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Abstract

A hypergraphH is linear if no two distinct edges ofH intersect in more
than one vertex and loopless if no edge has size one. Aq-edge-colouring
of H is a colouring of the edges ofH with q colours such that intersecting
edges receive different colours. We use∆H to denote the maximum degree
of H. A well known conjecture of Erd̈os, Farber and Lov́asz is equivalent
to the statement that every loopless linear hypergraph onn vertices can be
n-edge-coloured. In this note we show that the conjecture is true when the
partial hypergraphSof H determined by the edges of size at least three can
be∆S-edge-coloured and satisfies∆S≤ 3. In particular, the conjecture holds
whenS is unimodular and∆S≤ 3.

1 Introduction and terminology

A hypergraphH on a finite setV(H) = {v1,v2, . . .vn} is a familyE(H) = {e1,e2, . . . ,em}
of non-empty subsets ofV(H) such that

⋃m
i=1ei = V(H). The elements ofV(H)

are called theverticesand the elements ofE(H) the edgesof H. A hypergraph
can also be defined by its incidence matrixA(H) = [ai j ], with rows representing
the verticesv1, . . . ,vn, columns representing the edgese1,e2, . . . ,em, whereai j = 1
whenvi ∈ ej and 0 otherwise. Thedual H∗ of H is the hypergraph with vertex set
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E(H), edge setV(H) and incidence matrixA(H)T . A hypergraph in which each
edge has size at most two is a graph (without isolated vertices).
A subhypergraphof H is a hypergraph which corresponds to a submatrix of the
incidence matrixA(H). A partial hypergraphof H is a subhypergraphH ′ with
E′ = E(H ′) ⊆ E(H) andV(H ′) = ∪e∈E′e. We shall say thatH ′ is determined by
E′. The columns ofA(H ′) are just the columns ofA(H) corresponding to the edges
in E′. We denote the partial hypergraph determined byE(H)\E′ by H−E′ (or by
H−e in the case whereE′ = {e}).
A hypergraphH is said to belinear if |e∩ f | ≤ 1 for all e, f ∈ E(H). An edge of
size one is called aloop and a hypergraph in which each edge has size at least two
is calledloopless. A loopless linear graph is said to besimple.
Forv∈V(H), dH(v) is the number of edges containingv in H and∆H = maxv∈V(H) dH(v).
The maximum number of pairwise intersecting edges ofH is denoted by∆0

H .
A k-vertex colouring ofH is an assignment ofk colours to the vertices ofH in such
a way that no edge contains two vertices of the same colour. Similarly, ak-edge
colouring ofH is an assignment ofk colours to the edges ofH so that distinct
intersecting edges receive different colours. The chromatic indexq(H) is the least
numberk of colours required for ak-edge colouring ofH. Clearly

q(H)≥ ∆0
H ≥ ∆H .

A hypergraphH is said to have theedge-colouring propertyif q(H) = ∆H .

This note was motivated by the following well-known conjecture due to Erdös,
Farber and Lov́asz (see [4]).

Conjecture 1 Let H be a linear hypergraph consisting of n edges, each of size n.
Then it is possible to colour the vertices of H with n colours so that no two vertices
in the same edge receive the same colour.

Let H be a linear hypergraph and letV ′ ⊆ V(H) be the set of vertices occurring
in at least two edges ofH. If it is possible to colour the vertices inV ′ so that no
two vertices in the same edge receive the same colour, then this colouring can be
extended to a vertex colouring ofH with the same number of colours. Furthermore,
if H hasn edges, then sinceH is linear, no edge can contain more thann−1 vertices
of degree at least two. Thus Conjecture 1 is equivalent to the following:

Conjecture 2 Let H be a linear hypergraph consisting of n edges, in which every
vertex has degree at least 2. Then it is possible to colour the vertices of H with n
colours so that no two vertices in the same edge receive the same colour.
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It is easily seen that the dual of a linear hypergraph is also linear. Further, the dual
of the condition that no vertex has degree less than 2 is that no edge should contain
less than two vertices. Hence Conjecture 2 is equivalent to the following:

Conjecture 3 Let H be a loopless linear hypergraph on n vertices. Then q(H)≤ n.

