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Abstract

A hypergraphH is linear if no two distinct edges df intersect in more
than one vertex and loopless if no edge has size one-edge-colouring
of H is a colouring of the edges &f with g colours such that intersecting
edges receive different colours. We usg to denote the maximum degree
of H. A well known conjecture of Erds, Farber and Ldsz is equivalent
to the statement that every loopless linear hypergraph wertices can be
n-edge-coloured. In this note we show that the conjecture is true when the
partial hypergrapts of H determined by the edges of size at least three can
be As-edge-coloured and satisfiAg < 3. In particular, the conjecture holds
whenSis unimodular and\s < 3.

1 Introduction and terminology

AhypergraptH on a finite seV (H) = {v1,V2,...vp} isafamilyE(H) = {e1,e,...,em}
of non-empty subsets &f(H) such that " ;e =V(H). The elements of (H)

are called theverticesand the elements d&(H) the edgesof H. A hypergraph
can also be defined by its incidence mawifH) = [a;], with rows representing
the verticess, ..., vy, columns representing the edgese,, ... ,em, whereajj =1
wheny; € ej and 0 otherwise. Thdual H* of H is the hypergraph with vertex set



E(H), edge seV(H) and incidence matriA(H)T. A hypergraph in which each
edge has size at most two is a graph (without isolated vertices).

A subhypergraptof H is a hypergraph which corresponds to a submatrix of the
incidence matrixA(H). A partial hypergraphof H is a subhypergraphl’ with
E'=E(H') CE(H) andV(H’) = Uecere. We shall say thatl’ is determined by

E’. The columns oA(H’) are just the columns & (H) corresponding to the edges
in E’. We denote the partial hypergraph determinedlbi ) \ E' by H — E’ (or by

H — ein the case wherg’ = {e}).

A hypergraphH is said to bdinear if |en f| <1 foralle f € E(H). An edge of
size one is called lbbop and a hypergraph in which each edge has size at least two
is calledloopless A loopless linear graph is said to benple

ForveV(H), dy(v) is the number of edges containm@ H andAy = max.ey ) du (V).
The maximum number of pairwise intersecting edgeld a§ denoted by\?,.

A k-vertex colouring oH is an assignment dfcolours to the vertices di in such

a way that no edge contains two vertices of the same colour. Similakkgdge
colouring ofH is an assignment df colours to the edges dfi so that distinct
intersecting edges receive different colours. The chromatic igdex is the least
numberk of colours required for &-edge colouring oH. Clearly

qH) > AR > A,

A hypergraphH is said to have thedge-colouring propertif q(H) = An.

This note was motivated by the following well-known conjecture due tagrd
Farber and Lo&sz (see [4]).

Conjecture 1 Let H be a linear hypergraph consisting of n edges, each of size n.
Then itis possible to colour the vertices of H with n colours so that no two vertices
in the same edge receive the same colour.

Let H be a linear hypergraph and Mt C V(H) be the set of vertices occurring

in at least two edges dfi. If it is possible to colour the vertices M’ so that no

two vertices in the same edge receive the same colour, then this colouring can be
extended to a vertex colouring Hfwith the same number of colours. Furthermore,

if H hasn edges, then sindeé is linear, no edge can contain more thmanl vertices

of degree at least two. Thus Conjecture 1 is equivalent to the following:

Conjecture 2 Let H be a linear hypergraph consisting of n edges, in which every
vertex has degree at least 2. Then it is possible to colour the vertices of H with n
colours so that no two vertices in the same edge receive the same colour.



It is easily seen that the dual of a linear hypergraph is also linear. Further, the dual
of the condition that no vertex has degree less than 2 is that no edge should contain
less than two vertices. Hence Conjecture 2 is equivalent to the following:

Conjecture 3 Let H be aloopless linear hypergraph on n vertices. Thgh)g< n.

