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Abstract

The circumference of a graph is the length of its longest cycles. Results of Jackson,
and Jackson and Wormald, imply that the circumference of a 3-connected cubic n-vertex
graph is Ω(n0.694), and the circumference of a 3-connected claw-free graph is Ω(n0.121).
We generalise and improve the first result by showing that every 3-edge-connected graph
with m edges has an Eulerian subgraph with Ω(m0.753) edges. We use this result together
with the Ryjáček closure operation to improve the lower bound on the circumference of a
3-connected claw-free graph to Ω(n0.753). Our proofs imply polynomial time algorithms for
finding large Eulerian subgraphs of 3-edge-connected graphs and long cycles in 3-connected
claw-free graphs.
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1 Introduction

Motivated by the Four Color Problem, Tait [43] conjectured in 1880 that every 3-connected
cubic planar graph contains a Hamilton cycle. His conjecture remained open until a coun-
terexample was constructed by Tutte [45] in 1946. There has since been much interest and
extensive research concerning longest cycles in (special families of) graphs. We use |G| to de-
note the number of vertices in a graph G and refer to the length of a longest cycle in G as the
circumference of G. We will be concerned with bounds on the circumference of 3-connected
graphs which are either cubic or claw-free.

Barnette [3] showed that every 3-connected cubic n-vertex graph has circumference Ω(log n).
Bondy and Simonovits [9] improved this lower bound to exp(Ω(

√
log n)), and conjectured that

it can be improved further to Ω(nc) for some constant 0 < c < 1. This conjecture was estab-
lished by Jackson [29], with c = log2(1 +

√
5) − 1 ≈ 0.694. A construction given by Bondy

and Simonovits in [9] gives an infinite family of 3-connected cubic graphs with circumference
Θ(nlog9 8), where log9 8 ≈ 0.946. Our first theorem improves the exponent in the lower bound
on circumference given in [29], and also generalises the result to graphs which are not nec-
essarily cubic. We use K3

2 to denote the graph with two vertices joined by three parallel
edges.

Theorem 1.1 Let G be a 3-edge-connected graph, e, f ∈ E(G), and assume G 6= K3
2 . Then G

contains an Eulerian subgraph H such that e, f ∈ E(H) and |E(H)| ≥ (|E(G)|/6)α + 2, where
α ≈ 0.753 is the real root of 41/x − 31/x = 2.

Given graphs G,H, we say that G is H-free if G has no induced subgraph isomorphic to
H. In the special case when H = K1,3 we say that G is claw-free. Jackson and Wormald [30]
proved a general lower bound on the circumference of 3-connected K1,d-free graphs, which
reduces to 1

2 |G|c, where c = log150 2 ≈ 0.121, when G is claw-free. We will obtain the following
stronger result.

Theorem 1.2 If G is a 3-connected claw-free graph, then the circumference of G is at least
(|G|/12)α + 2, where α ≈ 0.753 is the real root of 41/x − 31/x = 2.

Note that if G is a cubic graph then blowing up each vertex of G to a triangle in an obvious way
we obtain a claw-free cubic graph H; and it is easy to see that the circumference of G is Θ(|G|c)
if and only if the circumference of H is Θ(|H|c). Thus the above mentioned construction of
Bondy and Simonovits implies that the exponent α in Theorem 1.2 cannot exceed log9 8.

We prove Theorem 1.2 by reducing the problem to line graphs using the closure result
of Ryjáček [40]. For x a vertex in a graph G we use NG(x) (or simply N(x) if there is no
confusion) to denote the neighborhood of x; and for each S ⊆ V (G) we use G[S] to denote
the subgraph of G induced by S. Let G0, . . . , Gk be a maximal sequence of graphs such that
G0 = G and for each 1 ≤ i ≤ k, Gi is obtained from Gi−1 by taking some x ∈ V (G) for
which Gi−1[NGi−1

(x)] is connected and adding edges between all pairs of nonadjacent vertices
in NGi−1

(x). Then Gk is said to be a Ryjáček closure of G.

