A Note on the Erdös-Farber-Lovász Conjecture

Bill Jackson
Queen Mary College, London E1 4NS, U.K.
e-mail: b.jackson@qmul.ac.uk
G. Sethuraman
Anna University, Chennai 600 025, India
e-mail: gurusethu@yahoo.co.in
Carol Whitehead
Goldsmiths College, London SE14 6NW, U.K.
e-mail: cwhitehead@onetel.net.uk

November 7, 2003

Abstract

A hypergraph H is linear if no two distinct edges of H intersect in more than one vertex and loopless if no edge has size one. A q-edge-colouring of H is a colouring of the edges of H with q colours such that intersecting edges receive different colours. We use Δ_{H} to denote the maximum degree of H. A well known conjecture of Erdös, Farber and Lovász is equivalent to the statement that every loopless linear hypergraph on n vertices can be n-edge-coloured. In this note we show that the conjecture is true when the partial hypergraph S of H determined by the edges of size at least three can be Δ_{S}-edge-coloured and satisfies $\Delta_{S} \leq 3$. In particular, the conjecture holds when S is unimodular and $\Delta_{S} \leq 3$.

1 Introduction and terminology

A hypergraph H on a finite set $V(H)=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is a family $E(H)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of non-empty subsets of $V(H)$ such that $\bigcup_{i=1}^{m} e_{i}=V(H)$. The elements of $V(H)$ are called the vertices and the elements of $E(H)$ the edges of H. A hypergraph can also be defined by its incidence matrix $A(H)=\left[a_{i j}\right]$, with rows representing the vertices v_{1}, \ldots, v_{n}, columns representing the edges $e_{1}, e_{2}, \ldots, e_{m}$, where $a_{i j}=1$ when $v_{i} \in e_{j}$ and 0 otherwise. The dual H^{*} of H is the hypergraph with vertex set
$E(H)$, edge set $V(H)$ and incidence matrix $A(H)^{T}$. A hypergraph in which each edge has size at most two is a graph (without isolated vertices).
A subhypergraph of H is a hypergraph which corresponds to a submatrix of the incidence matrix $A(H)$. A partial hypergraph of H is a subhypergraph H^{\prime} with $E^{\prime}=E\left(H^{\prime}\right) \subseteq E(H)$ and $V\left(H^{\prime}\right)=\cup_{e \in E^{\prime}} e$. We shall say that H^{\prime} is determined by E^{\prime}. The columns of $A\left(H^{\prime}\right)$ are just the columns of $A(H)$ corresponding to the edges in E^{\prime}. We denote the partial hypergraph determined by $E(H) \backslash E^{\prime}$ by $H-E^{\prime}$ (or by $H-e$ in the case where $E^{\prime}=\{e\}$).
A hypergraph H is said to be linear if $|e \cap f| \leq 1$ for all $e, f \in E(H)$. An edge of size one is called a loop and a hypergraph in which each edge has size at least two is called loopless. A loopless linear graph is said to be simple.
For $v \in V(H), d_{H}(v)$ is the number of edges containing v in H and $\Delta_{H}=\max _{v \in V(H)} d_{H}(v)$. The maximum number of pairwise intersecting edges of H is denoted by Δ_{H}^{0}.
A k-vertex colouring of H is an assignment of k colours to the vertices of H in such a way that no edge contains two vertices of the same colour. Similarly, a k-edge colouring of H is an assignment of k colours to the edges of H so that distinct intersecting edges receive different colours. The chromatic index $q(H)$ is the least number k of colours required for a k-edge colouring of H. Clearly

$$
q(H) \geq \Delta_{H}^{0} \geq \Delta_{H}
$$

A hypergraph H is said to have the edge-colouring property if $q(H)=\Delta_{H}$.
This note was motivated by the following well-known conjecture due to Erdös, Farber and Lovász (see [4]).

Conjecture 1 Let H be a linear hypergraph consisting of n edges, each of size n. Then it is possible to colour the vertices of H with n colours so that no two vertices in the same edge receive the same colour.

