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We introduce a general technique to study whether a given experimental time series is supersta-
tistical. Crucial for the applicability of the superstatistics concept is the existence of a parameter
β that fluctuates on a large time scale as compared to the other time scales of the complex system
under consideration. The proposed method extracts the main superstatistical parameters out of
a given data set and checks the validity of the superstatistical model assumptions. We test the
method thoroughly with surrogate data sets. Then the applicability of the superstatistical approach
is illustrated using real experimental data. We study two examples, velocity time series measured
in turbulent Taylor-Couette flows and time series of log-returns of the closing prices of some stock
market indices.
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I. INTRODUCTION

Superstatistical techniques as introduced in [1] can be
applied to large classes of nonequilibrium systems. The
crucial assumption of this approach is that the dynam-
ics of the system under study is a superposition of two
dynamics with well separated time scales. The standard
example is a Brownian particle moving through a slowly
fluctuating environment (e.g. there is a slowly fluctuating
temperature 1/β). The fast dynamics is then determined
by the change of the velocity of the Brownian particle
and the slow dynamics is determined by the change of
the temperature of the environment. It is well known
that the stationary velocity distribution of a Brownian
particle in a constant environment is a Gaussian distri-
bution with variance 1/β. The theory of superstatistics
applies when the slow dynamics is so slow that the ve-
locity distribution of the particle has time to relax to
a Gaussian distribution between the changes of the en-
vironment. As such, after a long time, the stationary
velocity distribution of the particle is just a superposi-
tion of Gaussian distributions weighted with a function
f(β). This f(β) is the probability density to observe
some value of β. Depending on f(β), different results
for the stationary velocity distribution will occur. An
important question is which types of distributions will
occur in ’typical’ complex systems. In [2], the authors
give some probabilistic arguments in favor of three dis-
tributions, the lognormal distribution, the gamma dis-
tribution and the inverse gamma distribution. One can
also derive these distributions from a maximum entropy
principle [3]. The present paper will focus on techniques
to extract the distribution f(β) and the relevant super-
statistical parameters out of real experimental data.

Recent applications of superstatistical methods include
hydrodynamic turbulence [2, 4, 5, 6], pattern form-
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ing systems [7], cosmic rays [8], solar flares [9], share
price fluctuations [10, 11, 12, 13], random matrix the-
ory [14, 15], random networks [16], multiplicative-noise
stochastic processes [17], wind velocity fluctuations [18],
hydro-climatic fluctuations [19], the statistics of train de-
parture delays [20] and models of the metastatic cascade
in cancerous systems [21]. For the present paper, we will
concentrate on time series as generated by hydrodynamic
turbulence and share price fluctuations.

The outline of the paper is as follows. In the next
section we fix our notation. In section III we discuss
the techniques proposed in [2] to extract superstatisti-
cal parameters out of a given time series. We propose a
modification to this method in section IV. In section V
we test our method using surrogate data sets and show
that our modification improves on the previously pro-
posed method [2]. In sections VI and VII we apply the
superstatistical approach to real experimental data from
hydrodynamic turbulence and finance. The final section
contains a discussion of our results.

II. NOTATION AND SUPERSTATISTICAL

APPROACH

The starting point is a given discrete time series u
containing n data points. The different data points are
denoted as ui with i = 1, 2, . . . n. The probability dis-
tribution of the random variable u, extracted from the
experimental data, is denoted as P (u). The total time
series is divided into N equal slices of length ∆, with
N = ⌊n/∆⌋ where ⌊x⌋ means rounding the value of x
to the nearest lower integer. This implies that the l-
th time slice contains the measurement points ui with
1 + (l − 1)∆ ≤ i ≤ l∆. We then define ’local’ moments
of order k as follows

〈uk〉∆,l =
1

∆

l∆
∑

j=1+(l−1)∆

uk
j , with l = 1, 2, . . .N. (1)
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In the following, we will assume that the first momentum
of the total time series u

〈u〉n,1 =
1

n

n
∑

i=1

ui (2)

is equal to 0. If this is not the case we use the time series
u − 〈u〉n,1 instead of u itself.

Now we want to analyse the distribution P (u) using su-
perstatistics. We assume that the time series u contains
two different time scales τ and T such that τ/T << 1.
Remember that we divided the time series u in different
time slices of length ∆. The time scale τ determines how
fast ’local’ equilibrium is reached in these different slices.
The time scale T is the length of the slices. For every
time slice, one can extract a ’local’ probability distribu-
tion for the variables ui with 1 + (l − 1)∆ ≤ i ≤ l∆ and
∆ = T . When τ/T << 1, it is a good approximation
to assume that ’local’ equilibrium is reached in a slice of
length T . By this we mean that the ’local’ distributions
can be approximated by Gaussian distributions

pT,l(u) =

√

βT,l

2π
e−

1

2
βT,lu

2

, (3)

with βT,l = 1/〈u2〉T,l. Within this assumption, the dis-
tribution P (u) is approximated by

P (u) ≈ pT (u) :=
1

N

N
∑

l=1

pT,l(u), (4)

with N = ⌊n/T ⌋. In this way, one obtains N values for
βT,l. When N is large enough, one can replace expression
(4) by

P (u) ≈ pT (u) ≈ pT,f (u) :=

∫ ∞

0

dβfT (β)

√

β

2π
e−

1

2
βu2

,

(5)

with fT (β) being the probability density that the value
of the inverse variance in a randomly chosen time slice
of length T equals β. The obtained distribution fT (β)
depends on the long time scale T , because T determines
the length of the time slices and as such the obtained
values for the parameter β. Therefore, the proper defi-
nition of T is of crucial importance and a major part of
the present paper will focus on this issue.