Theorem 1.3 [40] The Ryjáček closure of a claw-free simple graph G is uniquely determined,
and is equal to the line graph L(H) of a triange-free simple graph H. Furthermore, for every
cycle C ′ of L(H) there exists a cycle C of G with V (C ′) ⊆ V (C).
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The final conclusion of this theorem is a slightly stronger statement than that given by Ryjáček
in [40, Theorem 3] (that the circumferences of G and L(H) are the same), but it follows from
his proof, see [14, Proposition G] and [13, Lemma 8].

It is clear that in a graph H any Eulerian subgraph with m edges gives rise to a cycle with
m vertices in L(H). In addition we will see that L(H) is 3-connected if and only if the removal
of all degree one vertices from H results in a graph obtained from a 3-edge-connected graph
by subdividing each edge at most once. Thus Theorem 1.2 will follow from Theorem 1.3 and
an edge-weighted version of Theorem 1.1.

Bounds on the circumference of order |G|c have also been obtained for other families of
3-connected graphs G. For graphs embedded on a fixed surface, Chen and Yu [17] proved that
every 3-connected n-vertex graph embeddable in the torus or Klein bottle has circumference at
least nlog3 2, establishing a conjecture of Moon and Moser [38] and Grünbaum and Walther [26].
This was generalized in [41] to locally planar graphs on orientable surfaces. Infinite families
of 3-connected cubic planar graphs G with circumference Θ(|G|c) have been constructed (for
various constants 0 < c < 1), see for example [25,26,47,48].

For graphs of bounded maximum degree, Jackson and Wormald [30] proved that every 3-
connected n-vertex graph with maximum degree at most d has circumference Ω(nlogb 2), with
b = 6d2. This result was improved to b = 2(d − 1)2 + 1 by Chen, Xu and Yu [16], and further
improved to b = 4d + 1 by Chen, Gao, Zang and Yu [15]. When d ≥ 4, Jackson and Wormald
conjecture that the correct value for b is d− 1, and construct an infinite family of 3-connected
n-vertex graphs with maximum degree d and circumference Θ(nlogd−1 2) in [30].

One may also consider families of graphs of connectivity other than three. Bounds on
the circumference of families of 2-connected n-vertex graphs tend to be of order log n. In
particular Bondy and Entringer [8] showed that that every 2-connected graph with maximum
degree at most d has circumference at least logd−1 n, and construct an infinite family of such
graphs with circumferences of the same order of magnitude. Broersma et al [12] showed that
the circumference of a 2-connected claw-free n-vertex graph is also Ω(log n). (Note that there
can be no analogous result for 2-connected graphs embeddable on a fixed surface since K2,n−2

is 2-connected and planar, and has circumference four.)
On the other hand, bounds on the circumference of families of n-vertex graphs of connec-

tivity greater than three may be of order n. Bondy, see [29, Conjecture 1], conjectured that if
G is a 3-connected cubic graph and every 3-edge-cut of G is trivial, then G has circumference
Ω(n). A stronger conjecture due to Fleischner, see [29, Conjecture 2], is that every such graph
G has a cycle C such that G−C is an independent set of vertices. Both conjectures are true for
planar cubic graphs by Tutte’s bridge theorem [46]. Fleischner and Jackson [22] showed that
Fleischner’s conjecture is equivalent to a conjecture of Thomassen [44] that every 4-connected
line graph is Hamiltonian. Ryjáček [40] used Theorem 1.3 to show that Thomassen’s conjec-
ture is in turn equivalent to the conjecture of Mathews and Sumner [36] that every 4-connected
claw-free graph is Hamiltonian. Zhang [49] has verified Thomassen’s conjecture for the special
case of 7-connected line graphs. This result was extended to 7-connected claw-free graphs by
Ryjáček in [40].