Let H be a linear hypergraph and let $V^{\prime} \subseteq V(H)$ be the set of vertices occurring in at least two edges of H. If it is possible to colour the vertices in V^{\prime} so that no two vertices in the same edge receive the same colour, then this colouring can be extended to a vertex colouring of H with the same number of colours. Furthermore, if H has n edges, then since H is linear, no edge can contain more than $n-1$ vertices of degree at least two. Thus Conjecture 1 is equivalent to the following:

Conjecture 2 Let H be a linear hypergraph consisting of n edges, in which every vertex has degree at least 2. Then it is possible to colour the vertices of H with n colours so that no two vertices in the same edge receive the same colour.

It is easily seen that the dual of a linear hypergraph is also linear. Further, the dual of the condition that no vertex has degree less than 2 is that no edge should contain less than two vertices. Hence Conjecture 2 is equivalent to the following:

Conjecture 3 Let H be a loopless linear hypergraph on n vertices. Then $q(H) \leq n$.

Let S be the partial hypergraph of H determined by the edges of size at least three. Conjecture 3 is true if $S=\emptyset$, since every simple graph on n vertices can be n edge coloured. We shall show Conjecture 3 is true for all H for which S has the edge-colouring property and $\Delta_{S} \leq 3$.

2 Results

Throughout this section, H denotes a loopless linear hypergraph on n vertices. We use the following notation. The partial hypergraph of H determined by the edges of size at least 3 is denoted by S. Note that every edge in the partial hypergraph $G=H-E(S)$ has size 2 and hence G is a simple graph. We denote the subgraph of G induced by the set of vertices in $V(H) \backslash V(S)$ by T and the subgraph induced by the vertices of degree Δ_{G} by G_{Δ}. Our general approach to edge-colouring H is to extend a $q(S)$-edge-colouring of S to a subset $E^{\prime} \subseteq E(H) \backslash E(S)$, so that the partial hypergraph $G^{\prime}=H-\left(E(S) \cup E^{\prime}\right)$ can be edge-coloured with the remaining $n-q(S)$ colours. To edge-colour G^{\prime}, we use the following well-known theorems due to Vizing [6] and Fournier [5].

Theorem 2.1 (Vizing) Let G be a simple graph. Then $q(G) \leq \Delta_{G}+1$.
Theorem 2.2 (Fournier) Let G be a simple graph. If G_{Δ} is acyclic, then $q(G)=$ Δ_{G}.

Our first lemma follows from a stronger theorem of Berge and Hilton (Theorem C in [2]). We include their proof for completeness.

Lemma 2.3 Let H be a loopless linear hypergraph on n vertices. If $\Delta_{S}=1$, then $q(H) \leq \Delta_{H}+1$.

Proof. Give the edges of S the colour c. Choose a maximum matching M in $H-V(S)$ and give the edges of M the colour c also. Then the partial hypergraph $G=H-E(S) \cup M$ is a simple graph in which either $\Delta_{G}=\Delta_{H}-1$, or $\Delta_{G}=\Delta_{H}$ and the vertices of degree Δ_{H} are independent. Hence by Theorem 2.1 or Theorem 2.2, G is Δ_{H}-edge-colourable, giving $q(H) \leq \Delta_{H}+1$.

Since H is loopless and linear, $\Delta_{H} \leq n-1$ and so Lemma 2.3 implies Conjecture 3 is true when $\Delta_{S}=1$. In the case when $\Delta_{S} \geq 2$, we make the stronger assumption that H has the edge-colouring property. We can also assume, without loss of generality, that every pair of vertices occur together in an edge, since adding edges of size two cannot decrease $q(H)$. This has the following simple consequences. When $T \neq \emptyset$, T is a complete graph and each vertex of T is joined by an edge of size two to each vertex of S. If $x, y \in V(S)$, then x and y are non-adjacent in the graph $G=H-E(S)$ if and only if in H they are contained in the same edge $e \in E(S)$. In particular, for each $v \in V(S), d_{G}(v) \leq n-3$ and $d_{G}(v)=n-3$ if and only if v is contained in a unique edge $e \in E(S)$ with $|e|=3$. Further, when $d_{S}(v)=2$ we have $d_{G}(v) \leq n-5$, and when $d_{S}(v)=3$ we have $d_{G}(v) \leq n-7$.

