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Abstract 
 

       In order to understand the parameters of the standard model of electroweak 
and strong interactions, one needs to embed the standard model into some 
larger theory that accounts for the observed values. This means some additional 
sector is needed that fixes and stabilizes the values of the fundamental 
constants of nature. We describe how such a sector can be constructed using  
the so-called chaotic quantization method applied to a system of coupled map 
lattices. We restrict ourselves in this short note on verifying how our model 
correctly yields the numerical values of Yukawa and gravitational coupling 
constants of a collection of heavy and light fermions using a simple principle, 
the local minimization of vacuum energy.  

 
 Introduction 

 
String and M-theory predict an enormous amount of possible vacua after 
compactification. In each of these vacua the cosmological constant as well as the 
fundamental constants of nature have different values. This is the so-called 
‘landscape’ picture. To select the right vacuum, one always can implement the 
anthropic point of view. But is an anthropic argument really the only solution?  
        A natural idea to help out of this dilemma would be that their should be 
some general principle provided by some form of an additional sector as yet not 
included in neither the ordinary standard model, nor in ordinary string theories. 
This general principle should select, fix and stabilize the standard model 
parameters in the way we do observe them. Such a principle may be based on 
chaotic dynamics.   
        The important role of chaos and fractals in quantum field theories and 
string theories has been emphasized in various recent papers and books, see for 
example [1-15]. Many approaches have been suggested, most notably the works 
of M. S. El Naschie using the so-called E-∞ theory of fractal space-time [12]. 
Our approach here is based on coupled map lattices [21] simulating vacuum 
fluctuations, which seem to give us a hint at how this additional sector could 
look like [8, 9]. In practice standard model parameters can be thought of as 
being fixed by so-called moduli fields [16]. If one knows the correct moduli 
potentials describing the world around us, then one knows the correct standard 
model parameters. So what could be a theory to construct these moduli 
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potentials? In principle the potentials should follow from the embedding theory 
but little is known in practice due to the enormous complexity inherent in the 
current mainstream theories. But as with any unknown theory one can be guided 
by first trying to find an empirical model that does the correct thing, i.e. 
reproduces the observed value of the fine structure constant and other 
fundamental constants, and then later try to embed it into a larger context. The 
interesting thing is that such an empirical model is possible [8, 9, 17]. There is a 
class of highly nonlinear chaotic dynamical systems that seem to reproduce the 
‘correct’ standard model parameters by a simple selection mechanism — the 
minimization of vacuum energy.  
         Physically, the above-mentioned coupled chaotic dynamics can be regarded 
as describing rapidly fluctuating scalar fields associated with vacuum fluctuations. 
These are vacuum fluctuations different from those of QED or QCD. The most 
natural embedding is to associate the above chaotic vacuum fluctuations with the 
currently observed dark energy in the universe [17]. The chaotic fields, living in 
the dark energy sector, generate effective potentials for moduli fields — just the 
same moduli fields that are responsible for the fundamental constants of the 
standard model of electroweak and strong interactions. The moduli fields then 
move to the minima of the potentials generated by the chaotic fields, and fix the 
fundamental constants of nature [16]. This is why we are interested in local 
minima of the vacuum energy in this paper. The chaotic sector appears to provide 
a possible answer to the question why we do observe certain numerical values of 
standard model parameters in nature. It can be used to avoid anthropic 
considerations for fundamental constants. Moreover, it generates a small 
cosmological constant in a rather natural way [17]. 
 

Chaotic Quantization 
 
In the chaotic quantization approach one replaces the Gaussian white noise of 
the Parisi-Wu approach of stochastic quantization [18] by a deterministic 
chaotic process on a very small scale.  A simple model is to generate the noise 
by Tchebyscheff maps . In nonlinear dynamics,  are standard examples of 
chaotic maps, just as the harmonic oscillator is a standard example in linear 
dynamics. One has  for the lowest order N=2. Most important for 
our purposes is the property that the  have least higher-order correlations 
among all smooth systems conjugated to a Bernoulli shift, and are in that sense 
closest to Gaussian white noise, as close as possible for a smooth deterministic 
system [19, 20]. Any other map has more higher-order correlations. What does 
this mean for chaotic quantization? Actually the are automatically selected as 
most ideal candidates if we argue that Gaussian white noise is chosen to be 
generated in nature by something deterministic chaotic on the smallest 
quantization scales, which aims at making the small-scale deviations from 
ordinary quantum mechanics as small as possible.  
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Coupled Chaotic Map Lattices 
 