In [2], a method was introduced to extract fT (β) out
of a given experimental time series. The authors pro-
posed to check the validity of their approach a posteriori
by comparing the resulting distribution pT,f (u), with the
distribution P (u) extracted from the experimental data.
Notice that the superstatistical approach includes two
approximations. In the first step, one assumes the ex-
istence of two time scales τ and T such that in every
time slice ’local’ equilibrium is reached. In the second
step one assumes the existence of a distribution fT (β)
replacing the summation in expression (4) by an integral.

One would like to judge the validity of the first approx-
imation before moving on to the second approximation.
Therefore, we propose an extension of the method in-
troduced in [2] to check whether the first approximation
holds. Afterwards, the validity of the second approxi-
mation can be checked by comparing the distributions
pT (u) and pT,f (u). In the present paper we investigate
the two steps of the superstatistical approach separately.
We will test our arguments with surrogate data and with
real experimental data sets.

III. ORIGINAL DEFINITION OF TIME SCALES

The correlation function of a time series u can be cal-
culated as follows

Cn,t(u) =
1

n − t

n−t
∑

i=1

uiui+t. (6)

The superstatistical short time scale τ of the time series
is defined by the exponential decay of Cn,t(u) [2]

Cn,τ (u) = e−1Cn,0(u). (7)

In [2] a function κ∆ is introduced as

κ∆ =
1

N

N
∑

l=1

κ∆,l, with κ∆,l =

〈

u4
〉

∆,l

〈u2〉2∆,l

. (8)

Notice that κ∆,l is just the kurtosis of the l-th time slice.
The superstatistical long time scale T is then defined by
the condition

κT = 3. (9)

To understand the meaning of this definition, remember
that the main assumption of superstatistics is the exis-
tence of two well separated time scales. When this is
true, one can approximate the distribution of the vari-
ables in the l-th time slice by a Gaussian distribution (in
this paper we always assume that ’local’ equilibrium is
associated with Gaussian behavior). When the variable
are indeed locally Gaussian distributed with zero mean
and variance 1/β∆,l, the first four ’local’ moments and
κ∆,l are simply

〈u〉∆,l = 0, 〈u2〉∆,l =
1

β∆,l
, 〈u3〉∆,l = 0,

〈u4〉∆,l =
3

β2
∆,l

, κ∆,l = 3. (10)

The condition (9) implies that one is looking for a suit-
able division of the total data set into time slices for
which the variables are locally Gaussian distributed [2],
with a variance that fluctuates from slice to slice.

This definition will always result in a value for the
long time scale whenever the kurtosis of the complete
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time series κn,1 is larger than 3 [2, 22]. This can be
seen by considering two special cases. In the first case,
∆ is so small that only one value of u is observed in
each time slice. This results in κ1 = κ1,l = 1 (with
l = 1, 2, . . . n). In the second case, ∆ is so large that
it includes the entire time series u. This results in κn =
κn,1 > 3. As a consequence, there exists a long time scale
1 < T < n for which κ∆ = 3 holds. With the definitions
proposed in [2], one could formally use superstatistics
to analyse the distribution of any time series whenever
τ/T << 1 and κn,1 > 3. But clearly not every time
series that fulfills these conditions contains time slices
of which one can assume that the variables are locally
Gaussian distributed. Therefore, in the next section we
will derive an extra condition that should hold before one
can conclude that a time series at hand can be described
by superstatistics.

IV. EXTRA CONSTRAINT

Assume we found the value of ∆ for which κ∆ equals 3.
This value is denoted as T . This means that the complete
time series is divided in N = ⌊n/T ⌋ time slices of length
T . The second and fourth momentum of these time slices
are denoted as 〈u2〉T,l and 〈u4〉T,l respectively. Then one
can express the value of the function κ∆ for ∆ = NT as
follows

κNT =





1

N

N
∑

j=1

〈u2〉T,j





−2

1

N

N
∑

j=1

〈u4〉T,j . (11)

For large data series, the kurtosis of the complete data
set κn,1 is in good approximation equal to κNT because
N = ⌊n/T ⌋ ≈ n/T . Formula (11) shows that the value
of κn,1 can be calculated starting from the second and
fourth momentum of the time slices of length T . Now we
assume that these time slices contain variables that are
approximately Gaussian distributed. We will determine
the influence of the deviations from this approximation to
the value of κn,1. Remember that the moments of purely
Gaussian distributed random variables are given by (10).
However, the variables of a time series are never perfectly
Gaussian distributed. We define θT,l as the deviation of
the fourth momentum from 3〈u2〉2T,l for the time slices of
length T

θT,l = 〈u4〉T,l − 3〈u2〉2T,l. (12)

Then expression (11) can be rewritten as follows

κNT =





1

N

N
∑

j=1

〈u2〉T,j





−2

1

N

N
∑

j=1

[

3〈u2〉2T,j + θT,j

]

.

(13)

When the Gaussian approximation is reasonable in the
time slices of length T , the contribution of the term

∑

j θT,j to the value of κNT will be small as compared

to the contribution of the term 3
∑

j〈u2〉2T,j . There-
fore, we expect the Gaussian approximation to hold when
|ǫ| << 1 with

ǫ =
1

3

∑N
j=1 θT,j

∑N
j=1〈u2〉2T,j

. (14)

We showed that the value of the kurtosis of the complete
data set κn,1 can be expressed as a function of the mo-
ments of the times slices of length T only. The parameter
ǫ basically measures the contribution of the deviations
from the Gaussian approximation in these time slices to
the value of κn,1. More details about the derivation and
the interpretation of expression (14) can be found in ap-
pendix A. In the next section we will show that the extra
constraint |ǫ| << 1 resolves some of the ambiguities of
the original approach [2].