Lemma 2.4 Let H be a loopless linear hypergraph on n vertices in which $\Delta_{S}=$ $q(S)=2$. Then $q(H) \leq n$.

Proof. We may assume, without loss of generality, that each pair of vertices is contained in an edge. Give S a 2-edge-colouring with colours c_{1}, c_{2}. If $V(T)=\emptyset$, let $G=H-E(S)$. Then $\Delta_{G} \leq n-3$ and G is ($n-2$)-edge-colourable, by Vizing's theorem, giving $q(H) \leq n$.
Now suppose $V(T)=\{u\}$. If there exists a vertex $w \in V(S)$ such that $d_{S}(w)=1$, then there is a colour, say c_{1}, missing at w. Give $u w$ the colour c_{1} and let $G=$ $H-E(S)-u w$. Then $V\left(G_{\Delta}\right)=\{u\}$ and $\Delta_{G}=n-2$. Hence G can be $(n-2)$-edgecoloured by Fournier's theorem and, again, $q(H) \leq n$. Otherwise, every vertex in S is incident with an edge in each colour and hence $d_{G}(v) \leq n-5$ for all $v \in V(S)$. Choose an edge $e \in E(S)$ such that e is in colour c_{2} and change the colour on e to a new colour c_{3}. Then S contains vertices w_{2}, w_{3} such that colour c_{j} is missing at w_{j}, for each $j \in\{2,3\}$. Give the edge $u w_{j}$ the colour c_{j}, for $j=2,3$, and let $G=H-E(S) \cup\left\{u w_{2}, u w_{3}\right\}$. Then $V\left(G_{\Delta}\right)=\{u\}$ and $\Delta_{G}=n-3$. Thus G is $(n-3)$-edge-colourable, by Fournier's theorem, and again $q(H) \leq n$.
Next, suppose $V(T)=\left\{u_{1}, u_{2}\right\}$. Give $u_{1} u_{2}$ the colour c_{1} and let $G=H-E(S)-$ $u_{1} u_{2}$. Then $V\left(G_{\Delta}\right)=\left\{u_{1}, u_{2}\right\}, \Delta_{G}=n-2$ and G is $(n-2)$-edge-colourable by Fournier's theorem, giving $q(H) \leq n$.
Finally suppose $|V(T)|=t \geq 3$. If t is even, choose two disjoint perfect matchings M_{1}, M_{2} in T and colour the edges of M_{i} with colour c_{i}, for each $i \in\{1,2\}$. Let $G=H-E(S) \cup M_{1} \cup M_{2}$. Then $\Delta_{G}=n-3$ and we can ($n-2$)-edge-colour G, by Vizing's theorem. If t is odd, let u_{1}, u_{2} be distinct vertices in T. Let M_{i} be a perfect matching in $T-u_{i}$ and colour the edges of M_{i} with colour c_{i}, for $i=1,2$. Let $G=H-E(S) \cup M_{1} \cup M_{2}$. Then $V\left(G_{\Delta}\right)=\left\{u_{1}, u_{2}\right\}$ and $\Delta_{G}=n-2$. Hence G is again $(n-2)$-edge-colourable, by Fournier's theorem. Thus, in both cases, H is n-edge-colourable.

Lemma 2.5 Let H be a loopless linear hypergraph on n vertices in which $\Delta_{S}=$ $q(S)=3$. Then $q(H) \leq n$.

