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Complex nonequilibrium systems are often effectively described by a ‘statistics of a statistics’,

in short, a ‘superstatistics’.

We describe how to proceed from a given experimental time series

to a superstatistical description. We argue that many experimental data fall into three different
universality classes: y2-superstatistics (Tsallis statistics), inverse x2-superstatistics, and log-normal
superstatistics. We discuss how to extract the two relevant well separated superstatistical time scales
7 and T, the probability density of the superstatistical parameter (3, and the correlation function
for B from the experimental data. We illustrate our approach by applying it to velocity time series
measured in turbulent Taylor-Couette flow, which is well described by log-normal superstatistics

and exhibits clear time scale separation.

PACS numbers: 05.40.-a, 42.27.Eq

I. INTRODUCTION

Driven nonequilibrium systems of sufficient complex-
ity are often effectively described by a superposition of
different dynamics on different time scales. As a simple
example consider a Brownian particle moving through
a changing environment. A relatively fast dynamics is
given by the velocity of the Brownian particle, and a
slow dynamics is given, e.g., by temperature changes of
the environment. The two effects are associated with two
well separated time scales, which result in a superposi-
tion of two statistics, or in a short, a superstatistics (SS)
i, B[, 4. 8,6, , 18,4, id, i1, 12, 13, 14, 114, id, (7, (8, [1d,
20, 1211, 22, 23]. The stationary distributions of supersta-
tistical systems typically exhibit non-Gaussian behavior
with fat tails, which can decay with a power law, or as
a stretched exponential, or in an even more complicated
way. An essential ingredient of SS models is the exis-
tence of an intensive parameter 3 that fluctuates on a
large spatio-temporal scale T'. For the above example of
a Brownian particle, 3 is the fluctuating inverse temper-
ature of the environment, but in general 8 can also be
an effective friction constant, a changing mass parame-
ter, a changing amplitude of Gaussian white noise, the
fluctuating energy dissipation in turbulent flows, or sim-
ply a local variance parameter extracted from a signal.
The SS concept is quite general and has recently been
applied to a variety of physical systems, including La-
grangian |10, [11, [12] and Eulerian [13, [14] turbulence,
defect turbulence [17], atmospheric turbulence [16, [17],
cosmic ray statistics [18], solar flares [19], random net-
works |20, 21] and mathematical finance [22, 23].

In this paper we address a problem that is of great
interest in experimental applications. Given an exper-

imentally measured time series or signal, how can we
check if this time series is well described by a superstatis-
tical model, i.e., does it contain two separate time scales,
and how can we extract the relevant superstatistical pa-
rameters from the time series? Further, since there are
infinitely many SS [1]], which ones are the most relevant
for typical experimental situations?

We argue that many experimental data (see, e.g.,
1,012,113, 116,124, 125, 26]) are well described by three ma-
jor universality classes, namely x2, inverse x?, and log-
normal SS. These SS represent a universal limit statistics
for large classes of dynamical systems. We then show
how to extract the superstatistical parameters from a
given experimental signal. Our example is a time series
of longitudinal velocity differences measured in turbulent
Taylor-Couette flow [21]. We will extract the two rele-
vant time scales 7 and T from the data and show that
there is clear time scale separation for our example. We
will also investigate the probability density of 5 and the
(B-correlation function. While our turbulent time series
appears to fall into the universality class of log-normal
superstatistics, our concepts are general and can in prin-
ciple be applied to any time series.