V. SURROGATE DATA

The major problem of the definition (9) of the long
time scale T is that it will always give a value for T when-
ever the kurtosis of the complete time series κn,1 is larger
than 3. For example, a time series containing Gaussian
distributed random variables of constant variance with
just one outliner can have κn,1 > 3 and τ/T << 1 with-
out being superstatistical. Also a time series containing
q-Gaussian [23] distributed random variables with con-
stant variance can be wrongly classified as being super-
statistical. In this section we use surrogate time series to
illustrate that the extra constraint |ǫ| << 1 is a useful
tool to decide whether a given time series is supersta-
tistical. We study three examples, (A) data constructed
by numerically integrating a discretized Langevin equa-
tion, (B) time series containing outliners and (C) data
sets containing q-Gaussian distributed random variables.

A. Langevin-like surrogate data

In order to construct realistic surrogate data sets, we
numerically integrate a discretized Langevin equation

ui = ui−1 − γui−1 +

√

2γ

βi
Li, (15)

where γ is a constant, the Li correspond to Gaussian
white noise with variance 1 and βi are random variables
with a certain distribution. This is the dynamics of the
example discussed in the introduction, a Brownian par-
ticle moving through a slowly fluctuating environment.
When βi = β is chosen to be a costant, one ends up with
the standard Langevin equation. In this special case, it
is known that the stationary probability density of u is
a Gaussian distribution with inverse variance β. The re-
laxation time is 1/γ. We study the more general case in
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FIG. 1: (Colour online) Extraction of the long time scale
T from the condition κ∆ = 3 for two surrogate data sets
(see expression (8) for the definition of κ∆). The difference
between the two time series is the width of the distribution
of the fluctuating parameter β, see Fig. 2.

which βi is a random variable that is gamma distributed

fS(β) =
θ−α

Γ(α)
βα−1e−β/θ, (16)

with α and θ constants. However, in order to make the
resulting surrogate time series superstatistical, the time
scale TS of the fluctuating parameter βi must be larger
than the time scale τS = 1/γ on which ’local’ equilib-
rium is reached. In this way, the probability distribu-
tion of u will relax to a Gaussian distribution before the
next change of the value of βi occurs. Therefore, we
chose τS = 10 and TS = 500. In practise we keep the
value of βi constant and iterate the Langevin equation
over TS = 500 steps. Then we change the value of βi

and iterate the discrete Langevin equation again over
TS = 500 steps. We repeat this procedure NS = 500
times. The result of this procedure is a time series with
nS = TSNS = 250.000 data points. We construct two
data sets, with different values of the parameters of the
distribution (16), α = 5, 10 and θ = 10/(α−1). Then we
apply the superstatistical approach to these time series.

The resulting short time scales are τ = 9.52, 9.21 for
the values of the parameter α = 5, 10 respectively. Fig. 1
shows κ∆ as a function of ∆ for the two surrogate data
sets. The black solid line and the red dashed-dotted line
are obtained for α = 5, 10 respectively. The constraint
κ∆ = 3 results in the following values of the long time
scale: T = 409, 521 for α = 5, 10. The corresponding
values of |ǫ| are equal to 0.014 and 0.004 respectively.
Because both inequalities τ/T << 1 and |ǫ| << 1 hold,
we conclude that the data series at hand can be de-
scribed within the superstatistical approach, and that
our method to extract the relevant time scales works very
well.

0 10 20 30 40
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β
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)

FIG. 2: (Colour online) The black solid line and the red
dashed-dotted line are representations of the distribution (16)
with θ = 10/(α − 1) and α = 5, 10 respectively. These dis-
tributions are used to construct two surrogate time series.
Applying the superstatistical approach to these data sets re-
sults in an approximation fT (β) for the imposed distribution
fS(β). The extracted distributions fT (β) are represented by
black dots and red squares for the data sets with α = 5, 10
respectively.

We continue by extracting fT (β) out of the time series
and compare the obtained distribution fT (β) with the
imposed distribution fS(β). The result of this calcula-
tion can be seen in Fig. 2. We conclude that there is an
excellent agreement between fT (β) and fS(β) for both
surrogate data sets. Finally, we construct the distribu-
tion pT (u) and compare the obtained distribution pT (u)
with the original distribution P (u), see Fig. 3. There is
an excellent agreement between pT (u) and P (u) for both
surrogate data sets. Notice also the good correspondence
between the obtained values of the short τ = 9.52, 9.21
and long T = 409, 521 time scales as compared with the
imposed values τS = 10 and TS = 500.
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FIG. 3: (Colour online) The black dots and the red squares
represent the observed distributions P (u) for the surrogate
data sets with α = 5, 10 respectively. The superstatistical
approximations pT (u) are given by the black solid line and
the red dashed-dotted line. The dashed lines are Gaussians
with the same variance as P (u).
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FIG. 4: Determination of the long time scale T from the con-
dition κ∆ = 3 for two surrogate data sets (see expression (8)
for the definition of κ∆). The minimum of the solid line is
reached for ∆ = 58. The dashed line is a monotonic decreas-
ing function of ∆.