Let Sbe the partial hypergraph &f determined by the edges of size at least three.
Conjecture 3 is true iS= 0, since every simple graph amvertices can be-
edge coloured. We shall show Conjecture 3 is true foHafbr which S has the
edge-colouring property ank < 3.

2 Results

Throughout this sectioy denotes a loopless linear hypergraphnorertices. We
use the following notation. The partial hypergraphtbfietermined by the edges
of size at least 3 is denoted I8/ Note that every edge in the partial hypergraph
G =H —E(S) has size 2 and hene¢&is a simple graph. We denote the subgraph
of G induced by the set of verticesYW(H) \ V(S) by T and the subgraph induced
by the vertices of degresg by Ga. Our general approach to edge-colouridg

is to extend &(S)-edge-colouring o5 to a subseE’ C E(H) \ E(S), so that the
partial hypergrapi®’ = H — (E(S) UE’) can be edge-coloured with the remaining
n—q(S) colours. To edge-colou®’, we use the following well-known theorems
due to Vizing [6] and Fournier [5].

Theorem 2.1 (Vizing) Let G be a simple graph. Then@) < Ag+ 1.

Theorem 2.2 (Fournier) Let G be a simple graph. If Gis acyclic, then ¢G) =
JAYeR

Our first lemma follows from a stronger theorem of Berge and Hilton (Theorem C
in [2]). We include their proof for completeness.

Lemma 2.3 Let H be a loopless linear hypergraph on n verticesAdf= 1, then
qH) <Au+1.

Proof. Give the edges o0& the colourc. Choose a maximum matchifg in

H —V(S) and give the edges ofl the colourc also. Then the partial hypergraph
G=H -E(S)UM is a simple graph in which eithég = Ay — 1, orAg = Ay and

the vertices of degrefy are independent. Hence by Theorem 2.1 or Theorem 2.2,
G is Ay-edge-colourable, giving(H) <Ay + 1.0
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SinceH is loopless and lineafjy < n—1 and so Lemma 2.3 implies Conjecture 3

is true wherds = 1. In the case whefig > 2, we make the stronger assumption that

H has the edge-colouring property. We can also assume, without loss of generality,
that every pair of vertices occur together in an edge, since adding edges of size two
cannot decreasg{H). This has the following simple consequences. Whe# 0,

T is a complete graph and each vertex dt joined by an edge of size two to each
vertex ofS. If x,y € V(S), thenx andy are non-adjacent in the gragh=H —E(S)

if and only if in H they are contained in the same edge E(S). In particular, for
eachv e V(S), dg(v) < n—3 anddg(v) = n— 3 if and only if v is contained in a
unique edge € E(S) with |e| = 3. Further, wherls(v) = 2 we havelg(v) <n-5,

and wherds(v) = 3 we havedg(v) <n—7.

Lemma 2.4 Let H be a loopless linear hypergraph on n vertices in whigh=
q(S)=2. ThendH) <n.

Proof. We may assume, without loss of generality, that each pair of vertices is
contained in an edge. Giiga 2-edge-colouring with colouxg,c,. If V(T) =0,
letG=H —E(S). ThenAg < n—3andGis (n— 2)-edge-colourable, by Vizing’s
theorem, givingg(H) <n.

Now suppos&/(T) = {u}. If there exists a vertew € V(S) such thads(w) = 1,
then there is a colour, say, missing atw. Give uw the colourc; and letG =
H —E(S) —uw. ThenV(Ga) = {u} andAg = n— 2. HenceG can be(n— 2)-edge-
coloured by Fournier’s theorem and, agaifi) < n. Otherwise, every vertex in
Sis incident with an edge in each colour and hedgév) <n—5forallve V(S).
Choose an edge € E(S) such thate is in colourc; and change the colour an
to a new colourcs. ThenS contains vertices,, ws such that colouc; is missing
atwj, for eachj € {2,3}. Give the edgeuw; the colourc;, for j = 2,3, and
let G=H — E(S)U{uw,,uns}. ThenV(Gp) = {u} andAg =n—3. ThusG is
(n— 3)-edge-colourable, by Fournier’s theorem, and aggkth) < n.