Proof. We may assume, without loss of generality, that each pair of vertices is contained in an edge. Give S a 3-edge-colouring with colours c_{1}, c_{2}, c_{3}. Let $G_{0}=$ $H-E(S)$ and let $X=\left\{x \in V(S): d_{G_{0}}(x)=n-3\right\}$. Then if $v \in X, v$ is incident with just one edge in S, and this edge has size 3 . Let $X_{i} \subseteq X$ be the subset of vertices in X that are incident with an edge in colour $c_{i}, i=1,2,3$. Number the colours so that $\left|X_{3}\right| \leq\left|X_{2}\right| \leq\left|X_{1}\right|$. If $X_{3} \neq \emptyset$, construct a matching M_{32} in G_{0} of X_{3} into X_{2}, saturating the vertices of X_{3}. Similarly, if $X_{2} \neq \emptyset$, construct a matching M_{21} in G_{0} of X_{2} into X_{1}, saturating X_{2}. If any vertex of X_{1} is unsaturated by M_{21}, construct a maximum matching M_{11} in G_{0} between the M_{21}-unsaturated vertices in X_{1}. Give the edges in M_{32} the colour c_{1} and the edges of M_{21} and M_{11} the colour c_{3}. Let $Y \subseteq X_{1}$ be the subset of vertices that are unsaturated by both M_{21} and M_{11}. Note that if $Y \neq \emptyset$, then Y is a subset of the vertices of a unique edge $e \in E(S)$, where $|e|=3$, and hence Y is an independent set with $|Y| \leq 3$. Let $G_{1}=G_{0}-M_{32} \cup M_{21} \cup M_{11}$. We distinguish four cases.
Case (a) $V(T)=\emptyset$. Then if $Y=\emptyset, \Delta_{G_{1}} \leq n-4$ and G_{1} is $(n-3)$-edge-colourable by Vizing's theorem. Otherwise, $V\left(G_{1_{\Delta}}\right)=Y$ and hence G_{1} is again ($n-3$)-edgecolourable, by Fournier's theorem, giving $q(H) \leq n$.
Case (b) $|T|=t \geq 3$. When t is even, choose three pairwise disjoint perfect matchings, M_{1}, M_{2}, M_{3}, in T and give the edges of M_{i} the colour c_{i}, for $i=1,2,3$. Let $G=G_{1}-M_{1} \cup M_{2} \cup M_{3}$. Then $d_{G}(v)=n-4$, for all $v \in V(T)$, and hence G is $(n-3)$-edge-colourable by a similar argument to case (a). When t is odd, choose a vertex $u_{3} \in V(T)$ and a perfect matching M_{3} in $T-u_{3}$. Choose $u_{1}, u_{2} \in V(T)$ such that $u_{1} u_{2} \in M_{3}$. Choose disjoint perfect matchings M_{1}, M_{2} in $T-M_{3}-u_{1}$ and $T-$ $M_{3}-u_{2}$ respectively, and give the edges of M_{i} the colour c_{i}, for $i=1,2,3$. If $Y=\emptyset$, let $G=G_{1}-M_{1} \cup M_{2} \cup M_{3}$. Then $\Delta_{G}=n-3, G_{\Delta}$ is the path $u_{1} u_{3} u_{2}$ and hence G is $(n-3)$-edge-colourable, by Fournier's theorem. Otherwise, let $y \in Y$. Give $y u_{j}$ the colour c_{j}, for each $j \in\{2,3\}$, and let $G=G_{1}-M_{1} \cup M_{2} \cup M_{3} \cup\left\{y u_{2}, y u_{3}\right\}$. Then $\Delta_{G}=n-3$ and $V\left(G_{\Delta}\right)=\left\{u_{1}\right\} \cup(Y \backslash\{y\})$. Thus G_{Δ} is acyclic and hence G is $(n-3)$-edge-colourable, by Fournier's theorem. This implies in each case that $q(H) \leq n$.
