is given by

^r&5^Tkin&1^V& ~40!

and the expectation of the pressure by

^p&5^Tkin&2^V&. ~41!

For the mapT23 one obtains

^r&5
pmax

2

t H a

2
~^F2&2^Fn

i Fn
i 21&!1~12a!

3S 3

2
^F2&2^F4& D J , ~42!

^p&5
pmax

2

t H a

2
~^F2&2^Fn

i Fn
i 21&!2~12a!

3S 3

2
^F2&2^F4& D J , ~43!
5-5
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FIG. 1. Classical equation o
state w5^p&/^r& of the chaotic
field w as a function of the cou-
pling a.
l
v

pe

s

se
me-
ises
ry

for

di-

r

of
where the additive constant of the self-interacting potentia
fixed by the symmetry consideration of Sec. III. The abo
equations yield the equation of state

w5
^p&

^r&
~44!

which varies as a function of the couplinga in a nontrivial
way.

For a50, the equation of state of our fields isw521,
since the expectation of kinetic energy vanishes~all expec-
tations should be interpreted as quantum mechanical ex
tations with respect to second quantization!. For smalla, w
is close to21. It should be clear that although our field
12351
is
e

c-

fluctuate rapidly in both physical and fictitious time, the
fluctuations are averaged away when doing the quantum
chanical expectations. Thus the classical picture that ar
out of this 2nd quantized rapidly fluctuating model is a ve
homogeneous field.

The expectations in Eqs.~42!, ~43! are easily numerically
calculated by long-term iterating the coupled map lattice
random initial conditions and averaging over alli andn. We
used lattices of size 10000 with periodic boundary con
tions. The result for the equation of statew(a) is displayed
in Fig. 1. For smalla, w grows approximately in a linea
way. It monotonically increases fromw521 for a50 to
w511 for a51, up to a wiggle ata'0.12. Figure 2 shows
the corresponding~classical! energy density and pressure
s

FIG. 2. Expectation of energy

and pressure of the chaotic field a
a function of the couplinga.
5-6
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the field. To account for the currently observed dark ene
in the Universe, most chaotic fields must have a couplinga
smaller than about 0.04. Largera are ruled out by the obser
vations providing evidence forw,20.78 @3#.

VI. EINSTEIN EQUATIONS
AND DYNAMICAL EVOLUTION

Let us now consider the Einstein equations for a homo
neous and isotropic Universe that consists of three diffe
components: matter, radiation, and chaotic fields. These t
components are labeled by the indicesm,r ,w, respectively.
One has

H25S ȧ

a
D 2

5
8

3
pG~rw1rm1r r !, ~45!

ä

a
52

4

3
pG~rw13pw1rm1r r13pr !.

~46!

Herer j denotes the~classical! energy density of componen
j, andpj the pressure. For simpler notation we omit the e
pectation valueŝ•••&. The equation of state of each com
ponent iswj5pj /r j . As is well known, one has for matte
wm50, for radiationwr51/3, whereas the equation of sta
ww of the chaotic fieldsw depends on the couplinga ~see
Fig. 1!.

The Einstein~or Friedmann! equations are usually supple
mented by the assumption of conservation of energy for e
speciesj,

ṙ j523H~r j1pj !. ~47!

These equations can be derived from the Einstein equat
under the assumption of adiabatic expansion, i.e. one
sumes that no entropy is produced.

For a Universe dominated by a speciesj with constant
equation of statewj5pj /r j Eq. ~47! leads to

r j;a23(11wj ). ~48!

We obtain the well-known result that for matterrm;a23,
for radiationr r;a24, whereas for true classical vacuum e
ergy ~a cosmological constantL) with w521 one has no
dependence ona at all, rL5const.