An outline of the paper is as follows. Section 2 contains some preliminary results. We
introduce a reduction technique called ‘edge-splitting’ in Subsection 2.1 and characterize when
it can be used to split away two edges from a vertex in such a way that 3-edge-connectivity is
preserved. In Subsection 2.2, we characterize when a 3-edge-connected graph has an Eulerian
subgraph which contains two given edges and four given vertices. In Subsection 2.3, we prove
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some inequalities based on the concavity of the function n → nc when 0 < c < 1 which we
will use in our induction. We prove the aforementioned edge-weighted version of Theorem 1.1
in Section 3 by applying the edge-splitting lemmas to reduce to the case when each of the
endvertices of e and f has degree three, and then extending the proof technique for cubic
graphs given in [29]. Theorem 1.2 is derived in Section 4. Our proofs of Theorems 1.1 and 1.2
are constructive and give rise to polynomial algorithms. These will be outlined in Section 5.

2 Definitions and preliminary results

Unless specified otherwise all graphs considered may contain loops and multiple edges. We
will refer to graphs without loops and multiple edges as simple graphs. For any edge e in a
graph G, we use V (e) to denote the set of vertices of G that are incident with e. For S ⊆ E(G)
we use G − S to denote the graph obtained from G by deleting S. For H and L subgraphs of
G, we use H −L to denote the graph obtained from H by deleting V (H)∩V (L) and all edges
of H incident with vertices in V (H) ∩ V (L). If L consists of one vertex, say v, then we also
write H − v for H − L.

2.1 Edge splitting

Let G be a graph, v ∈ V (G), and e, f be distinct edges of G with V (e) = {u, v} and V (f) =
{v,w}. When d(v) = 2, the operation of suppressing v in G deletes v (and hence also e, f)
and adds a new edge between u and w (which may be a loop if u = w). When d(v) ≥ 4 the
operation of splitting e, f at v deletes e, f from G, adds a new edge between u and w, and
suppresses v if v has degree 2 in G − {e, f}. We use Ge,f

v to denote the graph obtained from

G by splitting e, f at v. Note that if e is a loop at v then Ge,f
v is isomorphic to G − e when

d(v) > 4, and to the graph obtained from G − e by suppressing v when d(v) = 4. When G is

k-edge-connected, we say that e, f form a k-splittable pair at v if Ge,f
v is also k-edge-connected.

(Note that loops have no effect on edge-connectivity so a pair containing a loop will always be
k-splittable.) If there is no confusion, we will simply say that e, f is a splittable pair at v. We
need the following consequence of a more general result of Frank (Theorem B, [23]).

Lemma 2.1 Let G be a 3-edge-connected graph and v ∈ V (G) such that d(v) ≥ 4. If d(v) is
even then each edge incident with v belongs to a splittable pair at v. If d(v) is odd then there
is at most one edge incident with v that does not belong to any splittable pair at v.

For our purpose, we also need to describe the structure when an edge is not contained in
any splittable pair. This structure is illustrated in Figure 1. To describe it more precisely we
need some more notation. Given a graph G and disjoint subsets X,Y of V (G), we use E(X,Y )
to denote the set, and δ(X,Y ) the number, of edges of G incident with both X and Y . When
X = {x} or Y = {y}, we write δ(x, Y ) or δ(X, y). We also put δ(X) = δ(X,V (G) − X). We
write δG(X) when the underlying graph G is not clear from the context.

The lemma below is similar to a result for local edge-connectivity due to Szigeti (Theorem
1.6, [42]). We will need the k = 3 case (see Figure 1) but we state it for general k as it may
be of independent interest.

Lemma 2.2 Let G be a k-edge-connected graph (k ≥ 3) and e ∈ E(G) with V (e) = {u, v}.
Suppose that d(v) ≥ k+2, and e belongs to no splittable pair at v. Then k is odd, d(v) = k+2,
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Y0 Y2Y1

e

u

v

Figure 1: k = 3 and the edge e belongs to no splittable pair at v.

and there exists a partition Y0, Y1, Y2 of V (G) − {v} such that u ∈ Y0, δ(v, Y0) = 1, δ(v, Y1) =
δ(v, Y2) = (k + 1)/2, δ(Y0, Y1) = δ(Y0, Y2) = (k − 1)/2, and δ(Y1, Y2) = 0.

