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Lattice of the subgroups, adjoint action, AD-measures.

L(G ) -set of all subgroups of the group G (topology, compactness,
Borel structure).
Adjoint action of G on L(G ). g : H → Hg = g−1Hg .
ad-invariant measure is a Borel probability measure which is
adjoint invariant:
µ(Hg ) = µ(H) H ⊂ L(G ).
Denote as AD(G ) -class of all ad-invariant Borel measures on the
lattice of subgroups L(G ).
PROBLEM: When does exist continuous AD-measures?
To describe all (ergodic, continuous) AD-measure for given
countable group G .
I will give solution (V2009) of that Problem for infinite symmetric
group S∞.
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3.Algebraic geometry of symmetric spaces ( M. Abert, Y. Glasner
and B. Virag. et al — ”Invariant random subgroups” (IRS).
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Totally non-free action, discrete case.

Definition of the totally non-free action.

Theorem
Theorem-Definition A measure-preserving action of a countable
group G on a standard measure space with probability measure
(X ,A, µ) is called totally non-free (TNF) if one of the following
equivalent conditions holds:
1. The map Ψ : X → L(G ); x 7→ Stabx (”characteristic map”) is a
mod0 isomorphism mod0 of the action of G on (X , µ) and adjoint
action ad(G ); H 7→ Hg = g−1Hg on (L(G ),Ψ∗µ.
(”Different points have different stabilizers”)
2.The Boolean algebra B generated by the family of the sets of
the fixed points: Xg = {x : gx = x} is complete Boolean algebra:
B =< Xg : g ∈ G >= A(X )

DYNAMICS ON THE LATTICE OF THE SUBGROUPS.
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EXAMPLE

Lemma
A transitive action of a group G (the left action of G on a
homogeneous space G/H) is totally non-free if and only if all the
stabilizers (i.e., the subgroup H) is a self-normalizing subgroup
(N(H) = H, or H ∈ LN(G )).

Denote as LN(G ) = {H ∈ L(G ) : N(H) = H}

Theorem
If a group G acts totally non free on the space (X , µ) then the
image Ψ∗µ of the measure µ under the characteristic map
Ψ : x → L(G ), is concentrated on the set of self-normalizers
:(Ψ∗µ)(LN) = 1.

We call such measures as TNF -measures.
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The filtration of the normalizers

The filtration of the lattice of the subgroups is as follow:

LN(G ) = {H ∈ L(G ) : N(H) = H} ⊂ LN2(G ) = {H : N2(H) = N(H) ⊂}

⊂ LN3(G ) = {H : N3(H) = N2(H)} ⊂ . . .

Observation: Each subgroup H of the group G can be imbedded to
the uniquely defined self-normalizer subgroup NN̄ which is limit of
tower (transfinite in general) of the subgroups Nτ (H). Remark
that the ordinal in the sequences of normalizers could be an
arbitrary ordinal.
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The filtration of AD-measures

The corresponding filtration of the measures used the following
operation (”normalization”):

N ≡ N∗ : N (µ)[A] = µ(H : N(H) ∈ A) = µ{N−1[A]},

We have

TNF = {µ ∈ AD : N (µ) = µ} ⊂ RTNF = {µ ∈ AD : N (µ) ∈ TNF} =

= N−1(TNF ) ⊂ N−2(TNF ) . . .

Remark The AD-measures on (L(G ), whose normalization is TNF
we call ”reduced TNF or RTNF -measures. Adjoint action of G on
(L(G ), µ) is TNF off µ is RTNF -measure.
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Description of the ergodic AD-measures on the lattice
L(S∞).

The group S∞ is the group of all finite permutations of N.
Consider a sequence of positive numbers α = {αi}i=0,1... such that

αi ≥ αi+1 ≥ 0 for i > 0;α0 ≥ 0;
∞∑
i=0

αi = 1.