For the chaotic fields, energy conservation is a non-triv
issue, for the following reasons:~i! These fields mode
vacuum fluctuations, and vacuum fluctuations by definit
do not conserve energy.~ii ! The chaotic field dynamics~like
any chaotic dynamics! constantly produces entropy in fict
tious time, whereas the Friedmann equations~containing no
fictitious time! describe an adiabatic expansion of the U
verse.~iii ! The coupling constanta and hence the equatio
of state of the chaotic field may change in time.~iv! There
may be an entire spectrum of chaotic fields with differe
couplingsa that can interact with each other.~v! The chaotic
fields may interact with dark matter.
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In the following, we want to restrict ourselves to a simp
scenario where the couplinga is small and where there i
energy conservation of quantum mechanical expectation
full agreement with the Friedmann equations. Two intere
ing possibilities arise in this context:

~a! A symmetric phaseof the Universe, where both th
negative and positive Tschebyscheff dynamics are active
this case the vacuum energiesrw

2
ª^V23(w)& and rw

1

ª^V13(w)& cancel to zero:

rw5rw
21rw

150 ~49!

@a consequence of Eq.~27!#. Since the total vacuum energ
rw is zero, there is no statement from the Einstein~or Fried-
mann! equations on the time evolution of the absolute va
urw

6u. We are free to postulate the validity of Eq.~32!

urw
6u5u^V63~w!&u;

pmax
2

t
;

mPl
2

t2
~50!

for arbitrary couplingsa.
~b! An asymmetric phaseof the Universe, where only the

negative Tschebyscheff dynamicsT23 is active~or where it
dominates as compared toT13). In this case one has

rw.0. ~51!

If there is a chaotic field with coupling constanta that does
not interact with other fields then energy conservation i
plies

rw;a23(11ww), ~52!

where ww5ww(a) is the equation of state as displayed
Fig. 1. Note that chaotic fields withww'0 (a'0.25) behave
similar as dark matter, whereas chaotic fields withww'21
(a'0) act like a cosmological constant~see also@18#!.

We now show that Eq.~50!, derived from the uncertainty
relation, naturally leads to tracking behavior of the vacuu
energy density. Suppose the Universe surrounding the
otic fields is dominated by a species with equation of st
w.21 ~typically matter or radiation!, then

a~ t !;t2/@3(11w)#⇔t22;a23(11w). ~53!

Putting this into Eq.~50! we obtain

urw
6u5u^V63~w!&u;a23(11w), ~54!

i.e. the vacuum energy density associated with the cha
fields decaysin the same waywith a as the density of the
dominating species.

Equation~54! can help to naturally avoid the cosmolog
cal coincidence problem. Consider e.g. the following s
nario. Initially ~say, shortly after inflation! we may have a
symmetric phase wherer r;urw

6u@rm . Hererw
2 denotes the

vacuum energy density of the negative Tschebyscheff m
which is canceled by the vacuum energy densityrw

152rw
2

of the positive Tschebyscheff map. Thenurw
6u first decays

approximately asa24, since the Universe is radiation dom
5-7
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nated. At some stage we arrive atr r;urw
6u;rm , and from

then on matter dominates over radiation, so that from then
urw

6u decays approximately asa23. During the late-time evo-
lution of the Universe,urw

6u will always stay of the same
order of magnitude asrm , since bothurw

6u andrm decay as
a23. In spite of this, for small enough couplingsa the cha-
otic fields have a classical equation of state close toww

521, and can thus produce the accelerated expansion o
Universe via Eq.~46!, provided there is symmetry breakin
betweenT13 andT23 at some late stage of the evolution
the Universe. A concrete mechanism for this will be d
cussed in Sec. IX.

What is our physical interpretation of the chaotic fields
the Universe? Fora50, it can be rigorously proved tha
rescaled deterministic chaotic Tschebyscheff maps can
used to generate spatio-temporal Gaussian white noise
larger scale@12,13#. In other words, on fictitious time scale
t8@t and physical time scalesd8@d the chaotic noise jus
looks like ordinary Gaussian white noise. We may th
couple the chaotic fieldsw to ordinary standard model field
in order to second quantize the standard model fields, i.e.
the chaotic fields as a source of quantization noise. Thi
the basic idea of the so-called chaotic quantization appro
@12#. The chaotic fields are well embedded in this way a
since they are just playing the role of quantization noise,
do not expect them to have any disturbing influence on,
baryogenesis and similar processes in the early Universe
this interpretation vacuum energy just arises out of the
pectation of a classical potential that generates quantiza
noise.