B. Outliners

To illustrate the influence of an outliner to the super-
statistical approach, we construct two surrogate data se-
ries. The first time series contains nS = 25.000 Gaussian
distributed random variables with zero mean and vari-
ance 1. Clearly, the extracted value of the kurtosis for
this time series is approximately equal to 3. The second
surrogate data series is constructed out of the first by
replacing one of the elements of the first time series by

4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

3(5−3q)/(7−5q)

|ε
|

FIG. 5: Plot of the obtained value of the superstatistical pa-
rameter |ǫ| as a function of the kurtosis of the used q-Gaussian
surrogate data set. The solid line is a guide to the eye.

an outliner. As a consequence of this, the kurtosis of the
second time series will generally be larger than 3 and is
equal to 4.8468 for our particular example. Therefore,
expression (9) would formally give a value for the long
time scale when applied to the second data series. This
can be seen in Fig. 4 that shows a plot of κ∆ as a function
of ∆, computed from the first (dashed line) and the sec-
ond (solid line) surrogate data set. For the first data set,
|κ∆−3|/3 is a monotonic decreasing function of ∆, while
for the second data set the function |κ∆ − 3|/3 reaches a
single minimum at T = ∆ = 58. We also computed the
short time scale for this surrogate data set. As expected
the value of τ is smaller than 1. As a consequence, the in-
equality τ/T << 1 holds. Finally we calculated the value
of |ǫ| for the second surrogate data series and obtained
0.5243. Clearly, the inequality |ǫ| << 1 does not hold
in this case and the data series at hand cannot be de-
scribed with the superstatistical approach. After remov-
ing the outliner, one is left with a data series containing
just Gaussian variables of constant variance (equivalent
to the surrogate data set we started from) and no value
for the long time scale can be found, see Fig. 4. This
example shows that one has to be careful when using the
superstatistical approach to study data series that con-
tain outliners. Apparently, our criterion |ǫ| << 1 can
help to identify truly superstatistical dynamics.

C. q-Gaussian

We continue by constructing surrogate data sets con-
taining q-Gaussian random variables of constant vari-
ance. This means that the random variables are dis-
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tributed according to the following distribution

P (u) =
Γ
(

1
q−1

)

Γ
(

1
q−1 − 1

2

)

√

(q − 1)b

2π
×

(

1 + (q − 1)
1

2
bu2

)−1/(q−1)

, (17)

with b and q constants. In the limit q → 1, the dis-
tribution (17) approaches a Gaussian distribution with
inverse variance b. The kurtosis of the distribution (17)
is 3(5−3q)/(7−5q). Clearly, the kurtosis is larger than 3
for q > 1. Therefore, expression (9) would formally give
a value for the long time scale when applied to data sets
containing q-Gaussian random variables with q > 1. Our
aim here is to identify this time series as being not su-
perstatistical, since there is no long time scale on which
the variance changes.

The kurtosis diverges in the limit q → 7/5. That is the
reason why the analysis presented in this section will be
restricted to data series containing q-Gaussian random
variables with 1 < q < 7/5. We use the generalized Box-
Müller method, proposed in [23], to construct the surro-
gate data series. The number of elements of every data
set is nS = 25.000. The used values of q range from 1.05
to 1.35, while the used values of b are 0.1, 1, 10. We calcu-
late the value of ∆ for which the constraint κ∆ = 3 holds
and determine the corresponding value of |ǫ|. For ev-
ery tuple (q, b), we repeated these calculations 500 times
(we constructed 500 different data sets) and averaged the
value of |ǫ| over these different runs. The result of these
calculations can be seen in Fig. 5. This figure shows a
plot of the value of |ǫ| as a function of the kurtosis of the
used q-Gaussian distribution. The figure contains three
curves, for three different values of b, 10 (• • •), 1 (+ + +)
and 0.1 (���). Clearly, the three curves are almost indis-
tinguishable. More importantly, the curves are increasing
functions of the kurtosis (determined by q). This shows
that the extra constraint |ǫ| << 1 will reject the time
series containing purely q-Gaussian distributed random
variables as being superstatistical when the value of the
kurtosis is large enough. When the value of the kurto-
sis is close to 3, the value of |ǫ| will also become small.
However notice that in these cases the corresponding q-
Gaussian distribution is also better and better approx-
imated by the Gaussian distribution. This means that
the assumption of ’local’ equilibrium can be relaxed to
’global’ equilibrium. As a consequence, there is no reason
to the study these time series within the superstatistical
approach, because the usual equilibrium statistical me-
chanics (i.e. Gaussians with constant variance) can be
used in very good approximation.

VI. TURBULENCE DATA

After testing our method with various types of sur-
rogate data, we now apply our superstatistical analy-

−20 −10 0 10 20

10
−6

10
−4

10
−2

u

P
(u

)

FIG. 6: Plot of the distribution P (u) (• • •) computed from
a data series of velocity differences measured in turbulent
Taylor-Couette flow. The superstatistical approximations
pT (u) and pT,f (u) are represented by the solid line and the
dashed-dotted line respectively.

10
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10
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10
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10
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β

f T
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)

FIG. 7: Plot of the extracted distribution fT (β) (• • •) com-
puted from a data series containing the velocity differences
measured in turbulent Taylor-Couette flow. The solid line
shows a fit of fT (β) to a lognormal distribution, see expres-
sion (18), with α = 0.5222 and θ = −1.561.

sis to real experimental data. We use time series ob-
tained in an experiment performed by Lewis and Swin-
ney [24]. They measured a single velocity component
v(t) as a function of time t in turbulent Taylor-Couette
flow for different Reynolds numbers Re. The stationary
probability distribution P (u) of the velocity difference
u(t) := v(t + δ) − v(t) at a given scale δ is well-known
to exhibit non-Gaussian behavior. The values of the pa-
rameters for the data series used in the present paper
are Re = 540.000, δ = 16 and n ≈ 2 × 107. The two
different time scales are extracted from the time series
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S&P 500 DJI