Proof. Since e is contained in no splittable pair, v is incident with no loops and there exists a
family of sets F = {X1, . . . ,Xt} such that N(v) ⊆ ⋃t

i=1 Xi and, for 1 ≤ i ≤ t, u ∈ Xi ⊆ V −{v}
and δ(Xi) ≤ k + 1. We choose F such that

(1) t is minimum, and

(2) subject to (1),
∑t

i=1 |Xi| is maximum.

Since d(v) ≥ k + 2 and v is not incident with any loop, we have t ≥ 2. Let Y0 = X1 ∩ X2,
Y1 = X1 −X2 and Y2 = X2 −X1. By (1), Yi 6= ∅ for i = 1, 2. Note that δ(Y0) ≥ k since u ∈ Y0

and G is k-edge-connected. Also δ(X1 ∪ X2) ≥ k + 2, for otherwise δ(X1 ∪ X2) ≤ k + 1 and
(F − {X1,X2}) ∪ {X1 ∪ X2} contradicts the choice of F (via (1)). So

(k + 1) + (k + 1) ≥ δ(X1) + δ(X2) = δ(Y0) + δ(X1 ∪ X2) + 2δ(Y1, Y2) ≥ k + (k + 2).

Therefore, equality must hold throughout; so δ(X1) = δ(X2) = k +1, δ(Y0) = k, δ(Y1, Y2) = 0,
and δ(X1 ∪ X2) = k + 2.

Since u ∈ Y0 and v ∈ V (G) − (X1 ∪ X2), δ(Y0, V (G) − (X1 ∪ X2)) ≥ 1. Because G is
k-edge-connected, δ(Yi) ≥ k for i = 1, 2; and hence

(k + 1) + (k + 1) = δ(X1) + δ(X2) = δ(Y1) + δ(Y2) + 2δ(Y0, V (G) − (X1 ∪ X2)) ≥ k + k + 2.

Equality holds throughout; so δ(Y1) = δ(Y2) = k and δ(v, Y0) = δ(Y0, V (G) − (X1 ∪ X2)) = 1.
Since G is k-edge-connected and δ(X1) = k+1, G[X1] is ⌈(k−1)/2⌉-edge-connected. Hence

δ(Y0, Y1) ≥ ⌈(k − 1)/2⌉. Similarly, δ(Y0, Y2) ≥ ⌈(k − 1)/2⌉. Because δ(Y0) = k, v /∈ X1 ∪ X2,
and δ(v, Y0) = 1, we must have δ(Y0, Y1) = δ(Y0, Y2) = (k − 1)/2. In particular, k is odd.

We may assume t ≥ 3. For, suppose t = 2. Then N(v) ⊆ Y0 ∪ Y1 ∪Y2. Since δ(Y1, Y2) = 0,
δ(Y1) = δ(Y2) = k, and δ(Y0, Y1) = δ(Y0, Y2) = (k − 1)/2, we have δ(v, Y1) = δ(v, Y2) =
(k + 1)/2. Hence d(v) = k + 2. Therefore, there are no edges of G leaving Y0 ∪ Y1 ∪ Y2 ∪ {v};
so {Y0, Y1, Y2} is a partition of V (G) − {v}, and the assertion of the lemma holds.

Suppose Y0 6⊆ X3. Note that δ(X3 ∪ Y0) ≥ k + 2 as otherwise (F − {X3}) ∪ {X3 ∪ Y0}
contradicts the choice of F (via (2)). Since u ∈ X3∩Y0 and G is k-edge-connected, δ(X3∩Y0) ≥
k. Therefore, we have the following contradiction

(k + 1) + k ≥ δ(X3) + δ(Y0) ≥ δ(X3 ∪ Y0) + δ(X3 ∩ Y0) ≥ (k + 2) + k.
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So Y0 ⊆ X3, i.e., X1 ∩ X2 ⊆ X3. Hence by symmetry among X1,X2,X3, we also have
X2∩X3 ⊆ X1 and X1∩X3 ⊆ X2. So X1∩X2 = X1∩X3 = X2∩X3 = Y0 and δ(Y0,X1−Y0) =
δ(Y0,X2 −Y0) = δ(Y0,X3 −Y0) = (k− 1)/2. This is impossible since we also have δ(v, Y0) = 1
and δ(Y0) = k.