II. SUPERSTATISTICAL UNIVERSALITY
CLASSES

Consider a driven nonequilibrium system which is in-
homogeneous and consists of many spatial cells with dif-
ferent values of some intensive parameter § (e.g., the
inverse temperature). The cell size can be determined by
the correlation length of the continuously varying -field.
Each cell is assumed to reach local equilibrium very fast,



i.e., the associated relaxation time 7 is short. The param-
eter (B in each cell is approximately constant during the
time scale T', then it changes to a new value. In the long-
term run (¢ >> T), the stationary distributions of this
inhomogeneous system arise as a superposition of Boltz-
mann factors e #F weighted with the probability density
f(B) to observe some value /3 in a randomly chosen cell:

p(E) = / h f(ﬂ)ﬁp(f?)e’“dﬂ 1)

Here F is an effective energy for each cell, p(FE) is the
density of states, and Z() is the normalization constant
of p(E)e P for a given 3. The simplest example is a
Brownian particle of mass m moving through a changing
environment in d dimensions. For its velocity ¥ one has
the local Langevin equation

U= —yT+ oL(t) (2)

(L(t): d-dimensional Gaussian white noise) which be-
comes superstatistical because for a fluctuating environ-
ment the parameter 3 := %% becomes a random vari-
able as well: it varies from cell to cell on the large spatio-
temporal scale T'. Of course, for this example £ = %mﬁQ,
and while on the time scale T" the local stationary distri-

bution in each cell is Gaussian,

/2 B
pi1s) = (1) et ®

the marginal distribution describing the long-time behav-
ior of the particle for ¢t >> T,

(@) = / " HBw@I8)ds (4)

exhibits non-trivial behavior. The large-|v| tails of the
distribution (@) depend on the behavior of f(5) for 5 — 0
[4]. For example, if f(3) is a x?-distribution of degree n,
then eq. @) generates Tsallis statistics [28, 29], with en-
tropic index ¢ given by ¢ = 1 + nLer H]. Of course, a
necessary condition for a superstatistical description to
make sense is the condition 7 = y~! << T, because oth-
erwise the system is not able to reach local equilibrium
before the next change of § takes place. In superstatis-
tical turbulence models |4, [10, [11, 12, [14], one formally
replaces the variable ¥ in eq. @) by the velocity difference
@ (or acceleration @ on smallest scales), and [ is related
to energy dissipation e.

The distribution f(8) is determined by the spatio-
temporal dynamics of the entire system under consider-
ation. By construction, § is positive, so f() cannot be
Gaussian. Let us here consider three examples of what
to expect in typical experimental situations.

(a) There may be many (nearly) independent micro-
scopic random variables ¢;, j = 1,...,J, contributing
to 0 in an additive way. For large J their rescaled sum

\% Z;-le &; will approach a Gaussian random variable

X1 due to the Central Limit Theorem. In total, there
can be many different random variables consisting of mi-
croscopic random variables, i.e., we have n Gaussian ran-
dom variables X1, ..., X, due to various relevant degrees
of freedom in the system. As mentioned before, 5 needs
to be positive; a positive § is obtained by squaring these
Gaussian random variables. The resulting =Y | X?
is x2-distributed with degree n,

1 n \"* n/2—1,— 345 5
r<%>(2_60) pretes, B

where [y is the average of 5. As shown in |3, 30], the SS
resulting from (@) and (@) is Tsallis statistics [2§]. Tt ex-
hibits power-law tails for large |]. Our above argument
shows that Tsallis statistics arises as a universal limit dy-
namics, i.e., the details of the microscopic random vari-
ables &; (e.g., their probability densities) are irrelevant.

(b) The same considerations as above can be applied if
the “temperature’ 3! rather than 3 itself is the sum of
several squared Gaussian random variables arising out of
many microscopic degrees of freedom &;. The resulting
f(B) is the inverse x2-distribution given by

n/2
(7)) e o

It generates superstatistical distributions @) that have
exponential decays in |¥] [3, 24]. Again this superstatis-
tics is universal: details of the ; are irrelevant.