δ τ T |ǫ| κ1,n τ T |ǫ| κ1,n

1 <1 17 1.11 35.6 <1 18 1.50 49.3

2 1.28 33 1.12 22.6 1.27 32 1.28 28.0

4 2.46 60 1.02 15.4 2.47 64 1.36 18.6

1 <1 17 0.02 6.6 <1 19 0.01 6.3

2 1.29 32 0.01 6.1 1.29 34 0.01 6.0

4 2.45 73 0.05 5.6 2.45 70 0.10 5.5

TABLE I: The values of the superstatistical parameters ex-
tracted from data series containing the normalized log-returns
ui of the DJI index and the S&P 500 index for three differ-
ent values of δ. The used data sets are (top) unaltered ui,
(bottom) largest values of |ui| removed.

as τ ≈ 7.2 and T ≈ 186, in agreement with the results
of [2]. We also evaluated expression (14). The result is
|ǫ| = 0.0205 << 1. Hence in good approximation the ex-
perimentally measured time series is superstatistical. We
also constructed the distribution pT (u) which is an ap-
proximation for the real experimental distribution P (u),
see expression (4). Fig. 6 shows the excellent agreement
between these two distributions.

As mentioned in section II, the superstatistical mod-
elling approach includes two approximations. Until now,
we only discussed the first. After this approximation one
ends up with N values of the ’local’ inverse variance βT,l.
This series of numbers can be treated as a set of random
variables with a certain distribution fT (β). In the second
step of the superstatistical modelling process one tries to
find the best fit to fT (β) with some well-known distri-
butions like e.g. the lognormal distribution, the gamma
distribution or the inverse gamma distribution, thus pro-
ceeding to an analytic model. Fig. 7 shows our extracted
distribution fT (β). A good fit to the data is obtained for
a lognormal distribution

fT (β) =
1

α
√

2π

1

β
e−(lnβ−θ)2/2α2

, (18)

with α = 0.5222 and θ = −1.561 (see also [3]). Finally
we construct pT,f (u) (see expression (5)) and compare
this distribution with pT (u). Fig. 6 includes plots of
both pT,f (u) and pT (u). To summarize, Fig. 7 shows
the good fit of a lognormal distribution to fT (β), while
Fig. 6 shows the excellent agreement between pT,f (u) and
pT (u). Both figures validate that lognormal superstatis-
tics is indeed a good modelling approach to the data.

VII. ECONOMICAL DATA SERIES

In this section we study economical time series. The
data sets are the daily closing prices xi of the Dow Jones
Industrial Average index (DJI) and the S&P 500 index
for the period March 1950 to September 2008. This
means that the total number of data points is of the

9400 9450 9500 9550
−30

−20

−10

0

10

20

i

u i

FIG. 8: Plot of the normalized log-returns ui as a function
of time i for the DJI index with δ = 1. The plot shows just
a small section (150 data points) of the complete data series
(approximately 15.000 data points). Notice the outliner near
i = 9500 which corresponds to the crash of the stock markets
on October 19, 1987.

order n ∼ 15.000. In the literature one usually studies
the statistics of the log-returns Xi := ln(xi+δ/xi) with
δ = 1, 2, . . . of the closing prices instead of the closing
prices itself. We consider the normalized log-returns

ui := (Xi − 〈X〉)
(
√

〈X2〉 − 〈X〉2
)−1

, (19)

which have been rescaled to have variance 1. An example
of a part of such data series with δ = 1 for the DJI
index can be seen in Fig. 8. This figure illustrates that
sometimes outliners (crashes of the stock markets) are
present in the data.

In the first step of the superstatistical analysis, we cal-
culate τ , T and |ǫ|. Additionally, we also calculate for
every set the total kurtosis κ1,n. We performed these
calculations for the DJI index and the S&P 500 index for
three different values of δ = 1, 2, 4, see Table I. For every
value of δ, the condition τ/T << 1 holds, while the con-
dition |ǫ| << 1 does not hold. Notice also that the values
of the total kurtosis strongly deviate from 3. We illus-
trated in section VB that outliners can strongly influence
the results of the superstatistical analysis. Therefore, we
continue by studying data sets in which the data points
with the largest values of |ui| are removed. Indeed, it
is well-known in mathematical finance that large jump
events of prices play a special role and lead to modifi-
cations of the Black-Scholes theory [25]. These events
are often created by special circumstances of the market
and are not explainable by superstatistics. We repeated
the calculation of τ , T and |ǫ| for data sets excluding
the outliners. In practise we removed data points with
|ui| > 7 (approximately 0.05% of the data points). The
bottom part of Table I shows the newly obtained values
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FIG. 9: (Colour online) Plot of the distributions P (u) for the
DJI index and the S&P 500 index for two different values of δ
[S&P 500 index with δ = 1 (•••) and δ = 2 (���), DJI index
with δ = 1 (⊲ ⊲ ⊲) and δ = 2 (⋄ ⋄ ⋄)]. The superstatistical
approximations pT (u) are represented by the solid lines. The
figure also shows the distributions pT,f for 3 different choices
of fT (β), the gamma distribution (dotted lines), the lognor-
mal distribution (dashed dotted lines) and the inverse gamma
distribution (dashed lines). The values of the corresponding
parameters α and θ are listed in Table II.

for τ , T , |ǫ| and the total kurtosis κ1,n when the outliners
are removed. By comparing the values of the supersta-
tistical parameters in Table I one observes that τ and
T are hardly influenced by the outliners. However, no-
tice the large decrease of the values of κ1,n and |ǫ|, in
particular for the data sets with δ = 1, 2. Removing ap-
proximately 0.05% of the data points results in a decrease
of the values of κ1,n and |ǫ| by a factor of the order ∼ 5
and ∼ 100 respectively. We conclude that both condi-
tions τ/T << 1 and |ǫ| << 1 hold for the economical
data sets with δ = 1, 2 once the outliners are removed.
Therefore, we will focus our analysis in the following part
to these data sets.