We also need to know when an edge is contained in a unique splittable pair at a vertex of
degree four in a 3-edge-connected graph, see Figure 2. This follows from a more general result
of Jordán [32, Theorem 3.6].

Y0

Y2Y1

Y3

e

f

u

v

w

Figure 2: The edge e belongs to a unique splittable pair at v.

Lemma 2.3 Let G be a 3-edge-connected graph and e, f ∈ E(G) with V (e) = {u, v} and
V (f) = {v,w}. Suppose that d(v) = 4 and that e, f is the unique splittable pair at v which
contains e. Then there exists a partition Y0, Y1, Y2, Y3 of V (G) − {v} such that u ∈ Y0, w ∈
Y2, δ(v, Yi) = 1 for all 0 ≤ i ≤ 3, δ(Y0, Y1) = δ(Y1, Y2) = δ(Y2, Y3) = δ(Y3, Y0) = 1, and
δ(Y0, Y2) = δ(Y1, Y3) = 0.

2.2 Cyclability

Let G be a graph and e ∈ E(G) with V (e) = {u, v}. Then the graph G/e obtained from G by
contracting e to a single vertex z (where z 6∈ V (G)) is the graph obtained from G − {u, v} by
adding the new vertex z and replacing each edge f in G− e with at least one end in {u, v} by
an edge in which the corresponding end vertex/vertices are equal to z. We denote the edge of
G/e corresponding to f by the same label f . Note that an edge f of G− e with V (f) = {u, v}
will be replaced by a loop at z in G/e. More generally, if H is a subgraph of G, then graph
G/H obtained from G by contracting H to a single vertex z (where z 6∈ V (G)) is the graph
obtained from G−H by adding the new vertex z and replacing each edge f in G−E(H) with
at least one end in V (H) by an edge in which the corresponding end vertex/vertices are equal
to z. We again denote the edge of G/e corresponding to f by the same label f . Note that:
contracting a subgraph cannot reduce the edge-connectivity of G; contracting a subgraph of
an Eulerian graph results in another Eulerian graph; and, when H is connected, G/H can be
obtained from G by successively contracting each edge of H.

Ellingham, Holton and Little obtained the following characterization of 3-connected cubic
graphs G with the property that no cycle of G contains a given set of two edges and at most
four vertices of G.
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Lemma 2.4 [18] Let G be a 3-connected cubic graph, X ⊆ V (G) with |X| ≤ 4 and F =
{e, f} ⊆ E(G). Then no cycle of G contains X ∪ F if and only if |X| = 4 and G has
pairwise disjoint subgraphs Z1, Z2, . . . , Zm such that V (Z1), V (Z2), . . . , V (Zm) partitions V (G),
|X ∩ Zi| = 1 for 1 ≤ i ≤ 4, e ∈ E(Z5, Z6), f ∈ E(Z7, Z8), δ(Zi) = 3 for all 1 ≤ i ≤ m, and
either:
(a) m = 8, the graph obtained by contracting each Zi to a single vertex is the Wagner graph,
and G has the structure illustrated in Figure 3(a), or
(b) m = 10, the graph obtained by contracting each Zi to a single vertex is the Petersen graph,
and G has the structure illustrated in Figure 3(b).

Z1

Z1

Z2

Z2

Z3

Z3

Z4

Z4 Z5

Z5

Z6

Z6

Z7
Z7

Z8
Z8

Z9

Z10

e

e

f
f

Figure 3: Graphs in which no Eulerian subgraph contains e, f and any four given vertices in
Z1, Z2, Z3 and Z4.