VII. PREDICTION OF Vw AND Vm

Our approach allows for the prediction of the order
magnitude of cosmological parameters such asVw5rw /rc
and Vm5rm /rc at the present time. Let us start from th
uncertainty relation in the form

DEDt5
\

2
, ~55!

which implies

pmax5
1

2t
. ~56!

Choosing the time scalet5kmPl
22 we get fora'0

rw
25^V23~w!&5

3

8

pmax
2

t
5

3

32

mPl
2

k

1

t2
. ~57!

During the radiation dominated period of the Universe o
has for the energy density of radiation

r r5
p2

30
N~T!T4, ~58!
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whereT is the temperature andN(T) is the number of rela-
tivistic particle degrees of freedom. There is also a relat
between time and temperature, namely

t5A 90

32p3N~T!

mPl

T2
. ~59!

Putting Eq.~59! into Eq. ~57! one obtains

rw
25

1

30
p3

1

k
N~T!T45

p

k
r r . ~60!

This equation once again shows that it is reasonable to
sume thatr r and rw

2 have the same order of magnitud
Sincerw

2 decays in the same way asr r , Eq. ~60! is valid
during the entire radiation dominated epoch. Finallyr r falls
below rm and from then on we have

rw
2'

p

k
rm . ~61!

After symmetry breaking we haverw
25rw'const. This im-

plies a prediction forVwªrw /rc at the present time, namel

Vw5
rw

rw1rm1r r
'

p/k

11p/k
, ~62!

neglectingr r at the present epoch and assuming that
symmetry breaking took place rather recently. In Sec. IV
saw that the currently observed dark energy density is b
fitted by the valuek51.1060.10. Equation~62! yields with
this value the prediction

Vw'0.74, Vm'0.26, ~63!

which is consistent with observations@3#. Again, due to the
reasons that were already mentioned at the end of Sec
Eq. ~63! should be regarded only as an order-of-magnitu
estimate.

VIII. FIXING FUNDAMENTAL PARAMETERS

We have seen that chaotic fields can generate the r
amount of vacuum energy and have the scope to avoid
cosmological constant and coincidence problem. We n
show that they also offer solutions to the problem of uniqu
ness of vacua.

First, let us slightly generalize the chaotic field dynam
~10! to

Fn11
i 5~12a!T~Fn

i !1s
a

2
@Tb~Fn

i 21!1Tb~Fn
i 11!#

~64!

~we neglect the small noise term!. The cases511 is called
‘‘diffusive coupling,’’ the cases521 ‘‘anti-diffusive cou-
pling.’’ Chaotic fields withb51 are said to be of type A
@T1(F)5:T(F)#, chaotic fields withb50 to be of type B
@T0(F)5:F#. In @14# the chaotic fields were called ‘‘chaoti
strings,’’ but this is only a different name for the same d
5-8
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FIG. 3. Self-energyV(a) of
the type-A chaotic field in the
low-coupling region. There are lo
cal minima at couplingsai that
coincide with the weak coupling
constants of right-handed fermi
ons in the standard model.
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namics. Our derivation in Sec. II leads to chaotic fields o
type with diffusive coupling, but from a dynamical system
point of view all 4 degrees of freedom (b50,1, s561)
exist and are of relevance. As shown in detail in@14#, there
are two different types of vacuum energies for the chao
fields, namely

~1! the self-energy

V~a!ª
pmax

2

t S 3

2
^F2&2^F4& D ~65!

and
~2! the interaction energy

W~a!ª
pmax

2

2t
^Fn

i Fn
i 11&. ~66!

Equation~65! actually represents the self-energy of the m
T23; the self-energy of the mapT13 has opposite sign an
cancels the self-energy ofT23 in the symmetric phase.