Define a partition δ of indices N = {i = 1, . . . } onto finite or
infinite number of blocks of three types subsets: i ∈ P+, i ∈ P+,
P−, i ∈ Pc , where each block of set of type P+ and P− consist
with one point, and each block of type Pc consist with more than
two points; of course it is possible that only one of the sets of
blocks of type P+, P−, Pc is nonempty. Denote the block of
partition δ which contains i as Ci (it is single-point block if
i ∈ P+,P−).
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Main result

Consider the space of all sequences
N = NN = {{ξn} : xn ∈ N, n ∈ N} and consider Bernoulli measure
Mα with probability vector α = {αi}; i ∈ N;αi > 0:
Pr({ξ : ξn = i}) = αi and {ξn} are i.i.d. We have Bernoulli space
(N ,Mα). Let {ξn}; n ∈ N is random sequence from corresponding
Bernoulli ensemble

Let Ni = {n : ξn = i}, i ∈ N, αi > 0. If i ∈ P+ then define
Gi = SNi

;
if i ∈ P− then Gi = S−Ni

(this is the alternating group);
Let i ∈ Pc , and Ci is block of partition δ which contains i , then
group Gi is the subgroup of the product:

∏
S∪Nj ,j∈Ci

, of the
elements of type (g1, g2 . . . ) all of which have the same parity; this
subgroup depends on the block Ci (not of individual i).
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subgroup depends on the block Ci (not of individual i).
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Now we define a random subgroup of S∞ as the product:

G ξ =
∏
Ci

Gi

Theorem
For each ergodic AD-measure µ on the lattice of the subgroups of
the group SN there exists a unique sequence αi , i ∈ N and
partition δ of above type of N, such that a map ξ 7→ G ξ is
isomorphism mod0 between Bernoulli space (N ,Mα) and
(L(SN), µ).

We called such a subgroups as random signed Young subgroup.
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Proof, Jordan-Wielandt theorem

The proof based on the several basic facts.
1.Jordan-Wielandt theorem:
there are no primitive subgroups of the group S∞ except S∞ itself
and alternating subgroup.
Jordan’s Lemma if a proper primitive subgroup of Sn has an
element with support of size k , then n < β(k); a sharp bound on
β(k) is still unknown.
2.AD-measure can’t concentrated on the class of intransitive
subgroups.
3.Each ergodic AD-measure concentrated on the subgroups ”like
product of symmetric or alternation subgroups.
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Characters is a measure of the set of the subgroups which
is fixed.

The main observation is the following formula for characters:

χ(g) = µ{H : Hg = H},

or (for TNF -measure)

χ(g) = µ({H : g ∈ H}).

where µ is an AD-measure.
or more general formula:

χ(g) = α(g ,H)µ({H : g ∈ H}),
jj where α(g ,H) is a ±-cocycle.

Theorem
For infinite symmetric group S∞ this type of the characters
exhausts all of the characters

It is not clear for what groups the is formula for all characters. F.e.
not true for finite groups.
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Continuum analog of oligomorphic action

P. Cameron: ”a subgroup G of the group SN of all finite
permutations of N is called oligomorphic if for any positive integer
k , the number of orbits of the diagonal action of G in the
Cartesian product Nk is finite)”.
Usual analog of transitivity topological or (everywhere density of
all orbit of G ) or measure-theoretic = ergodicity no invariant sets
of intermediate measure.).

Definition
1. We say that the action of a group of measure preserving
transformations is it metrically k-transitive if for almost every (in
the sense of the measure µk on X k) choice of points
x1, x2, . . . , xk−1, the action of the intersection of subgroups
stabilizers

⋂k−1
i=1 Gxi on (X , µ) is ergodic.

2. We say that the action of a group measure preserving
transformations is oligomorphic if for any positive integer k and for
almost all k-tuple points xi , i = 1, 2 . . . k the number of ergodic
components of the intersection of stabilizers

⋂k−1
i=1 Gxi on (X , µ) is

finite.
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Problems

Problem For what groups there exist k-transitive actions for given
k? oligomorphic action? When adjoint action with respect to
AD-measures is k-transitive? oligomorphic?
Problem For what groups the list of ergodic AD-invariant
measures on the lattice of subgroups has a good parametrization
(like for infinite symmetric group)?
”Smoothness of the AD-problem”
Problem To describe the list of AD-invariant measures for the
group GL(Fq,∞), and GLB(Fq).
Conjecture: the AD-problem for those groups is smooth.
Problem In what sense the problem of the description of
AD-invariant measures for free groups Fk is universal in the class
of all countable groups.
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HAPPY BIRTHDAY, DEAR PETER! HUGE SET OF THE
PROBLEMS FROM ALL MATH!