Next, suppos®/ (T) = {us,uz}. Giveuju; the colourc; and letG =H — E(S) —
uilz. ThenV(Gp) = {ug,u2}, Ac = n—2 andG is (n— 2)-edge-colourable by
Fournier’s theorem, giving(H) <n.

Finally supposéV (T)| =t > 3. If t is even, choose two disjoint perfect matchings
M1,M2 in T and colour the edges of;; with colour c;, for eachi € {1,2}. Let
G=H-E(SUM1UMz. ThenAg = n—-3 and we car(n — 2)-edge-coloutG,
by Vizing's theorem. Ift is odd, letuy,u, be distinct vertices iT. Let M; be a
perfect matching i — u; and colour the edges ofl; with colourc;, fori = 1,2.
LetG=H —E(S)UM1UM,. ThenV(Ga) = {u1,u2} andAg = n— 2. HenceG
is again(n — 2)-edge-colourable, by Fournier's theorem. Thus, in both ca$és,
n-edge-colourablel]



Lemma 2.5 Let H be a loopless linear hypergraph on n vertices in whigh=
q(S)=3. ThendH) <n.

Proof. We may assume, without loss of generality, that each pair of vertices is
contained in an edge. Givga 3-edge-colouring with colouxs,cy,c3. Let Go =
H—E(S) andletX = {xe V(9S) : dg,(X) = n—3}. Thenifv e X, vis incident with
just one edge i, and this edge has size 3. D§tC X be the subset of vertices
in X that are incident with an edge in colotiri = 1,2, 3. Number the colours so
that | X3| < |Xz| < |Xi]. If X3 # 0, construct a matchinlyls, in Go of X3 into X,
saturating the vertices o6;. Similarly, if X, # 0, construct a matchinlyl,; in Go
of X into Xy, saturatingX,. If any vertex ofX; is unsaturated biyl»;, construct a
maximum matchindv1 in Gg between thévlo;-unsaturated vertices M;. Give
the edges M3, the colourc; and the edges dfl>; andMj; the colourcs. Let
Y C X3 be the subset of vertices that are unsaturated byMettandM; 1. Note that
if Y # 0, thenY is a subset of the vertices of a unique edgeE(S), where|e| = 3,
and henc¢ is an independent set with'| < 3. LetG; = Gg — M3 UMa21 UMq;.
We distinguish four cases.

Case(@)V(T) =0. ThenifY =0, Ag, < n—4 andG; is (n— 3)-edge-colourable
by Vizing’s theorem. Otherwis&/(G1,) =Y and hencé; is again(n— 3)-edge-
colourable, by Fournier’s theorem, giviggH) < n.

Case(b) |T| =t > 3. Whent is even, choose three pairwise disjoint perfect match-
ings,M1,M2, M3, in T and give the edges &fl; the colourg;, fori =1,2,3. Let

G =061 —M1UM2UMs. Thendg(v) =n—4, for allve V(T), and hencés is
(n—3)-edge-colourable by a similar argument to case (a). Wleondd, choose a
vertexus € V(T) and a perfect matchingls in T —uz. Chooseus,up € V(T) such
thatuiup, € M3. Choose disjoint perfect matchinly, M2 in T — M3 —u; andT —

M3z — up respectively, and give the edges\dfthe colourg, fori=1,2,3. IfY =0,
letG=G; —M1UM>UM3. ThenAg = n— 3, Gp is the pathuyusu, and hence

G is (n— 3)-edge-colourable, by Fournier's theorem. OtherwiseyletY. Give

yu; the colourc;, for eachj € {2,3}, and letG = G1 —M1UM2 UMz U {yup, yus}.
ThenAg =n—3 andV(Ga) = {u1} U (Y \ {y}). ThusGa is acyclic and henc&

is (n— 3)-edge-colourable, by Fournier’s theorem. This implies in each case that
q(H) <n.