Basically, the self-energy is the expectation of the pot
tial that generates the chaotic dynamics in fictitious time, a
the interaction energy is the expectation of the potential
generates the diffusive coupling in physical time. One m
also define a total vacuum energy asH6(a)ªV(a)
6aW(a), where the2 sign corresponds to diffusive an
the 1 sign to anti-diffusive coupling. All additive constan
are fixed by the postulate of invariance of the theory un
global and localZ2 transformations@13#. In other words, we
allow for the existence of a symmetric phase. For smalla the
interaction energy can be neglected as compared to the
energy; moreover, the type-A and type-B forms are obser
to have the same self-energy in this limit.

The central hypothesis of this paper is a symmetry
tween standard model coupling constants and the cha
field couplingsa. We assume that for any dimensionle
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coupling constanta that appears in the standard model
electroweak and strong interactions, there is a correspon
chaotic field that is just coupled with thisa. The Universe
then tries to reach a state of minimum vacuum energy
adjusting its free parameters in such a way that the cha
fields reach a state of minimum vacuum energy.

While at first sight this may look like a purely theoretic
concept, there is numerical evidence that this principle
indeed physically realized. As an example, Fig. 3 shows
self-energyV(a) of our chaotic fields of type A with diffu-
sive coupling in the low-coupling region. We observe th
V(a) has local minima at

a150.000246~2!, ~67!

a250.00102~1!, ~68!

a350.00220~1! ~69!

(a1 and a3 are actually small local minima on top of th
hill !.

On the other hand, in the standard model of electrow
interactions the weak coupling constant is given by

aweak5ael

~T32Q sin2uW!2

sin2uWcos2uW

. ~70!

Here Q is the electric charge of the particle (Q521 for
electrons,Q52/3 for u-like quarks, Q521/3 for d-like
quarks!, and T3 is the third component of the isospin (T3
50 for right-handed particles,T352 1

2 for eL and dL , T3
51 1

2 for nL and uL). Consider right-handed fermionsf R .
With sin2uW5s̄l

250.2318~as experimentally measured@19#!
and the running electric couplingael(E) taken at energy
scaleE53mf we obtain from Eq.~70! the numerical values
5-9
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CHRISTIAN BECK PHYSICAL REVIEW D69, 123515 ~2004!
aweak
dR ~3md!50.000246, ~71!

aweak
cR ~3mc!50.001013, ~72!

aweak
eR ~3me!50.00220. ~73!

There is an amazing numerical coincidence between the l
minima a1 ,a2 ,a3 of V(a) and the weak coupling constan
of f R5uR ,cR ,eR , respectively.

Now regard the fine structure constantael and the Wein-
berg angle sin2uW asa priori free parameters. Suppose the
parameters change to slightly different values. Then imm
diately this would produce larger vacuum energyV(a),
since we get out of the local minima. The system is expec
to be driven back to the local minima, and the fundamen
parameters are stabilized in this way, provided the Unive
is in an asymmetric phase.

The above example is only one example of a large nu
ber of numerical coincidences observed. In@13,14# an exten-
sive numerical investigation of self-energies, interaction
ergies, and total vacuum energies was performed for
above chaotic field theories. A large number of amazing
merical coincidences was found.1 These results are describe
in detail in @13,14#; here we summarize only the main r
sults.

~1! The smallest~stable! zeros of the interaction energ
W(a) coincide with running electroweak coupling constan
evaluated at energies given by the smallest fermionic m
scales. Type A describesd quarks and electrons interactin
electrically, type B u quarks and neutrinos interactin
weakly.

~2! Local minima of the self-energyV(a) coincide with
running weak coupling constants of right-handed fermio
evaluated at the lightest fermionic mass scales.

~3! Local minima of the total vacuum energyH1(a) oc-
cur at running strong coupling constants evaluated at
lightest baryonic energy scales.

~4! Local minima of the total vacuum energyH2(a) oc-
cur at running strong couplings evaluated at the lightest
sonic energy scales.

In @13,14# chaotic fields corresponding to 2nd ord
Tschebyscheff maps were also investigated~see the Appen-
dix!, and the following numerical coincidences were foun

~1! The smallest~stable! zeros of W(a) coincide with
running strong coupling constants evaluated at the sma
bosonic mass scales. Type A describes theW boson, type B
the Higgs boson.