(c) Instead of 3 being a sum of many contributions, for
other systems (in particular, turbulent ones) the random
variable # may be generated by multiplicative random
processes. We may have a local cascade random variable
X = H‘-le &;, where J is the number of cascade steps
and the fj are positive microscopic random variables. By
the Central Limit Theorem, for large J the random vari-
able % log X1 = % ijl log&; becomes Gaussian for
large J. Hence X; is log-normally distributed. In gen-
eral there may be n such product contributions to g, i.e.,
B = [I_, Xi;. Then logf = >  logX; is a sum of
Gaussian random variables; hence it is Gaussian as well.
Thus [ is log-normally distributed, i.e.,

£(8) = — L e { 20 (7)
= \/%Sﬁ exp 552 ,

where p and s? are suitable mean and variance pa-
rameters [1l]. For related turbulence models, see, e.g.,
L0, 01, 25, 131]. Again this log-normal result is indepen-
dent of the details of the microscopic cascade random
variables &;; hence log-normal SS is universal as well.
Although more complicated cases can be constructed,
we believe that most experimentally relevant cases fall
into one of these three universality classes, or simple com-
binations of them. x? superstatistics has been found for
wind velocity fluctuations [16, [11], and log-normal su-
perstatistics has been found for Lagrangian |10, [11, 1]

f(B) =

fB) =




and Eulerian [13, [14] turbulence. Candidate systems for
inverse x? superstatistics are systems exhibiting velocity
distributions with exponential tails [3, 124].

III. APPLICATION TO EXPERIMENTAL TIME
SERIES

Suppose some experimental time series wu(t) is given
[32]. Our goal is to test the hypothesis that it is due to
a superstatistics and if so, to extract the two basic time
scales 7 and T as well as f(3). First let us determine
the large time scale T'. For this we divide the time series
into N equal time intervals of size At. The total length
of the signal is t;,4, = NAt. We then define a function
Kk(At) by

twnaz_At 5 4
K(At) = / Gl [
0 ((u—u) >t0,At
Here (---)t,at = ti”“---dt denotes an integration

over an interval of length At starting at tp, and @ is
the average of u(t) (we may either choose @ to be a local
average in each cell or a global average over the entire
time series — our results do not depend on this choice in
a significant way). Equation ) simply means that the
local flatness is evaluated in each interval of length At,
and the result is then averaged over all {y. We now define
the superstatistical time scale T' by the condition

k(T) = 3. (9)

Clearly this condition simply implies that we are looking
for the simplest SS, a superposition of local Gaussians,
which have local flatness 3 (see [13] for similar ideas).
If At is so small that only one constant value of u is
observed in each interval, then of course k(At) = 1. On
the other hand, if At is so large that it includes the entire
time series, then we obtain the flatness of the distribution
of the entire signal, which will be larger than 3, since
superstatistical distributions are fat-tailed. Hence there
exists a time scale T' satisfying ().

The function x(At) is shown in Fig. 1 for longitu-
dinal velocity differences, u(t) = v(t + §) — v(t), mea-
sured in Taylor-Couette flow at Reynolds number Re =
540000 [27]. The total number of measurement points
was 2 x 107, and in the present analysis At < 1000, so
N > 2 x 10%, which means there is sufficient statistics to
obtain precise values for the time scales T and 7. For de-
tails of the experiment, see [21]. For each time difference
d (measured in units of the sampling frequency, which
was 2500 times the inner cylinder rotation frequency),
the relevant superstatistical time scale T leading to lo-
cally Gaussian behavior is extracted in Fig. 1. The time
scales T have to be compared with the relaxation times
7 = y~1 of the dynamics, which can be estimated from
the short-time exponential decay of the correlation func-
tion Cy(t —t') = (u(t)u(t')) of the velocity difference u
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FIG. 1: Determination of the superstatistics long time scale
T from the flatness function k(At) given in eq. (8), for § =
27,5 =0,1,2,...,7 (from top to bottom). The intersections
with the line k = 3 yield T' = 39,42, 58, 100, 184, 320, 600, 948,
respectively. Time is nondimensional (see text).
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FIG. 2: Determination of the superstatistics short time scale 7
from the decay of the correlation function Cy (t) of the velocity
difference. Defining 7 by C(7) = e~ 1C,(0), we obtain for § =
275 =0,1,2,---,7, 7 = 2.1,2.3,2.8,4.3,7.2,12.1, 19.9, 29.5,
respectively.