We will need the following extension of Theorem 2.4 to 3-edge-connected graphs which are
not necessarily cubic. We use the term trail to mean a walk between two vertices in a graph
which may repeat vertices but not edges. A closed trail is a trail which begins and ends at the
same vertex.

Lemma 2.5 Let G be a 3-edge-connected graph, X ⊆ V (G) with |X| ≤ 4 and F = {e, f} ⊆
E(G). Then no Eulerian subgraph of G contains X ∪ F if and only if |X| = 4 and G has
pairwise disjoint subgraphs Z1, Z2, . . . , Zm such that V (Z1), V (Z2), . . . , V (Zm) partitions V (G),
|X ∩ Zi| = 1 for 1 ≤ i ≤ 4, e ∈ E(Z5, Z6), f ∈ E(Z7, Z8), δ(Zi) = 3 for all 1 ≤ i ≤ m, and
either:
(a) m = 8, the graph obtained by contracting each Zi to a single vertex is the Wagner graph,
and G has the structure illustrated in Figure 3(a), or
(b) m = 10, the graph obtained by contracting each Zi to a single vertex is the Petersen graph,
and G has the structure illustrated in Figure 3(b).

Proof. It is not difficult to check that if G has the specified subgraphs Z1, Z2, . . . , Zm then
no Eulerian subgraph of G can contain X ∪ F . Hence suppose that no Eulerian subgraph
of G contains X ∪ F . We use induction on a(G) :=

∑

v∈V (G)(d(v) − 3) to show that the
specified subgraphs Z1, Z2, . . . , Zm exist. If a(G) = 0 then G is cubic and the assertion follows
immediately from Lemma 2.4. Hence suppose a(G) > 0 and choose v ∈ V (G) with d(v) ≥ 4.
By Lemma 2.1, we may choose edges e1, e2 incident to v such that the graph Ge1,e2

v obtained
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by splitting e1, e2 at v in G is 3-edge-connected. Let V (ei) = {v, ui} for i = 1, 2 and let G′

be obtained from G − {e1, e2} by adding a new vertex z and three new edges e1, e2, e3 where
V (ei) = {z, ui} for i = 1, 2, and V (e3) = {z, v}. We give two of the new edges the same labels
as the deleted edges so that we have E(G) ⊆ E(G′). Note that G′ = G/e3, e3 /∈ {e, f}, and,
if e1 is a loop in G, then e1 is an edge between z and v in G′.

The 3-edge-connectivity of Ge1,e2
v implies that G′ is 3-edge-connected, and we have X ⊆

V (G) ⊆ V (G′) and F ⊆ E(G) ⊆ E(G′). Since no Eulerian subgraph of G can contain X ∪ F ,
no Eulerian subgraph of G′ can contain X ∪ F . Since a(G′) < a(G) we may use induction
to deduce that the specified subgraphs Z ′

1, Z
′
2, . . . , Z

′
m exist for G′. If e3 ∈ E(Z ′

i) for some
1 ≤ i ≤ m then we may construct the required subgraphs Z1, Z2, . . . , Zm for G by putting
Zi = Z ′

i/e3 and Zj = Z ′
j for all i 6= j. Thus we may assume that e3 6∈ E(Z ′

i) for all 1 ≤ i ≤ m.
We will show that this case cannot occur by constructing an Eulerian subgraph H of G which
contains X ∪ F . Let G̃ be the graph obtained from G′ by contracting each subgraph Z ′

i to a
single vertex zi.

Suppose m = 8. Then G̃ is isomorphic to the Wagner graph and we may assume by
symmetry that e3 is incident to either z1 and z5, or z1 and z3. Consider the cycle C =
z5z6z3z7z8z4z2z5 of G̃. We may extend E(C) to the Eulerian subgraph H of G = G′/e3 which
contains X ∪ F as follows. We first assume that V (e3) = {z1, z5}. For i 6= 1, 5 we construct
a trail Pi in Z ′

i joining the two vertices incident to C and passing through any vertex in
X ∩ V (Zi). For i = 5 we construct a trail P5 in Z ′