Case (c) $V(T)=\left\{u_{1}, u_{2}\right\}$. Suppose first $Y \neq \emptyset$. Give $u_{1} u_{2}$ the colour c_{1}. If $Y=$ $\left\{y_{1}, y_{2}, y_{3}\right\}$ or $Y=\left\{y_{1}, y_{2}\right\}$, give $y_{1} u_{1}, y_{2} u_{2}$ the colours c_{2} and c_{3} respectively, and let $G=G_{1}-\left\{u_{1} u_{2}, y_{1} u_{1}, y_{2} u_{2}\right\}$. Then $\Delta_{G}=n-3$ and G_{Δ} is the path $u_{1} y_{3} u_{2}$ in the first case and the isolated vertices u_{1}, u_{2} in the second case. When $Y=\{y\}$, give $y u_{1}$ colour c_{2} and $y u_{2}$ the colour c_{3}, and let $G=G_{1}-\left\{u_{1} u_{2}, y u_{1}, y u_{2}\right\}$. Then G_{Δ} is again the independent vertices u_{1}, u_{2} and $\Delta_{G}=n-3$. Hence in all three cases G is
($n-3$)-edge-colourable, by Fournier's theorem, so that $q(H) \leq n$. Thus we may assume that $Y=\emptyset$ and hence $d_{G_{1}}(v) \leq n-4$, for all $v \in V(S)$.
If there exists a vertex $v \in V(S)$ which is incident with only one colour in $S_{0}=$ $S \cup M_{32} \cup M_{21} \cup M_{11}$, say with c_{3}, then give $v u_{i}$ the colour c_{i}, for $i=1,2$, give $u_{1} u_{2}$ the colour c_{3} and let $G=G_{1}-\left\{u_{1} u_{2}, v u_{1}, v u_{2}\right\}$. If no such vertex exists, but there are two distinct vertices $x, y \in V(S)$ such that c_{i} is missing at x and c_{j} is missing at y in S_{0}, where $i, j \in\{1,2,3\}$ and possibly $i=j$, give $x u_{1}$ the colour $c_{i}, y u_{2}$ the colour c_{j}, and give $u_{1} u_{2}$ a colour c_{k} such that $k \in\{1,2,3\} \backslash\{i, j\}$. Let $G=$ $G_{1}-\left\{u_{1} u_{2}, x u_{1}, y u_{2}\right\}$. Then in both these cases, $V\left(G_{\Delta}\right)=\left\{u_{1}, u_{2}\right\}$ and $\Delta_{G}=n-3$, so that G is $(n-3)$-edge-colourable by Fournier's theorem and $q(H) \leq n$.
Thus we may assume that every vertex in $V(S)$ is incident with edges in at least two colours in S_{0}, and there is at most one vertex incident with edges in only two colours. This implies that $X=\emptyset$ so that $S_{0}=S$ and $\Delta_{G_{1}} \leq n-5$. Let $e \in E(S)$ be an edge in colour c_{1} and let $f \in E(S) \backslash\{e\}$. Change the colour on e to a new colour c_{4}. Then since H is linear, we can find distinct vertices $w_{1}, w_{2} \in e \backslash f$ and $z_{1}, z_{2} \in f \backslash e$. For $i=1,2$, give $u_{i} w_{i}$ the colour c_{1} and $u_{i} z_{i}$ the colour c_{4}. Give $u_{1} u_{2}$ the colour c_{2} and let $G=G_{0}-\left\{u_{1} u_{2}, u_{1} w_{1}, u_{2} w_{2}, u_{1} z_{1}, u_{2} z_{2}\right\}$. Then $V\left(G_{\Delta}\right)=\left\{u_{1}, u_{2}\right\}, \Delta_{G}=$ $n-4$ and G is $(n-4)$-edge-colourable, by Fournier's theorem, giving $q(H) \leq n$.