~2! Local minima of the self-energyV(a) coincide with
Yukawa and gravitational couplings evaluated at the fer
onic mass scales.

For more details, see@13,14#.
All these numerically observed coincidences are not

plainable as a random coincidence. Rather, they sugges

1For thew4 theory the relevant energy scale is alwaysE53mf .
The factor of 3 can be related to the index of the Tschebysc
polynomial considered@13#.
12351
al

-

d
l
e

-

-
e
-

,
ss

,

e

e-

:

st

i-

-
in-

terpreting the coupling constanta of our second-quantized
chaotic fieldsw as a running gauge coupling. We are free
identify a52t/d2 with a gauge coupling, since the occu
rence of a ratio of lattice constantst andd2 is a new effect in
our 2nd quantized discretized theory, and there is no the
of this dimensionless number so far, which represents a k
of metric for the 5th coordinate~the fictitious time!. So we
are indeed free to make the hypothesis thata coincides with
a running gauge coupling. By doing so, we implicitly co
struct a symmetry between gauge couplings and gravitatio
couplings, since usually the strength of the kinetic term
the action of a field is determined by the metric, i.e. gravi
tional effects, whereas here it is fixed by standard mo
coupling strengths. The chaotic fields appear to select ou
the infinitely many vacua allowed by string theory the uniq
ground state that corresponds to the known coupling c
stants of the Universe. All free parameters are fixed in
sense that if the fundamental parameters~masses, coupling
constants, and mixing angles! had different values, large
vacuum energy would arise.

IX. SPONTANEOUS SYMMETRY BREAKING AND
CANCELLATION OF UNWANTED VACUUM ENERGY

Chaotic scalar fields not only allow for a simple mech
nism to produce dark energy, they also yield a simple mec
nism to cancel unwanted dark energy. If we assume that b
the positive and negative Tschebyscheff dynamics are ph
cally realized, the corresponding vacuum energies preci
cancel for symmetry reasons@see Eq.~28!#. This symmetry
is a Z2 symmetry which is not there for ordinary smooth
evolving scalar fields~where opposite potentials lead to u
stable or ill-defined behavior!. On the other hand, if only the
negative Tschebyscheff field dynamics is active, or if
dominates, then positive dark energy arises. This posi
dark energy can drive inflation, fix standard model para
eters as local minima in the dark energy landscape, and
erate late-time acceleration. It is therefore desirable to c
struct a theory that allows forZ2 symmetry breaking
between positive and negative Tschebyscheff maps.

It is clear that in order to fix fundamental parameters w
the methods described in the previous section, we must h
a brokenZ2 symmetry at some stage of the evolution of t
Universe. Indeed, the minimum requirement we need is
least one very early stage of broken symmetry, in order
first-time fixthe fundamental parameters to the values wh
make the Universe work, and another late-time asympt
state of broken symmetry, in order tostabilizethe parameters
to their known values so that they cannot drift away to oth
values. It is natural to identify the first phase of broken sy
metry with the inflationary phase@21#, and the other phase o
broken symmetry with the late-time state of the Universe.
between, we may allow for a symmetric state, which has
advantage that nucleosynthesis is not spoilt.2

ff

2The abundance of light elements is correctly predicted by s
dard big bang nucleosynthesis but is spoilt if there is too much d
energy @22#. The measured cosmic microwave background a
5-10
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As a concrete simple model, consider a scalar fields
which takes on the values50 in the symmetric phase an
the valuess561 in the phase where theZ2 symmetry is
spontaneously broken. The total potential describing the c
otic field dynamics is given by

V~s,F2 ,F1!5
12s

2
V23~F2!1

11s

2
V13~F1!,

~74!

where

V23~F2!5
pmax

2

t S F2
2 2F2

4 1
1

2
^F2

2 & D ~75!

is the potential generating the negative Tschebyscheff fi
dynamics and

V13~F1!5
pmax

2

t S 22F1
2 1F1

4 1
1

2
^F1

2 & D ~76!

the one generating the positive Tschebyscheff field dynam
in fictitious time (a'0). In the symmetric phase (s50) we
obtain from Eq.~74!