Let Sbe the partial hypergraph ofH determined by the edges of size at least three.
Conjecture 3 is true ifS= /0, since every simple graph onn vertices can ben-
edge coloured. We shall show Conjecture 3 is true for allH for which S has the
edge-colouring property and∆S≤ 3.

2 Results

Throughout this section,H denotes a loopless linear hypergraph onn vertices. We
use the following notation. The partial hypergraph ofH determined by the edges
of size at least 3 is denoted byS. Note that every edge in the partial hypergraph
G = H−E(S) has size 2 and henceG is a simple graph. We denote the subgraph
of G induced by the set of vertices inV(H)\V(S) by T and the subgraph induced
by the vertices of degree∆G by G∆. Our general approach to edge-colouringH
is to extend aq(S)-edge-colouring ofS to a subsetE′ ⊆ E(H) \E(S), so that the
partial hypergraphG′ = H− (E(S)∪E′) can be edge-coloured with the remaining
n−q(S) colours. To edge-colourG′, we use the following well-known theorems
due to Vizing [6] and Fournier [5].

Theorem 2.1 (Vizing) Let G be a simple graph. Then q(G)≤ ∆G +1.

Theorem 2.2 (Fournier) Let G be a simple graph. If G∆ is acyclic, then q(G) =
∆G.

Our first lemma follows from a stronger theorem of Berge and Hilton (Theorem C
in [2]). We include their proof for completeness.

Lemma 2.3 Let H be a loopless linear hypergraph on n vertices. If∆S = 1, then
q(H)≤ ∆H +1.

Proof. Give the edges ofS the colourc. Choose a maximum matchingM in
H−V(S) and give the edges ofM the colourc also. Then the partial hypergraph
G = H−E(S)∪M is a simple graph in which either∆G = ∆H−1, or∆G = ∆H and
the vertices of degree∆H are independent. Hence by Theorem 2.1 or Theorem 2.2,
G is ∆H-edge-colourable, givingq(H)≤ ∆H +1.�
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SinceH is loopless and linear,∆H ≤ n−1 and so Lemma 2.3 implies Conjecture 3
is true when∆S= 1. In the case when∆S≥ 2, we make the stronger assumption that
H has the edge-colouring property. We can also assume, without loss of generality,
that every pair of vertices occur together in an edge, since adding edges of size two
cannot decreaseq(H). This has the following simple consequences. WhenT 6= /0,
T is a complete graph and each vertex ofT is joined by an edge of size two to each
vertex ofS. If x,y∈V(S), thenx andy are non-adjacent in the graphG = H−E(S)
if and only if in H they are contained in the same edgee∈ E(S). In particular, for
eachv∈V(S), dG(v) ≤ n−3 anddG(v) = n−3 if and only if v is contained in a
unique edgee∈E(S) with |e|= 3. Further, whendS(v) = 2 we havedG(v)≤ n−5,
and whendS(v) = 3 we havedG(v)≤ n−7.

Lemma 2.4 Let H be a loopless linear hypergraph on n vertices in which∆S =
q(S) = 2. Then q(H)≤ n.

Proof. We may assume, without loss of generality, that each pair of vertices is
contained in an edge. GiveSa 2-edge-colouring with coloursc1,c2. If V(T) = /0,
let G = H−E(S). Then∆G≤ n−3 andG is (n−2)-edge-colourable, by Vizing’s
theorem, givingq(H)≤ n.
Now supposeV(T) = {u}. If there exists a vertexw∈V(S) such thatdS(w) = 1,
then there is a colour, sayc1, missing atw. Give uw the colourc1 and letG =
H−E(S)−uw. ThenV(G∆) = {u} and∆G = n−2. HenceG can be(n−2)-edge-
coloured by Fournier’s theorem and, again,q(H) ≤ n. Otherwise, every vertex in
S is incident with an edge in each colour and hencedG(v)≤ n−5 for all v∈V(S).
Choose an edgee∈ E(S) such thate is in colourc2 and change the colour one
to a new colourc3. ThenScontains verticesw2,w3 such that colourc j is missing
at w j , for each j ∈ {2,3}. Give the edgeuwj the colourc j , for j = 2,3, and
let G = H −E(S)∪{uw2,uw3}. ThenV(G∆) = {u} and∆G = n−3. ThusG is
(n−3)-edge-colourable, by Fournier’s theorem, and againq(H)≤ n.
Next, supposeV(T) = {u1,u2}. Give u1u2 the colourc1 and letG = H−E(S)−
u1u2. ThenV(G∆) = {u1,u2}, ∆G = n− 2 andG is (n− 2)-edge-colourable by
Fournier’s theorem, givingq(H)≤ n.
Finally suppose|V(T)|= t ≥ 3. If t is even, choose two disjoint perfect matchings
M1,M2 in T and colour the edges ofMi with colour ci , for eachi ∈ {1,2}. Let
G = H −E(S)∪M1∪M2. Then∆G = n− 3 and we can(n− 2)-edge-colourG,
by Vizing’s theorem. Ift is odd, letu1,u2 be distinct vertices inT. Let Mi be a
perfect matching inT−ui and colour the edges ofMi with colourci , for i = 1,2.
Let G = H−E(S)∪M1∪M2. ThenV(G∆) = {u1,u2} and∆G = n−2. HenceG
is again(n−2)-edge-colourable, by Fournier’s theorem. Thus, in both cases,H is
n-edge-colourable.�
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Lemma 2.5 Let H be a loopless linear hypergraph on n vertices in which∆S =
q(S) = 3. Then q(H)≤ n.