(Fig. 2). We find that the ratio T'/7 ~ 17...34 is large
compared to unity, and the ratio has only a weak (loga-
rithmic) dependence on ¢ (Fig. 3). Thus there are indeed
two well separated time scales in the time series for tur-
bulent Couette-Taylor flow.

Laboratory data were obtained for a wide range of
Reynolds numbers, so we can also examine how the time
scale ratio changes with the Reynolds number Re. Fig. 4
shows that T'/7 increases with increasing Re, meaning
that the superstatistics approach becomes more and more
exact for Re — oo.

Next, we are interested in the analysis of the slowly
varying stochastic process [(t). Since the variance of
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FIG. 3: The time scale ratio 7'/, given as a function of ¢ for
turbulence data at Re = 540000, is large compared to unity.
Thus the long and short time scales are well-separated, as
required for superstatistics. The dashed line is a fit given by
T/7 =174 3Ind.
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FIG. 4: Time scale ratio T'/7 as a function of Reynolds num-
ber Re for § = 8,4,2,1 (from top to bottom).

the local Gaussians 4/ %6_%3“2 is given by 87!, we can

determine the process (t) from the time series as

1

(U)o, =

Blto) =

<U>%0,T' (10)

We obtain the probability density f(8) as a histogram of
B(to) for all values of tg, as shown in Fig. 5. We compare
the experimental data with log-normal, x? and inverse
x? distributions with the same mean () and variance
(%) — (B)* as the experimental data. The fit of the data
to a log-normal distribution is significantly better than to
a x? or inverse x?. Indeed, the cascade picture of energy
dissipation in turbulent flows suggests that our time se-
ries should belong to the log-normal universality class of
superstatistics (see section II (c)). A power-law relation
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FIG. 5: Probability density f(() extracted from the turbulent
time series (6 = 16), and compared with log-normal, x?2, and
inverse x? distributions, on (a) linear-linear and (b) log-log
plots. All distributions have the same mean and variance as
the experimental data.

between the energy dissipation rate € and 3 was found for
the Couette-Taylor turbulence data in an analysis in ﬂﬁ]
Note that if such a power-law relation is valid, then a log-
normally distributed e implies a log-normally distributed
0, and vice versa.

For superstatistics to make physical sense, the variable
[ must change slowly compared to u. This is indeed
the case for our turbulence data, as Fig. 6 illustrates
for a sample time series. A slow (-dynamics also im-
plies a slow correlation decay of the (-correlation func-
tion Cg(t — ') = (B(t)B(t')). For our data we observe
a power-law decay with a small exponent, Cg(t) ~ ¢t=%9
(Fig. 7). This means that 3(t) indeed has a long memory
and changes slowly, a necessary consistency condition for
the superstatistics approach. For comparison, the cor-
relation function of the longitudinal velocity difference
u(t) first decays exponentially fast and only finally, for
very large times, approaches a power-law decay of the



8 T T T T T T T T T
7F | ]
h
I i
61 i 7
1y !
I !
Sr ! i
i i i |
4+ n H b s
o 1 noon !
= ao N [N h I \ |
& S Wy Y Bl g
= T n Lo AV R R N ANV
g 2 iy T ' AU A (R A
| 0 ! \n A [ o | \ H
T N it Vel Y I
1! ~ -
1 Bk
O H
-1 H
2+ 4
_3 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

t

FIG. 6: Time series of 3(t) (top) and u(t) (bottom). For this
example § = 2 and T = 42.
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FIG. 7: Correlation functions Cjs(t) (top) and |Cu(t)| (bot-
tom) for 6 = 1. The straight lines represent power laws with

exponents -0.9 and -1.8.

form Cy(t) ~ t~1®, as shown in Fig. 7. Note that for
t > 6 the (-correlation is larger than the wu-correlation
by a factor 10...100.
Finally, we may check the validity of the general SS
formula
pw) = [ £l (11)
0
where p(u|(3) is the conditional distribution of the signal
u(t) in cells of size T', and p(u) is the marginal stationary

distribution of the entire signal. For log-normal super-
statistics this means

_ 1 Oo -1/ —(In(8/p))* —1pu?
_2—71'5/0 dpgg 1Qexp{T}e .
(12)