Case (d) $V(T)=\{u\}$. We consider the following five subcases.
Subcase (i) There exist two vertices $x, y \in V(S)$ such that there are distinct colours, c_{1} and c_{2} say, missing at x and y, respectively, in S_{0}. We extend the 3-edgecolouring of S_{0} by colouring the edge $u x$ and $u y$ with the colours c_{1} and c_{2}, respectively. Let $G=G_{1}-\{u x, u y\}$. Then $\Delta_{G}=n-3$ and $V\left(G_{\Delta}\right) \subseteq\{u\} \cup Y$. Thus G_{Δ} is a star, centre u, and so $q(G)=n-3$ by Fournier's Theorem. Hence $q(G) \leq n$. Henceforth we may assume that this subcase does not occur.

Let $Z_{i}=\left\{z \in V(S): d_{S_{0}}(v)=i\right\}$ for $1 \leq i \leq 3$. Since subcase (i) does not occur, $\left|Z_{1}\right| \leq 1$ and, if equality occurs, then $Z_{2}=\emptyset$.

Subcase (ii) $\left|Z_{1}\right|=1$. Let $Z_{1}=\{z\}$. Then $d_{G_{1}}(v) \leq n-5$ for all $v \in S-z$. Let e_{1} be the edge of S containing z and suppose $\{x, y, z\} \subseteq e_{1}$. Without loss of generality, we may suppose that e_{1} is coloured c_{1}. Let e_{2} be the edge of $S_{0}-e_{1}$ coloured c_{2} containing x. We modify the 3-edge-colouring of S_{0} by recolouring the edge e_{2} with a new colour c_{4} and then extend this 4-edge-colouring by colouring the edges $u x, u z, u y$ with the colours c_{2}, c_{3}, c_{4}, respectively. Let $G=G_{1}-\{u x, u z, u y\}$. Then $\Delta_{G}=n-4$ and $G_{\Delta} \subseteq\{u, z\}$. Thus $q(G)=n-4$ by Fournier's Theorem and hence $q(G) \leq n$. Henceforth we may assume that $Z_{1}=\emptyset$ (and hence $Y=\emptyset$).

Subcase (iii) $|X| \geq 1$. Since $Y=\emptyset$ we have $M_{21} \cup M_{11} \neq \emptyset$. Choose $x_{1} x_{2} \in M_{21} \cup$ M_{11} with $x_{1} \in X_{1}$. We obtain a new 3-edge-colouring by deleting the edge $x_{1} x_{2}$ from S_{0} and adding the edges $u x_{1}, u x_{2}$ coloured c_{2} and c_{3}, respectively. Let $G=$
$G_{1}+x_{1} x_{2}-u x_{1}-u x_{2}$. Then $\Delta_{G}=n-3$ and $G_{\Delta}=\{u\}$. Thus $q(G)=n-3$ by Fournier's Theorem and hence $q(G) \leq n$. Henceforth we may assume that $X=\emptyset$ and hence $S_{0}=S$.

Subcase (iv) $\left|Z_{2}\right| \geq 1$. Choose $z \in Z_{2}$. Since $Z_{1}=\emptyset$ and $S_{0}=S$ we have $d_{G_{1}}(v) \leq$ $n-5$ for all $v \in S$. Choose distinct edges $e_{1}, e_{2} \in S$ containing z and suppose $\left\{z, x_{1}, y_{1}\right\} \subseteq e_{1}$ and $\left\{z, x_{2}, y_{2}\right\} \subseteq e_{2}$. Without loss of generality we may suppose that e_{1}, e_{2} are coloured c_{1}, c_{2} respectively. We modify the colouring of S by recolouring e_{1} with a new colour c_{4} and then colouring $u z, u x_{1}, u x_{2}$ with colours c_{3}, c_{2}, c_{4}, respectively. Let $G=G_{1}-\left\{u z, u x_{1}, u x_{2}\right\}$. Then $\Delta_{G}=n-4$ and $G_{\Delta}=\{u\}$. Thus $q(G)=n-4$ by Fournier's Theorem and hence $q(G) \leq n$. Henceforth we may assume that $Z_{2}=\emptyset$.