Proof. We may assume, without loss of generality, that each pair of vertices is
contained in an edge. GiveSa 3-edge-colouring with coloursc1,c2,c3. Let G0 =
H−E(S) and letX = {x∈V(S) : dG0(x) = n−3}. Then ifv∈X, v is incident with
just one edge inS, and this edge has size 3. LetXi ⊆ X be the subset of vertices
in X that are incident with an edge in colourci , i = 1,2,3. Number the colours so
that |X3| ≤ |X2| ≤ |X1|. If X3 6= /0, construct a matchingM32 in G0 of X3 into X2,
saturating the vertices ofX3. Similarly, if X2 6= /0, construct a matchingM21 in G0

of X2 into X1, saturatingX2. If any vertex ofX1 is unsaturated byM21, construct a
maximum matchingM11 in G0 between theM21-unsaturated vertices inX1. Give
the edges inM32 the colourc1 and the edges ofM21 andM11 the colourc3. Let
Y⊆X1 be the subset of vertices that are unsaturated by bothM21 andM11. Note that
if Y 6= /0, thenY is a subset of the vertices of a unique edgee∈E(S), where|e|= 3,
and henceY is an independent set with|Y| ≤ 3. Let G1 = G0−M32∪M21∪M11.
We distinguish four cases.

Case(a)V(T) = /0. Then ifY = /0, ∆G1 ≤ n−4 andG1 is (n−3)-edge-colourable
by Vizing’s theorem. Otherwise,V(G1∆) = Y and henceG1 is again(n−3)-edge-
colourable, by Fournier’s theorem, givingq(H)≤ n.

Case(b) |T|= t ≥ 3. Whent is even, choose three pairwise disjoint perfect match-
ings,M1,M2,M3, in T and give the edges ofMi the colourci , for i = 1,2,3. Let
G = G1−M1∪M2∪M3. ThendG(v) = n− 4, for all v ∈ V(T), and henceG is
(n−3)-edge-colourable by a similar argument to case (a). Whent is odd, choose a
vertexu3 ∈V(T) and a perfect matchingM3 in T−u3. Chooseu1,u2 ∈V(T) such
thatu1u2 ∈M3. Choose disjoint perfect matchingsM1,M2 in T−M3−u1 andT−
M3−u2 respectively, and give the edges ofMi the colourci , for i = 1,2,3. If Y = /0,
let G = G1−M1∪M2∪M3. Then∆G = n−3, G∆ is the pathu1u3u2 and hence
G is (n−3)-edge-colourable, by Fournier’s theorem. Otherwise, lety∈ Y. Give
yuj the colourc j , for eachj ∈ {2,3}, and letG = G1−M1∪M2∪M3∪{yu2,yu3}.
Then∆G = n−3 andV(G∆) = {u1}∪ (Y \ {y}). ThusG∆ is acyclic and henceG
is (n−3)-edge-colourable, by Fournier’s theorem. This implies in each case that
q(H)≤ n.