After the calculation of T one can construct the distri-
butions pT (u) and fT (β). Fig. 9 shows the original distri-
butions P (u) of the normalized log-returns together with
the result pT (u) of the superstatistical approach after the
first approximation. There is an excellent agreement be-
tween P (u) and pT (u) for all four cases. One also ends up
with N ≈ 15.000/T different values for the inverse vari-
ance βT,l. We constructed a histogram with these values
and tried to approximate this histogram with some well-
known distributions, the gamma distribution (16), the
lognormal distribution (18) and the inverse gamma dis-
tribution

fT (β) =
θα

Γ(α)
β−α−1e−θ/β. (20)

These three distributions were motivated in [2]. The re-
sulting distributions are shown in Fig. 10. We also con-
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FIG. 10: (Colour online) Plot of the extracted distributions
fT (β) for the DJI index and the S&P 500 index for two dif-
ferent values of δ = 1, 2 [S&P 500 index with δ = 1 (•••) and
δ = 2 (���), DJI index with δ = 1 (⊲⊲⊲) and δ = 2 (⋄⋄⋄)]. For
all 4 distributions an approximation to the data in terms of
a gamma distribution (dotted lines), a lognormal distribution
(dashed dotted lines) a inverse gamma distribution (dashed
lines) is also shown. The values of the corresponding param-
eters α and θ are listed in Table II.

structed the distributions pT,f , see Fig. 9. By inspecting
Fig. 9 and Fig. 10 we conclude that certainly the inverse
gamma distribution is not a good candidate to represent
fT (β). However, it is much harder to distinguish between
the lognormal distribution and the gamma distribution.
Both distributions are a reasonably good approximation
for fT (β) and result in a good agreement between pT,f (u)
and pT (u). We conclude that the data sets under study
can be described equally well by gamma superstatistics
and lognormal superstatistics.

We also studied the effect of a random shuffling of the
data sets. A shuffling of the data keeps the kurtosis and
the distribution P (u) unchanged but destroys the corre-
lations in the time series. As a consequence, we expect a
considerable change in the values of τ , T and |ǫ|. We ap-
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S&P 500 DJI

δ G L I G L I

1 α 2.02 0.78 1.74 2.05 0.84 1.28

θ 1.05 0.56 2.45 0.96 0.51 1.64

2 α 2.04 0.80 1.54 2.10 0.77 1.47

θ 0.98 0.49 2.01 0.88 0.44 1.83

TABLE II: The values of the parameters α and θ, used to con-
struct the distributions shown in Fig. 9, Fig. 10 and Fig. 11.
The letters G, L and I stand for the gamma distribution (16),
the lognormal distribution (18) and the inverse gamma dis-
tribution (20), respectively.

plied the shuffling operation to the data of the DJI index
and the S&P 500 index for δ = 1, 2, 3, again with outlin-
ers removed. We shuffled every data set 500 times and
averaged the values of T and |ǫ| over these different runs.
The result of these calculations can be seen in Table III.
As expected, the random shuffling operation causes a de-
crease of the value of T and an increase of the value of
|ǫ| (compare Table I and Table III). These observations
confirm the fact that the original economical time series
is superstatistical whereas the shuffled one is not. Let us
connect this with the results obtained in section VC. We
previously provided evidence that the distribution P (u)
of the economical data sets can be approximated very
well by pT,f (u), see expression (5) with fT (β) being a
gamma distribution. In this case, the integral of expres-
sion (5) can be evaluated analytically as

pT,f (u) =
Γ
(

α + 1
2

)

Γ(α)

√

θ

π
2α
(

2 + θu2
)−α−1/2

. (21)

This distribution is a q-Gaussian distribution, see expres-
sion (17), with

α =
1

q − 1
− 1

2
and θ = b(q − 1). (22)

In section VC we studied the dependence of the value
of |ǫ| as a function of the kurtosis for surrogate data
sets containing q-Gaussian random variables. Because
the economical data sets are in good approximation q-
Gaussian distributed, it is no surprise that the values of
the kurtosis (∼ 6) and |ǫ| (∼ 0.3) of Table III are of the
same order of magnitude as the values that can be read
off the curve shown in Fig. 5. In other words, the ran-
domly shuffled log-returns correspond to the q-Gaussian
model studied in section VC.

Finally, we studied how our superstatistical techniques
were influenced by extreme events (outliners) such as
stock market crashes. We formally repeated our eval-
uation of the distribution pT (u) for the data series in-
cluding the outliners, see Fig. 11. This figure still shows
excellent agreement between the superstatistical approxi-
mation pT (u) and the original distribution P (u) for small
and intermediate values of u but fails to reproduce the
data in the region |u| > 10. The reason for that is quite

S&P 500 DJI

δ τ T |ǫ| κ1,n τ T |ǫ| κ1,n

1 <1 8 0.30 6.6 <1 9 0.32 6.3

2 <1 9 0.30 6.1 <1 10 0.32 6.0

4 <1 10 0.30 5.6 <1 11 0.30 5.5

TABLE III: The values of the superstatistical parameters ex-
tracted from data series containing the randomly shuffled nor-
malized log-returns ui of the DJI index and the S&P 500 in-
dex for three different values of δ (with largest values of |ui|
removed).
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FIG. 11: (Colour online) Same picture as Fig. 9 but with
outliners included.

clear: The basic assumption of superstatistics, namely
’local’ equilibrium, is violated during periods of very high
market volatility. Again we approximated the extracted
fT (β) with the 3 aforementioned distributions and con-
struct the corresponding distributions pT,f (u). When
outliners are included, as Fig. 11 shows, the best agree-
ment between pT (u) and pT,f is obtained for the gamma
distribution fT (β). This analysis suggests that without
eliminating the outliners gamma superstatistics is best
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suited to model realistic share price dynamics.