Now that we assumed that the noise fields used for quantization are dynamical 
in origin, it’d be plausible to allow for some coupling between neighboured 
noise fields.  Physically it is most reasonable that the coupling has a Laplacian 
form, since this is the most relevant coupling form in quantum field and string 
theories. This leads to coupled map lattices of the nearest-neighbour coupling 
form. We end up in the 1-dimensional case with coupled Tchebyscheff maps of 
order N of the form  

i
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where i  is a 1-dimensional lattice coordinate, a ∈ [0, 1] is a coupling constant, s 
= 1, and b takes on values 0 or 1 ( ).  Our choices 
throughout all the calculations leading to the presented results below were s=1 
(diffusive coupling) and b=0 (backward coupling). The above chaotic dynamics 
is deterministic chaotic spatially extended, and strongly nonlinear. The field 
variable  is physically interpreted in terms of rapidly fluctuating virtual 
momenta in units of some arbitrary maximum momentum scale [9]. 
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Some Numerical Calculations 

1-Dimensional Case  
 
 We used equation (1) to calculate the self-energy V≡

a
)(V ϕ  of the above 

introduced spatially extended chaotic coupled map lattice in one space-time 
dimension. We implemented random initial conditions  and 
also periodic boundary conditions that can be expressed as  where I labels 
the last site on the linear lattice.   In the N=2 case, 
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)(V ϕ  can be written as 
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2 32 ϕϕϕ −=)(V , where we imposed that ∫=± ϕϕϕ d)(T)(V N m , which is an essential 
choice to facilitate the calculation of self-energy [8, 9]. Assuming ergodicity, 
expectations 
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                For a → 0 one numerically observes the scaling behaviour 
))a(log(Fa)(V)(V )N(

a
=−

0
ϕϕ  where )N(F is a periodic function of 

with period  and )alog( 2Nlog 0
0
=)(V ϕ  for N=2 [9]. Such a log periodic 

scaling is manifested in our results shown in Fig (1) below and was analytically 
proved in [25]. From the periodicity it follows that if there is some local 
minimum of the potential at  then there is also a minimum at , where 
L is an integer. In other words, minima are only determined modulo 4 for N=2. 
In one period shown in fig (2), and if we magnify enough (calculate for 
sufficiently dense values of the coupling a) and use sufficiently high values of 
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the number of lattice sites and the number of iterations, one remarkably 
observes 9 different minima that coincide with Yukawa and gravitational 
couplings of 9 standard model fermions modulo 4. One observes that the 
minima with i = 2, 6, 10 turn out to coincide with Yukawa couplings modulo 4 
of the heavy fermions τ, b, c according to the formula 

( ) fL
wffHi .mm.)mm(b 4241 2

2 += α  where f = τ, b, c, respectively, is the 
Higgs mass taken to be 154 GeV [9],  is the mass of the W-boson,  is 
the running weak coupling constant [22], and  is a suitable integer for a particular 
fermion f. The results are almost independent of the Higgs mass [9]. For the 
light fermions one observes that the self-energy has local minima for couplings 
that coincide with gravitational couplings modulo 4. We numerically observe 
for i = 4, 7, 8, 9 that 

Hm

wm )E(2α

fL

( ) fL
Plfi .mmb 441 2= .2 where f = e, d, u, s, respectively. 

Here  denotes the Planck mass. Solving for mPlm f, one can thus get fermion 
mass predictions modulo 2. The relevant power of 2 (the value of in the 
above equations of ) can then be obtained from other minima and additional 
symmetry considerations [9]. We also observe the minima with i = 3, 11 which 
may yield neutrino mass predictions. As for i = 5, it is assumed to account for 
Yukawa interaction of the top quark while i = 1 is expected to host a doublet to 
account for the heaviest neutrino and the muon [8, 9]. A list of the predicted 
fermion masses corresponding to the confirmed local minima can be found in 
sections 8.6 and 8.7 in [9] and the excellent agreement (3-4 digits) with the 
experimentally observed masses is remarkable.   