Case(c) V(T) = {u1,u2}. Suppose firstY 6= /0. Give u1u2 the colourc1. If Y =
{y1,y2,y3} or Y = {y1,y2}, givey1u1, y2u2 the coloursc2 andc3 respectively, and
let G = G1−{u1u2,y1u1,y2u2}. Then∆G = n−3 andG∆ is the pathu1y3u2 in the
first case and the isolated verticesu1,u2 in the second case. WhenY = {y}, give
yu1 colourc2 andyu2 the colourc3, and letG = G1−{u1u2,yu1,yu2}. ThenG∆ is
again the independent verticesu1,u2 and∆G = n−3. Hence in all three casesG is
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(n−3)-edge-colourable, by Fournier’s theorem, so thatq(H) ≤ n. Thus we may
assume thatY = /0 and hencedG1(v)≤ n−4, for all v∈V(S).
If there exists a vertexv ∈ V(S) which is incident with only one colour inS0 =
S∪M32∪M21∪M11, say withc3, then givevui the colourci , for i = 1,2, giveu1u2

the colourc3 and letG = G1−{u1u2,vu1,vu2}. If no such vertex exists, but there
are two distinct verticesx,y ∈ V(S) such thatci is missing atx andc j is missing
at y in S0, where i, j ∈ {1,2,3} and possiblyi = j, give xu1 the colourci , yu2

the colourc j , and giveu1u2 a colourck such thatk ∈ {1,2,3} \ {i, j}. Let G =
G1−{u1u2,xu1,yu2}. Then in both these cases,V(G∆) = {u1,u2} and∆G = n−3,
so thatG is (n−3)-edge-colourable by Fournier’s theorem andq(H)≤ n.
Thus we may assume that every vertex inV(S) is incident with edges in at least
two colours inS0, and there is at most one vertex incident with edges in only two
colours. This implies thatX = /0 so thatS0 = Sand∆G1 ≤ n−5. Lete∈E(S) be an
edge in colourc1 and let f ∈E(S)\{e}. Change the colour one to a new colourc4.
Then sinceH is linear, we can find distinct verticesw1,w2 ∈ e\ f andz1,z2 ∈ f \e.
For i = 1,2, giveuiwi the colourc1 anduizi the colourc4. Give u1u2 the colour
c2 and letG = G0−{u1u2,u1w1,u2w2,u1z1,u2z2}. ThenV(G∆) = {u1,u2}, ∆G =
n−4 andG is (n−4)-edge-colourable, by Fournier’s theorem, givingq(H)≤ n.

Case (d)V(T) = {u}. We consider the following five subcases.

Subcase (i) There exist two verticesx,y∈V(S) such that there are distinct colours,
c1 and c2 say, missing atx and y, respectively, inS0. We extend the 3-edge-
colouring ofS0 by colouring the edgeux anduy with the coloursc1 andc2, re-
spectively. LetG = G1−{ux,uy}. Then∆G = n−3 andV(G∆) ⊆ {u}∪Y. Thus
G∆ is a star, centreu, and soq(G) = n−3 by Fournier’s Theorem. Henceq(G)≤ n.
Henceforth we may assume that this subcase does not occur.

Let Zi = {z∈V(S) : dS0(v) = i} for 1≤ i ≤ 3. Since subcase (i) does not occur,
|Z1| ≤ 1 and, if equality occurs, thenZ2 = /0.

Subcase (ii)|Z1| = 1. Let Z1 = {z}. ThendG1(v) ≤ n−5 for all v∈ S−z. Let e1

be the edge ofScontainingzand suppose{x,y,z} ⊆ e1. Without loss of generality,
we may suppose thate1 is colouredc1. Let e2 be the edge ofS0−e1 colouredc2

containingx. We modify the 3-edge-colouring ofS0 by recolouring the edgee2

with a new colourc4 and then extend this 4-edge-colouring by colouring the edges
ux,uz,uy with the coloursc2,c3,c4, respectively. LetG = G1−{ux,uz,uy}. Then
∆G = n−4 andG∆ ⊆ {u,z}. Thusq(G) = n−4 by Fournier’s Theorem and hence
q(G)≤ n. Henceforth we may assume thatZ1 = /0 (and henceY = /0).