^V~s,F2 ,F1!&50, ~77!

whereas in a broken phase withs521 we obtain

^V~s,F2 ,F1!&5^V23~F2!&5
pmax

2

t S 3

2
^F2&2^F4& D.0,

~78!

where we have relabeledF25F.
We assume that the symmetry is first spontaneously

ken to s521 at the onset of inflation. A large amount o
positive vacuum energy is generated via Eq.~78!, since at
this stage the Universe is very young andpmax;t21;H.
The chaotic fields can help to drive inflation, and fundam
tal parameters are pre-fixed as local minima in the dark
ergy landscape.

Then, there is a symmetric phase withs50. The consid-
eration of Sec. VII applies but the dark energy is suppres
for symmetry reasons. Big bang nucleosynthesis and ga
formation can go ahead without any problems. Note that d
ing the symmetric epoch the fundamental parameters ar
longer stabilized as local minima in the dark energy lan
scape. They can drift to slightly different values. This is co
sistent with the experimental findings of a varying fine stru
ture constant@25#.

Finally, there is late-time symmetry breaking tos521.
This phase is necessary because otherwise the fundam
parameters would keep on drifting to different values. By
late-time symmetry breaking, the parameters are fin
forced back and stabilized at their equilibrium values, wh

seems to indicate little or no dark energy at the time of last sca
ing @23#. Galaxy formation is disturbed as well if there is too mu
dark energy@24#.
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were already pre-fixed during inflation. This gives physic
sense to the role of late-time dark energy in the Universe

Late-time symmetry breaking could be physically und
stood as follows. Suppose the negative Tschebyscheff
namics~which generates positive vacuum energy! is always
uniformly distributed in space. It is a property of emp
space-time. At a very early stage, the corresponding vacu
energy was strong and may have driven inflation. Then m
ter and radiation are created. Assume that the matter
radiation particles are second quantized by chaotic no
generated by the positive Tschebyscheff map~which gener-
ates negative vacuum energy!. Then, as soon as sufficientl
much matter and radiation have been created and quant
the two vacuum energies^V13& and^V23& can precisely~or
almost! cancel, as long as matter and radiation are uniform
distributed in space. Inflation may stop in this way and
obtain a symmetric phase of the Universe after inflation. B
at a late stage of the evolution of the Universe matter clum
into galaxies. Since the negative vacuum energy is gener
by chaotic quantization noise for each particle it follows t
spatial distribution of matter. The positive vacuum ener
remains uniformly distributed. Hence after structure form
tion there is no longer any spatially uniform cancellation
vacuum energy. Empty space has an excess of pos
vacuum energy, galaxies are spatial regions with an exces
negative vacuum energy due to quantization noise~the nega-
tive vacuum energy in the galaxy can be partially comp
sated by positive kinetic terms that arise out of spatial in
mogenities in the galaxy!. In this physical interpretation the
late-time symmetry breaking is related to structure form
tion.

X. CONCLUSION

We have presented a new model for dark energy in
Universe. This model is based on a rather conservative
proach, the assumption of the existence of second quant
self-interacting scalar fields described by aw4 theory. How-
ever, the main difference is that these fields are strongly s
interacting, rather than weakly. When doing 2nd quantizat
using the Parisi-Wu approach, rapidly fluctuating chao
fields arise. The expectation of the underlying potenti
yields the currently observed dark energy density.

The advantage of this new chaotic model is that many
the questions raised in the introduction seem to have nat
solutions. The cosmological constant problem is avoided
our model the right order of magnitude of vacuum energy
naturally produced if we interpret the chaotic dynamics
terms of vacuum fluctuations allowed by the uncertainty
lation, for a given finite age of the Universe. The cosmolo
cal coincidence problem is also avoided, since in our mo
the generated dark energy is no longer constant, but thins
with the expansion of the Universe in the same way as
energy density of the dominating species~matter or radia-
tion!. In spite of that, the~classical! equation of state of the
chaotic component is close tow521, and can account fo
the accelerated expansion of the Universe, provided ther
late-time symmetry breaking. The chaotic fields are phy
cally interpreted in terms of vacuum fluctuations. As su

r-
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CHRISTIAN BECK PHYSICAL REVIEW D69, 123515 ~2004!
they can temporarily violate energy conservation, but qu
tum mechanical expectations are fully compatible with
Friedmann equations.