Subcase (v) $\left|Z_{3}\right| \geq 1$. Choose $z \in Z_{3}$. Since $Z_{1} \cup Z_{2}=\emptyset$ and $S_{0}=S$ we have $d_{G_{1}}(v) \leq n-7$ for all $v \in S$. Choose distinct edges $e_{1}, e_{2} \in S$ containing z and suppose $\left\{z, x_{1}, y_{1}\right\} \subseteq e_{1}$ and $\left\{z, x_{2}, y_{2}\right\} \subseteq e_{2}$. Without loss of generality we may suppose that e_{1}, e_{2} are coloured c_{1}, c_{2} respectively. We modify the colouring of S by recolouring e_{1}, e_{2} with new colours c_{4}, c_{5} and then colouring $u x_{1}, u y_{1}, u x_{2}, u y_{2}$ with colours $c_{1}, c_{5}, c_{2}, c_{4}$, respectively. Let $G=G_{1}-\left\{u x_{1}, u y_{1}, u x_{2}, u y_{2}\right\}$. Then $\Delta_{G}=n-5$ and $G_{\Delta}=\{u\}$. Thus $q(G)=n-5$ by Fournier's Theorem and hence $q(G) \leq n$. This completes the proof of the lemma.

3 Conclusion

We may deduce the following special case of Conjecture 3 from Lemmas 2.3, 2.4 and 2.5.

Theorem 3.1 Let H be a loopless linear hypergraph on n vertices and let S be the partial hypergraph determined by the edges of size at least 3. If S has the edge-colouring property and $\Delta_{S} \leq 3$, then $q(H) \leq n$.

Let H be a hypergraph and $V^{\prime} \subseteq V(H)$. The subhypergraph H^{\prime} of H with vertex set V^{\prime} and edge set $E^{\prime}=\left\{e_{i} \cap H^{\prime}: 1 \leq i \leq m, e_{i} \cap V^{\prime} \neq \emptyset\right\}$ is called the subhypergraph of H induced by V^{\prime}. By duality, Theorem 3.1 gives the following special case of Conjecture 1.

Corollary 3.2 Let H be a linear hypergraph consisting of n edges, each of size n, and let S be the partial hypergraph S of H induced by the vertices of degree at least 3. If $|e| \leq 3$, for all $e \in E(S)$, and S can be 3-coloured, then it is possible to colour the vertices of H with n colours so that no two vertices in the same edge receive the same colour.

Several classes of hypergraphs that generalise bipartite graphs are known to have the edge-colouring property (see, for example, [1] Chapter 5). These include the class of unimodular hypergraphs. A matrix A is said to be totally unimodular if the determinant of each square submatrix of A has one of the values 0,1 or -1 . A hypergraph H is said to be unimodular if its incidence matrix is totally umimodular. It follows that the dual H^{*} of a hypergraph H is unimodular if and only if H is unimodular. We thus have the following particular cases of Theorem 3.1 and Corollary 3.2.

Corollary 3.3 Conjecture 3 is true when the partial hypergraph S of H determined by the edges of size at least 3 is unimodular and satisfies $\Delta_{S} \leq 3$.

Corollary 3.4 Conjecture 1 is true when the subhypergraph S of H induced by the vertices of degree at least 3 is unimodular and such that $|e| \leq 3$, for all $e \in E(S)$.

Finally, we note that there is a polynomial time algorithm developed by Bixby [3] to test whether a given hypergraph is unimodular.

References

[1] Berge, C., Hypergraphs, Combinatorics of Finite Sets, North-Holland, Amsterdam (1989) [translation of Hypergraphes, Combinatoire des Ensembles Finis, Gauthier-Villars, Paris (1987)].
[2] C. Berge, A.J.W. Hilton, On two conjectures on edge colouring hypergraphs, Congressus Numer. 70 (1990), 99-104.
[3] R. E. Bixby, An algorithm for testing if a matrix is totally unimodular, Advanced Techniques in the Practice of Operations Research (H. Greenberg, F. Murphy, S. Schews, eds.), North Holland, Amsterdam (1982), 443-446.
[4] P. Erdös, Problems and results in Graph Theory, Proc. 5th British Combinatorial Conference, Utilitas Math. 15 (1976).
[5] J. C. Fournier, Colorations des arêtes d'un graphe, Cahiers du C.E.R.O., Bruxelles, 15 (1973), 311-314.
[6] V. G. Vizing, On an estimate of the chromatic class of a p-graph (in Russian), Diskret. Analiz. 3 (1964), 9-17.