As shown in Fig. 8, there is excellent agreement be-
tween the experimental histogram and the superstatis-
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FIG. 8: Comparison of the measured (fluctuating lines) and
predicted (dashed lines) probability distribution p(u) for ve-
locity differences on (a) semi-log plot, which emphasizes the
tails, and (b) linear-linear plot, which emphasizes the peak.
The predicted p(u) was obtained from eq. ([[@) with f(3) be-
ing a log-normal distribution with the same parameters as in
Fig. 5 (6 = 16).

tical model prediction, both in the tails and in the region
around the peak of the distribution.

For any superstatistics one can formally define a pa-
rameter ¢ by [l

(82)

(B>

g measures in a quantitative way the deviation from
Gaussian statistics. No fluctuations in § at all corre-
spond to f(8) = 6(6 — Bo) and ¢ = 1, i.e., ordinary
equilibrium statistical mechanics. For y2-superstatistics,
the above ¢ is given by ¢ =1+ 2/n ﬂ, m] and is nearly
the same as the entropic index ¢ introduced by Tsallis
15, 24, 9] (¢r = 14 2/(n +1)). For log-normal (LN)

4
superstatistics, one can relate g to the flatness F' = <(uu2 >>2

(13)
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FIG. 9: The parameter ¢ (eq. (13)) as a function of 4, as eval-
uated from eq. (@) (g-fluctuations) and eq. [[¥) (g-flatness).

of the distribution p(u). Since for log-normal superstatis-
tics [14]

2

<5>LN = /Leés (14)
(B = pe® (15)
(W?) = pless (16)
(uh) = 3p72%e>, (17)

where p and s? are the mean and variance parameters
of the distribution (@), we arrive at the following simple
relation,

1
g=¢€ = gF, (18)

using eq. ([3). We thus have two different equations to
evaluate g for our time series. The first one, based on
eq. (@), is always valid (i.e., for any f(5)), whereas the
second one, based on eq. ([[J), should coincide with the
first one provided the system is described by log-normal
superstatistics. Figure 9 shows the g-values that we ex-
tract from the experimental data for Re = 540000 using

both methods. As expected, g decreases monotonically
with scale 6. Both curves agree well for § > 2. This
indicates that log-normal superstatistics is a good model
for our data, and that our extraction of the time scale
T of the process (3(t) is consistent. Significant deviations
between the two ¢-values occur only on the smallest scale
0 = 1, where the experiment reaches its resolution limits.

IV. CONCLUSIONS

In this paper we have advocated the view that the
non-Gaussian behavior of many complex driven nonequi-
librium systems can often be understood as a superpo-
sition of two different statistics on different time scales,
in short, a superstatistics. We have argued that typi-
cal experimental situations are described by three rel-
evant universality classes, namely x2, inverse x2, and
log-normal superstatistics. Our example, turbulent Tay-
lor Couette flow, falls into the universality class of log-
normal superstatistics. This means the time series is
essentially described by local Boltzmann factors e3P’
whose variance parameter § varies slowly according to
a log-normal distribution function. We have developed
a general method to extract from data the process 3(t),
its probability density f(/3), and its correlation function.
Our approach is applicable to any experimental time se-
ries. We have extracted the two relevant time scales 7
(the relaxation time to local equilibrium) and T (the large
time scale on which the intensive parameter 8 fluctuates).
Our main result is that for turbulent Taylor-Couette flow
there is clear time scale separation, which is a necessary
condition for a superstatistical description to make phys-
ical sense. The ratio T'/7 grows logarithmically with the
scale separation d on which longitudinal velocity differ-
ences are investigated. Moreover, T'/7 also increases with
increasing Reynolds number, making the superstatistical
approach more and more exact for increasing Reynolds
number. The experimentally measured distributions of
6 and u agree very well with the superstatistical model
predictions.
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