fL
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          Actually it was argued in [8, 9] that there are 11 minima. We have now 
repeated these calculations with much higher computer power which allowed us to 
do highly precise calculations (see typical samples in figs 3, 4) around the values of 
the fermion couplings assumed in [8, 9]. Our calculations returned a firm 
confirmation of only 9 of them. Literally all the minima suggested in [8, 9] were 
confirmed except for b1 and b5. At b1 and b5 we got something more like an 
inflexion point (an unstable stationary point) rather than a typical stable minimum. 
Further calculations have been performed for different sets of initial-conditions as 
well as at minima valleys of lower couplings (lower ) in an attempt to eliminate 
the ambiguities for light fermions. So far the existence of the minima b

fL
1 and b5 is 

unconfirmed. Finally we should say that the probability of such a very precise 
matching between our calculations and the experimental data for only two fermion 
masses (e.g. e and τ) to be a result of mere random coincidence is of the order of 
one in a million.                     
 
D-Dimensional Case  
 
The coupled map lattices (CMLs) described in (1) can be studied on lattices of 
arbitrary dimension. We generalized the investigations and the numerical 
calculations of the 1-dimensional case to higher space-time dimensions 
( >1). If we take the D=4 case as an example, the CMLs can be written as: D≥4
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Like in the D=1 case, we implemented periodic boundary conditions given by: 
 where H, I, J 

and K are the last space-time sites along each relevant space-time direction on the 
cubic lattice.  In this case, 
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case and the self energy 
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               We observed a log-periodic behaviour similar to, however apparently 
smoother than, the D = 1 case. This is demonstrated in fig (5). We magnified 
one period of the log-periodic curve in the small coupling scaling region, which 
is identical to scaling region considered in the D=1 case. We adopted an 
optimal large-enough combination of the number of lattice sites and the number 
of iterations to ensure reasonable statistics. The gross calculations of all the 
( >1) three cases took about 8000 hours of parallel computing time on the 
e-science computing cluster at QMUL which is part of GridPP; the UK’s grid 
computing facility. To our surprise, rather than obtaining some structure, we 
got a single smooth structure-free broad minimum for all >1 cases, see fig 
(6) for the D = 4 case as an example. We couldn’t relate the corresponding 
coupling of about 0.000358(4) to any of the known particle masses using 
similar arguments to that used in the D = 1 case. For the time being, the only 
hypothesis we have for the observed smoothness in the D >1 cases as compared 
to the wriggling fractal shape in the D =1 case (fig (2)) is that this might be an 
effect of what we can call an extended version of Nash embedding [23, 24]. If 
correct, this is rather a topological-geometrical argument to be complemented 
in future with a concrete physical explanation.   

D≥4

D≥4

 
Conclusion 

 
We have studied a chaotic scalar field that lives in one space-time dimension as 
a model of vacuum fluctuations. Expectations of the self energy can be used to 
generate potentials that can fix the fundamental constants of nature. The 
generalization of these fields to higher space-time dimensions didn’t yield any 
interesting structure in the shape of self energy. The nonlinear dynamics given 
by eq. (1) appears to distinguish certain numerical values of coupling constants 
that do coincide with known standard model coupling constants with very high 
precision [8, 9]. A random coincidence can really be excluded. In this way the 
chaotic fields can help to select the ‘correct’ vacuum out of an enormous 
number of possibilities to shape the world around us. Our numerics shows that  
anthropic arguments for standard model parameters are most likely to be 
wrong. This further emphasizes the physical importance of the chaotic 
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quantization method and more importantly the deep significance of the 
underlying non-linear dynamics given by eq.(1). 
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Figure Captions 

 
Fig. 1   

a
)(Vlog ϕ24 versus  for the one-dimensional chaotic CML 

described  by eq. (1) with the parameters N=2, s=1 and b=0 in the scaling 
region. 

alog4

 
Fig. 2   One period of the self energy given by eq. (2) of the one- 
dimensional chaotic CML described by eq. (1) in the scaling region. 
 
Fig. 3   Magnification of the local minimum labeled b4 in Fig. 2. 
 
Fig. 4   Magnification of the local minimum labeled b9 in Fig. 2. 
 
Fig. 5   

a
)(Vlog ϕ24 versus  for the four dimensional chaotic CML alog4

described  by eq. (3) in the scaling region. 
 
Fig. 6   One period of the self energy given by eq. (4) for the four- 
dimensional chaotic CML described by eq. (3) in the scaling region. 
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