Case(c) V(T) = {ug,uz}. Suppose firs¥ # 0. Give uiup the colourcy. If Y =
{y1,¥2,y3} orY = {y1,¥2}, giveyius, youy the coloursc, andcs respectively, and
let G = Gy — {uilp, y1u1, Y2U2}. ThenAg = n— 3 andG, is the pathusysup in the
first case and the isolated vertiogsu, in the second case. Whéh= {y}, give
yu; colourc, andyw, the colourcs, and letG = Gy — {ujuz, yu1, YW }. ThenG, is
again the independent vertices u, andAg = n— 3. Hence in all three caséis



(n— 3)-edge-colourable, by Fournier’s theorem, so i@i) < n. Thus we may
assume that = 0 and hencelg, (v) <n—4, forallve V(S).

If there exists a vertex € V(S) which is incident with only one colour i =
SUM3,UM>21UMz4, say withcs, then givevy the colourc, fori = 1,2, giveuu,
the colourcs and letG = Gy — {uiup, vy, Vip }. If no such vertex exists, but there
are two distinct vertices,y € V(S) such thatc; is missing atx andc;j is missing
aty in S, wherei, j € {1,2,3} and possiblyi = j, give xu; the colourc;, yw
the colourcj, and giveu;u, a colourcy such thatkk € {1,2,3}\ {i,j}. LetG =
G1— {uuz,Xxu1, Yy }. Then in both these casds(Ga) = {us, Uz} andAg =n—3,
so thatG is (n— 3)-edge-colourable by Fournier’s theorem aytél) < n.

Thus we may assume that every verte¥ifs) is incident with edges in at least
two colours inS, and there is at most one vertex incident with edges in only two
colours. This implies thaX = 0 so thatsy = SandAg, <n—5. Letec E(S) be an
edge in colouc; and letf € E(S)\ {e}. Change the colour ogto a new colouc,.
Then sinceH is linear, we can find distinct verticeg,w, € e\ f andz,z € f\ e
Fori =1,2, giveuyw; the colourc; andu;z the colourcs. Give uiu, the colour
¢, and letG = Gg — {U]_Uz, UgWq, UpWo, U171, U222}. ThenV(GA) = {Ul, Uz}, A =
n—4 andG is (n—4)-edge-colourable, by Fournier’s theorem, givyéd ) < n.

Case (dV(T) = {u}. We consider the following five subcases.

Subcase (i) There exist two verticey € V (S) such that there are distinct colours,
c1 and ¢, say, missing ak andy, respectively, inS. We extend the 3-edge-
colouring of § by colouring the edgeix anduy with the coloursc; andc, re-
spectively. LetG = G; — {ux,uy}. ThenAg =n—3 andV(Ga) C {u} UY. Thus
Gy is a star, centrg, and saj(G) = n— 3 by Fournier’s Theorem. HencgG) <n.
Henceforth we may assume that this subcase does not occur.

LetZ; ={ze V(9 : dg(v) =i} for 1 <i < 3. Since subcase (i) does not occur,
|Z1] <1 and, if equality occurs, thetp = 0.

Subcase (ii)Z1| = 1. LetZ; = {z}. Thendg,(v) <n—5forallve S—z Lete;

be the edge oB containingz and supposéx,y, z} C e;. Without loss of generality,

we may suppose thaj is colouredc;. Let e, be the edge 0§ — e; colouredc;
containingx. We modify the 3-edge-colouring & by recolouring the edge,

with a new colourc, and then extend this 4-edge-colouring by colouring the edges
ux, uz uy with the colourscy, c3, 4, respectively. LeG = G; — {ux,uz uy}. Then

Ac =n—4andGp C {u,z}. Thusq(G) = n—4 by Fournier's Theorem and hence
g(G) < n. Henceforth we may assume tt#at= 0 (and hencef = 0).