VIII. DISCUSSION

In this paper we have presented a general technique
to study whether a given time series is superstatistical
or not. The crucial assumption of superstatistical mod-
elling is that the dynamical description can be split into
two levels that have a large time scale separation. Then,
the complete data set can be divided into different time
slices of length T for which the variables are Gaussian dis-
tributed with a certain fixed inverse variance β. However,
the value of β varies from slice to slice. If the number of
time slices is large enough one can construct a histogram
with these values and approximate this histogram with
a known distribution.We proposed a general procedure
to introduce and carefully check the validity of the dif-
ferent approximations of the superstatistical approach.
Our method is as follows

• Extract the short τ time scale (7), the long T time
scale (8,9) and the value of ǫ (14) out of the time
series at hand.

• Check the validity of the superstatistics assump-
tion by checking whether τ/T << 1 and |ǫ| << 1
are satisfied. Then construct the distribution pT (u)
given by (4) which is a first approximation for the
original distribution P (u).

• Search for a good fit to the histogram of the values
of β with a known distribution f(β). Then con-
struct the distribution pT,f (u) (5) which is a sec-
ond approximation for P (u). Only when a good fit
is obtained together with pT,f (u) ≈ pT (u) one can
conclude that the superstatistical modelling of the
dynamics is successful.

We tested this method with several surrogate data sets
and showed that our method is able to extract the cor-
rect information out of a given data set. We then ap-
plied the proposed techniques to two real experimental
data series, velocity time series measured in turbulent
Taylor-Couette flow and time series containing the nor-
malized log-returns of the closing prices of some stock
market indices. For the turbulence data the inequalities
τ/T << 1 and |ǫ| << 1 were immediately seen to hold,
whereas for the share prices the outliners had to be re-
moved first in order to obtain a realistic superstatistical
model. We conclude that the superstatistical approach
can be successfully used to study both data sets.

Since the early work of Black and Scholes [26], vari-
ous techniques borrowed from the field of the theoreti-
cal physics were successfully used to study the evolution
of stock markets prices and their derivatives. Some re-
cent work in the context of option pricing involves for ex-
ample perturbation expansions around the Black-Scholes
formula [27] and the use of path integrals [28]. Other au-
thors focus on stochastic volatility and its extraction from

a long sequence of data [10, 29, 30]. Common in all these
papers is the observation that the volatility of the log-
returns ui of the stock market prices is a stochastic vari-
able with certain distribution. However the type of this
distribution is still under debate. Often the volatility is
defined as the average of |ui| over a time slice with certain
length ∆. This results in N = n/∆ values for the volatil-
ity, with n the total number of data points. Then one
constructs a histogram with these N values and searches
for the best fit to this distribution using some known
distribution. Usually, one examines different values of ∆
and observes that the result of the fitting procedure is not
crucially dependent on the arbitrary choice of ∆. Notice
the differences with the method presented in this paper.
The length of our time slices coincides with long time
scale T . Therefore, in the context of superstatistics, the
value of ∆ is fixed by the definition of T . We also use
another measure for the volatility. Instead of studying
the average of |ui| over a time slice we study the inverse
of the average of u2

i . The reason for this is that in the
second step of our method we need the distribution of the
latter variable to construct the distribution pT,f (u). Our
careful analysis of the different approximations of the su-
perstatistical approach shows that for the hydrodynamic
turbulence data our techniques can be applied directly
whereas for the economical time series it is better to first
remove the outliners. When outliners are removed, our
data sets can be described equally well by gamma super-
statistics and lognormal superstatistics. When outliners
are included, gamma superstatistics seems to do the best
job.

Our approach is inspired by the theory of statistical
hypothesis testing. In this context, the null-hypothesis
is the assumption that the data series at hand can be
described by the superstatistical approach. Then one
has to calculate the values for τ , T and ǫ. One accepts
the null-hypothesis when T exists and τ/T << 1 and
|ǫ| << 1. An interesting topic for future research is a
statistical analysis of the threshold behavior of τ/T and
|ǫ|. Also other conjectures to falsify the null-hypothesis
can be examined. Generally this work will further help
to understand the behavior of complex systems with time
scale separation, making direct contact with experimen-
tal measurements.
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APPENDIX A:

The superstatistical long time scale T is defined as the
value of ∆ for which κ∆ equals 3, see expression (8) for
the definition of κ∆. Assume that we have found the
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value of the long time scale. This means that the com-
plete time series is divided in N = ⌊n/T ⌋ time slices of
length T . The superstatistical model assumption is valid
when the variables within these time slices are in good
approximation Gaussian distributed with a certain vari-
ance 〈u2〉T,l, with l = 1 . . .N . We defined θT,l as the
deviation of the fourth momentum from 3〈u2〉2T,l in the

l-th time slice of length T , see expression (12). Continue
by dividing the complete time series in ⌊n/sT ⌋ time slices
of length ∆ = sT with s = 2, . . . N . We will show in this
appendix that the value of κsT can be expressed as a
function of 〈u2〉T,l and θT,l only. The contribution of θT,l

to the value of κsT is a measure for the deviations from
the Gaussian distribution in the time slices of length T .