The physical relevance of our model is emphasized by
observation of a large number of numerical coincidences
tween local minima in the dark energy landscape and r
ning standard model coupling constants evaluated at
known fermionic and bosonic mass scales. It thus app
that chaotic fields have the potential to fix and stabilize fu
damental parameters and to select the physically rele
vacuum state out of infinitely many possibilities.
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APPENDIX: GENERAL TSCHEBYSCHEFF MAPS

Our approach can be easily generalized to Tschebysc
maps of arbitrary orderN. One hasT1(F)5F, T2(F)
52F221, T3(F)54F323F, generally TN(F)
5cos(NarccosF) with FP@21,1#. A Tschebyscheff map
of orderN is conjugated to a Bernoulli shift ofN symbols, it
is ergodic and mixing forN>2. It exhibits the stronges
possible chaotic behavior that is possible for a 1D smo
map, characterized by a minimum skeleton of higher-or
correlations@20#.

It is useful to consider both positive and negative Tsc
byscheff maps and to define

T2N~F!ª2TN~F!. ~A1!

The behavior ofT2N under iteration is identical to that ofTN
up to a sign, the trajectory ofT2N differs by a constant sign
(N even! or an alternating sign (N odd! from that ofTN .

Equation ~13! implies that the mapsTN correspond to
potentialsVN given by

VN~w!5
12a

t H 2
1

2
w21pmaxE dwTNS w

pmax
D J 1const.

~A2!

In particular, one obtains forN561,62,63

V61~w!5
12a

t S 2
1

2
w26

1

2
w2D1const, ~A3!

V62~w!5
12a

t F2
1

2
w26S 2

3pmax
w32pmaxw D G

1const, ~A4!

V63~w!5
12a

t F2
1

2
w27S 2

3

2
w21

1

pmax
2

w4D G
1const. ~A5!
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Of physical relevance are the expectations of these po
tials, formed with respect to the ergodic dynamics. Sin
negative and positive Tschebyscheff maps generate es
tially the same dynamics, up to a sign, any physically r
evant expectation should also be the same forTN andT2N ,
up to a possible sign. For allN, this symmetry condition fixes
the additive constant to be

const51
12a

t

1

2
^w2&. ~A6!

With this choice one obtains the following formulas for th
self-energy which are fully symmetric under the transform
tion N→2N:

^V61~w!&56
12a

t

1

2
^w2&, ~A7!

^V62~w!&5
12a

t S 2

3pmax
^w3&2pmax̂ w& D ,

~A8!

^V63~w!&56
12a

t S 2
3

2
^w2&1

1

pmax
2 ^w4& D .

~A9!

Written in terms of the dimensionless field variableF
5w/pmax this is

^V61~w!&56
12a

t
pmax

2 1

2
^F2&, ~A10!

^V62~w!&5
12a

t
pmax

2 S 2

3
^F3&2^F& D ,

~A11!

^V63~w!&56
12a

t
pmax

2 S 2
3

2
^F2&1^F4& D .

~A12!

For Tschebyscheff maps of arbitrary orderN one obtains

V6N~w!5
12a

t
pmax

2 H 2
1

2
F26E cos~N arccosF!dFJ

~A13!

5
12a

2t
pmax

2 H 2F26S 1

N11
TN11~F!

2
1

N21
TN21~F! D J 1const ~A14!

and
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^V6N~w!&5~61!N
12a

2t
pmax

2 H 1

N11
^TN11~F!&

2
1

N21
^TN21~F!&1CJ . ~A15!
rgy

r,

,

.
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rg
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For uncoupled Tschebyscheff maps withuNu>2, any ex-
pectation of an observableA(F) is given by Eqs.~19! and
~20!. For a5” 0 the invariant density changes in a nontrivi
way, but expectations can still be easily calculated num
cally by long-time iteration of the coupled map lattice.
,
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