Subcase (iii)X| > 1. SinceY = 0 we haveMy1UM3i1 # 0. Choosexix, € Moy U
M11 with x; € X;. We obtain a new 3-edge-colouring by deleting the exge
from & and adding the edgesq,ux; colouredc, andcs, respectively. LeG =



G1+ XiX2 —uxg — U%. ThenAg = n—3 andGp = {u}. Thusq(G) =n—3 by
Fournier's Theorem and hengéG) < n. Henceforth we may assume théat= 0
and hencé&g = S

Subcase (iv)Z;| > 1. Choose € Z,. SinceZ; = 0 andS) = Swe havedg, (V) <
n—>5 for all ve S Choose distinct edges, e € S containingz and suppose
{z,x1,y1} Cer and{z xp, Y2} C e. Without loss of generality we may suppose that
€1, are coloured;, ¢, respectively. We modify the colouring &by recolour-
ing e; with a new colourc, and then colouringiz ux, ux with colourscs, ¢y, Ca,
respectively. LeG = G; — {uz uxg,uxz}. ThenAg =n—4 andGp = {u}. Thus
9(G) = n—4 by Fournier's Theorem and hengéG) < n. Henceforth we may
assume thaf, = 0.

Subcase (v)Z3| > 1. Choosez € Z3. SinceZ; UZ; = 0 and S = S we have
dg,(v) <n—7 for all ve S Choose distinct edges,e; € S containingz and
suppose{z,x1,y1} C e; and{z xz,y2} C e. Without loss of generality we may
suppose thag, e, are coloured, ¢, respectively. We modify the colouring &
by recolouringe;, e, with hew colourscs, cs and then colouringix;, Uys, Ux, Uy
with colourscy, Cs, Cp,Ca, respectively. LelG = Gy — {uxg, uys, Ux, Uy2}. Then
Ag =n—5 andGy = {u}. Thusq(G) = n—5 by Fournier's Theorem and hence
g(G) < n. This completes the proof of the lemma.

3 Conclusion

We may deduce the following special case of Conjecture 3 from Lemmas 2.3, 2.4
and 2.5.

Theorem 3.1 Let H be a loopless linear hypergraph on n vertices and let S be
the partial hypergraph determined by the edges of size at least 3. If S has the
edge-colouring property anfls < 3, then dH) <n.

LetH be a hypergraph and C V(H). The subhypergrapH’ of H with vertex set

V' and edge s’ = {g "H’: 1 <i <m,e NV’ +# 0} is called the subhypergraph
of H induced by V. By duality, Theorem 3.1 gives the following special case of
Conjecture 1.

Corollary 3.2 Let H be a linear hypergraph consisting of n edges, each of size n,
and let S be the partial hypergraph S of H induced by the vertices of degree at least
3.1f|e] <3, forallec E(S), and S can b&-coloured, then it is possible to colour

the vertices of H with n colours so that no two vertices in the same edge receive
the same colour.



Several classes of hypergraphs that generalise bipartite graphs are known to have
the edge-colouring property (see, for example, [1] Chapter 5). These include the
class of unimodular hypergraphs. A matAxis said to beotally unimodularif

the determinant of each square submatriAdfas one of the values 0, 1 e1l. A
hypergraphH is said to beunimodularif its incidence matrix is totally umimod-

ular. It follows that the duaH* of a hypergrapi is unimodular if and only if

H is unimodular. We thus have the following particular cases of Theorem 3.1 and
Corollary 3.2.

Corollary 3.3 Conjecture 3 is true when the partial hypergraph S of H determined
by the edges of size at least 3 is unimodular and satiAfies 3.

Corollary 3.4 Conjecture 1 is true when the subhypergraph S of H induced by the
vertices of degree at least 3 is unimodular and such fgat 3, for all e € E(S).

Finally, we note that there is a polynomial time algorithm developed by Bixby [3]
to test whether a given hypergraph is unimodular.
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