5 joining the vertices incident to C and
passing through the vertex incident to e3. For i = 1 we construct a closed trail C1 in Z ′

1

containing the vertex incident to e3 and the vertex in X ∩ V (Z ′
1). (These trails exist since G′

is 3-edge-connected and hence Z∗
i = G′/(G′ − Z ′

i) is 3-edge-connected for all 1 ≤ i ≤ 8.) We
then choose H to be the subgraph of G induced by

⋃8
i=2 E(Pi) ∪ E(C1) ∪ E(C). We proceed

similarly when V (e3) = {z1, z3} by interchanging the roles of Z5 and Z3 in the construction.
Suppose that m = 10. Then G̃ is isomorphic to the Petersen graph and we may assume by

symmetry that e3 is incident to either z1 and z7, or z1 and z9, or z9 and z10. In the first two
cases we may proceed as in the previous paragraph, using the cycle C = z5z6z2z7z8z3z9z10z4z5

of G̃. In the case when V (e) = {z9, z10}, we proceed similarly using the two disjoint cycles
C1 = z1z9z3z8z7z1 and C2 = z10z2z6z5z4z10 in G̃. (These cycles give rise to two disjoint
Eulerian subgraphs of G′ which become one Eulerian subgraph in G = G′/e3.)

2.3 Three inequalities

The purpose of this subsection is to present three inequalities that will be used to estimate
the weight of an Eulerian subgraph obtained by combining several smaller Eulerian subgraphs.
The first is elementary.

Lemma 2.6 Let n1, n2 be nonnegative reals. Then for any 0 < c ≤ 1,

nc
1 + nc

2 ≥ (n1 + n2)
c.

Lemma 2.7 Let s be a positive real number and β be the root of (s + 2)x − sx = 1 in (0, 1).
Then for any real numbers n1, n2, n3, γ satisfying n1 ≥ sn3, n2 ≥ n3 ≥ 0, and 0 < γ ≤ β we
have

nγ
1 + nγ

2 ≥ (n1 + n2 + n3)
γ .
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Proof. It is not difficult to check that (s + 2)x − sx = 1 has a unique root β ∈ (0, 1) and that
(s+2)γ − sγ −1 ≤ 0 for all 0 < γ ≤ β. Let f(n1, n2, n3) = nγ

1 +nγ
2 − (n1 +n2 +n3)

γ . We show
that f(n1, n2, n3) ≥ 0 when n1 ≥ sn3 and n2 ≥ n3 ≥ 0. We have ∂f/∂n1 ≥ 0 and ∂f/∂n2 ≥ 0
since 0 < γ < 1, so f is minimised when n1 = sn3 and n2 = n3. Thus

f(n1, n2, n3) ≥ f(sn3, n3, n3) = (sγ + 1 − (s + 2)γ)nγ
3 ≥ 0.

Lemma 2.8 Suppose n1, ..., nk, t, γ are real numbers with k ≥ 3, 0 ≤ nk ≤ t min{n1, . . . , nk−1},
and 0 < γ ≤ logt+k−1(k − 1). Then

k−1
∑

i=1

nγ
i ≥

(

k
∑

i=1

ni

)γ

.

Proof. The assertion of this lemma follows from Lemma 2.6 when nk = 0. Thus we may
assume nk > 0. Hence t > 0 and

∑k
i=1 ni > 0. Define xi = ni/

∑k
j=1 nj, for i = 1, . . . , k.

Then x1, ..., xk ∈ [0, 1],
∑k

i=1 xi = 1, and xk ≤ t min{x1, . . . , xk−1}. It suffices to show that
∑k−1

i=1 xγ
i ≥ 1.