First notice that the moments within the l-th time slice
of length sT can be written as a sum of the moments
within the time slices of length T

〈uk〉sT,l =
1

sT

lsT
∑

i=1+(l−1)sT

uk
i

=
1

s

s
∑

j=1

〈uk〉T,s(l−1)+j , (A1)

with l = 1, 2, . . . ⌊n/sT ⌋. This gives for the fourth mo-
mentum and κsT,l

〈u4〉sT,l =
1

s

s
∑

j=1

〈u4〉T,s(l−1)+j

=
1

s

s
∑

j=1

(

θT,s(l−1)+j +
3

β2
T,s(l−1)+j

)

κsT,l − 3

3
=

1

〈u2〉2sT,l

(BsT,l + ΘsT,l) (A2)

where

BsT,l =
1

s

s
∑

j=1

1

β2
T,s(l−1)+j

−





1

s

s
∑

j=1

1

βT,s(l−1)+j





2

ΘsT,l =
1

3s

s
∑

j=1

θT,s(l−1)+j . (A3)

To understand the meaning of BsT,l and ΘsT,l, we study
an example. Assume l = 1 which means that we look for
the first time slice of length sT . This time slice contains
the first s time slices of length T , with corresponding
values of the inverse variance βT,1, . . . , βT,s respectively.
For this special case, the expressions for BsT,l and ΘsT,l

simplify to

BsT,1 =
1

s

s
∑

j=1

1

β2
T,j

−





1

s

s
∑

j=1

1

βT,j





2

ΘsT,1 =
1

3s

s
∑

j=1

θT,j . (A4)

BsT,l is the variance of 1/βT,j calculated over s values of
this parameter. ΘsT,l is the average of θT,j over s values
of this parameter. BsT,l vanishes when the fluctuations
of βT,j are small. ΘsT,l vanishes when the Gaussian ap-
proximation for the time slices of length T holds.

We continue by summing the expression (κsT,l − 3)/3
over all the time slices ⌊n/sT ⌋. This results in an expres-
sion for (κsT − 3)/3

κsT − 3

3
=

1

⌊n/sT ⌋

⌊n/sT⌋
∑

l=1

1

〈u2〉2sT,l

(BsT,l + ΘsT,l) .

(A5)

Notice this formula explains the difference in profound-
ness of the minimum between the two graphs of Fig. 1.
For both curves, the contribution of

∑

l ΘsT,l is small
compared to the contribution of

∑

l BsT,l and can be ig-
nored (remember these graphs are obtained for surrogate
data, where we imposed Gaussian distributed random
variables). However, the values of

∑

l BsT,l are clearly
different for the two graphs, because of the difference
in the imposed distribution fS(β), see Fig. 2. The nar-
rower the distribution fS(β), the smaller the fluctuations
of the parameter βT,j , the less profound the minimum of
the graph of |κ∆ − 3|/3.

The contribution of ΘsT,l to (κsT,l − 3)/3 vanishes
when the Gaussian approximation in the time slices of
length T holds. So this term measures the deviations
from pure Gaussian behavior in these time slices. We
propose to study the difference between the exact value
of (κsT −3)/3 with s = 2, 3, . . . and expression (A5) with
ΘsT,l = 0 for all l to decide whether a given time series
can be described within the superstatistical approach.
Clearly, this difference will show fluctuations as a func-
tion of s. Therefore, it is reasonable to evaluate this dif-
ference in the limit s → N = ⌊n/T ⌋ in order to quantify
the influence of ΘsT,l to the exact value of (κsT − 3)/3.
For the special case s = N , formula (A1) simplifies to

〈uk〉NT,1 =
1

N

N
∑

j=1

〈uk〉T,j . (A6)

Then we obtain for κNT,1 (or κNT , because there is only
one time slice for this special case)

κNT =





1

N

N
∑

j=1

〈u2〉T,j





−2

1

N

N
∑

j=1

[

3〈u2〉2T,j + θT,j

]

.

(A7)

Notice that for large data series, the kurtosis of the com-
plete data set κn,1 is in good approximation equal to
κNT because N = ⌊n/T ⌋ ≈ n/T . When the Gaussian
approximation is reasonable in the time slices of length
T , the contribution of the term

∑

j θT,j to the value of
κNT will be small as compared to the contribution of the
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FIG. 12: The solid line shows the value of |κ∆ − 3|/3 calcu-
lated with expression (8). The evaluation of expression (A5)
with ΘsT,l = 0 for all l is represented by (+ + +). The dif-
ference between the solid line and the curve represented by
(+ + +) is a consequence of the deviations from the Gaussian
approximation in the time slices of length T .

term 3
∑

j〈u2〉2T,j . Therefore, we expect the Gaussian

approximation to hold when |ǫ| << 1 with

ǫ =
1

3

∑N
j=1 θT,j

∑N
j=1〈u2〉2T,j

. (A8)

The value of ǫ basically measures the contribution of the
deviations from the Gaussian approximation in the time
slices of length T to the value of the kurtosis of the com-
plete data set.

Finally we illustrate the physical interpretation of the
formulas we derived above by applying them to the real
experimental data that we already studied in section VI.
We repeated the calculation of |κ∆ − 3|/3 as a function
of ∆ with formula (8). The result can be seen in Fig. 12
(solid line). Then, we evaluated expression (A5) with
ΘsT,l = 0 for all l (+ + +). Clearly, the difference be-
tween the solid line and the curve represented by (+++)
is small. This shows that the contribution of the term
∑

l ΘT,j/〈u2〉2T,j to the value of κsT is small as compared

to the contribution of the term
∑

j BT,j/〈u2〉2T,j . Hence
the Gaussian approximation in the time slices of length
T is reasonable because the term

∑

l ΘT,j/〈u2〉2T,j mea-
sures the deviation from this approximation. The value
of |ǫ| corresponds to the difference between the solid line
and the curve represented by (+++) in the limit s → N .
For this example we obtain |ǫ| = 0.0205 << 1, hence the
time series is superstatistical.
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