Subcase (iii)|X| ≥ 1. SinceY = /0 we haveM21∪M11 6= /0. Choosex1x2 ∈M21∪
M11 with x1 ∈ X1. We obtain a new 3-edge-colouring by deleting the edgex1x2

from S0 and adding the edgesux1,ux2 colouredc2 andc3, respectively. LetG =
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G1 + x1x2− ux1− ux2. Then∆G = n− 3 andG∆ = {u}. Thusq(G) = n− 3 by
Fournier’s Theorem and henceq(G) ≤ n. Henceforth we may assume thatX = /0
and henceS0 = S.

Subcase (iv)|Z2| ≥ 1. Choosez∈ Z2. SinceZ1 = /0 andS0 = Swe havedG1(v) ≤
n− 5 for all v ∈ S. Choose distinct edgese1,e2 ∈ S containingz and suppose
{z,x1,y1}⊆ e1 and{z,x2,y2}⊆ e2. Without loss of generality we may suppose that
e1,e2 are colouredc1,c2 respectively. We modify the colouring ofS by recolour-
ing e1 with a new colourc4 and then colouringuz,ux1,ux2 with coloursc3,c2,c4,
respectively. LetG = G1−{uz,ux1,ux2}. Then∆G = n−4 andG∆ = {u}. Thus
q(G) = n− 4 by Fournier’s Theorem and henceq(G) ≤ n. Henceforth we may
assume thatZ2 = /0.

Subcase (v)|Z3| ≥ 1. Choosez∈ Z3. SinceZ1∪ Z2 = /0 and S0 = S we have
dG1(v) ≤ n− 7 for all v ∈ S. Choose distinct edgese1,e2 ∈ S containingz and
suppose{z,x1,y1} ⊆ e1 and{z,x2,y2} ⊆ e2. Without loss of generality we may
suppose thate1,e2 are colouredc1,c2 respectively. We modify the colouring ofS
by recolouringe1,e2 with new coloursc4,c5 and then colouringux1,uy1,ux2,uy2

with coloursc1,c5,c2,c4, respectively. LetG = G1−{ux1,uy1,ux2,uy2}. Then
∆G = n−5 andG∆ = {u}. Thusq(G) = n−5 by Fournier’s Theorem and hence
q(G)≤ n. This completes the proof of the lemma.�

3 Conclusion

We may deduce the following special case of Conjecture 3 from Lemmas 2.3, 2.4
and 2.5.

Theorem 3.1 Let H be a loopless linear hypergraph on n vertices and let S be
the partial hypergraph determined by the edges of size at least 3. If S has the
edge-colouring property and∆S≤ 3, then q(H)≤ n.

Let H be a hypergraph andV ′ ⊆V(H). The subhypergraphH ′ of H with vertex set
V ′ and edge setE′ = {ei ∩H ′ : 1≤ i ≤m,ei ∩V ′ 6= /0} is called the subhypergraph
of H induced by V′. By duality, Theorem 3.1 gives the following special case of
Conjecture 1.

Corollary 3.2 Let H be a linear hypergraph consisting of n edges, each of size n,
and let S be the partial hypergraph S of H induced by the vertices of degree at least
3. If |e| ≤ 3, for all e∈ E(S), and S can be3-coloured, then it is possible to colour
the vertices of H with n colours so that no two vertices in the same edge receive
the same colour.
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Several classes of hypergraphs that generalise bipartite graphs are known to have
the edge-colouring property (see, for example, [1] Chapter 5). These include the
class of unimodular hypergraphs. A matrixA is said to betotally unimodularif
the determinant of each square submatrix ofA has one of the values 0, 1 or−1. A
hypergraphH is said to beunimodularif its incidence matrix is totally umimod-
ular. It follows that the dualH∗ of a hypergraphH is unimodular if and only if
H is unimodular. We thus have the following particular cases of Theorem 3.1 and
Corollary 3.2.

Corollary 3.3 Conjecture 3 is true when the partial hypergraph S of H determined
by the edges of size at least 3 is unimodular and satisfies∆S≤ 3.

Corollary 3.4 Conjecture 1 is true when the subhypergraph S of H induced by the
vertices of degree at least 3 is unimodular and such that|e| ≤ 3, for all e∈ E(S).

Finally, we note that there is a polynomial time algorithm developed by Bixby [3]
to test whether a given hypergraph is unimodular.
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