Let f(x1, . . . , xk−1) =
∑k−1

i=1 xγ
i . We first show that the minimum of f(x1, . . . , xk−1) subject

to the constraints that xi ≥ xk/t ≥ 0 for all 1 ≤ i ≤ k − 1,
∑k

i=1 xi = 1, and xk is fixed,
occurs when xi = xk/t for all i = 2, . . . , k. Let (a1, a2, . . . , ak−1) be a point at which this
minimum occurs and is such that a1 is as large as possible. By symmetry we have a1 ≥ ai

for all 2 ≤ i ≤ k − 1. We may use elementary calculus and the facts that a1 ≥ ai and
0 ≤ γ < 1 to deduce that (a1 + ǫ)γ + (ai − ǫ)γ ≤ aγ

1 + aγ
i for all ǫ ≥ 0. The choice of

(a1, a2, . . . , ak−1) now implies that ai = xk/t for all 2 ≤ i ≤ k − 1, a1 = 1 − (t + k − 2)xk/t,
and f(a1, . . . , ak−1) = (1 − (t + k − 2)xk/t)γ + (k − 2)(xk/t)γ =: g(xk).

Since
∑k

i=1 xi = 1 we have
∑k

i=1 txi = t. We can now use the fact that xk ≤ txi for all
1 ≤ i ≤ k − 1 to deduce that xk ≤ t/(t + k − 1). We complete the proof by showing that
g(xk) ≥ 1 for 0 ≤ xk ≤ t/(t + k − 1). It is not difficult to see that g′(xk) = 0 has a unique
solution, and that g′′(xk) < 0 for 0 ≤ xk ≤ t/(t + k − 1). Hence, the minimum of g(xk) is
achieved at xk = 0 or xk = t/(t + k − 1). We have g(0) = 1, and

g

(

t

t + k − 1

)

= (k − 1)(t + k − 1)−γ ≥ (k − 1)(t + k − 1)− logt+k−1(k−1) = 1.

Therefore, f(x1, . . . , xk−1) ≥ 1.

We will use the following special cases of Lemmas 2.7 and 2.8.

Corollary 2.9 Let α ≈ 0.753 be the real root of 41/x − 31/x = 2. Then:
(a) for all real numbers n1, n2, n3 satisfying n1 ≥ 31/αn3 and n2 ≥ n3 ≥ 0 we have

nα
1 + nα

2 ≥ (n1 + n2 + n3)
α;

(b) for all real numbers n1, n2, n3, n4 satisfying 0 ≤ n4 ≤ min{n1, n2, n3} we have

nα
1 + nα

2 + nα
3 ≥ (n1 + n2 + n3 + n4)

α;
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(c) for all real numbers n1, n2, n3, n4, n5 satisfying 0 ≤ n5 ≤ (41/α − 4)min{n1, n2, n3, n4} we
have

nα
1 + nα

2 + nα
3 + nα

4 ≥ (n1 + n2 + n3 + n4 + n5)
α.

Proof. Part (a) follows from Lemma 2.7 by taking s = 31/α and using the fact that (31/α +
2)α − (31/α)α = 4 − 3 = 1. Parts (b) and (c) follow from Lemma 2.8 by taking k = 4 and
t = 1, and k = 5 and t = 41/α − 4, respectively.

3 Eulerian subgraphs of 3-edge-connected graphs

In this section we prove an edge weighted version of Theorem 1.1. Let G be a graph and let
w : E(G) → {1, 2}. For any H ⊆ G let w(H) =

∑

e∈E(H) w(e), and for any S ⊆ E(G) let
w(S) =

∑

e∈S w(e). We will show

Theorem 3.1 Let G be a 3-edge-connected graph, e, f ∈ E(G), and w : E(G) → {1, 2}.
Suppose G 6= K3

2 . Then G contains an Eulerian subgraph H such that e, f ∈ E(H) and
w(H) ≥ (w(G)/6)α + 2, where α ≈ 0.753 is the real root of 41/x − 31/x = 2.

The multiplicative constant (1/6)α in Theorem 1.1 is chosen to simplify its proof; it may be
improved by considering other exceptional graphs in addition to K3

2 . Note that the conclusion
of Theorem 3.1 does not hold for K3

2 because of the additive constant 2. We need this additive
constant for the inductive step in our proof.

We first need to deal with graphs with few edges to provide a basis for our induction.

Lemma 3.2 Theorem 3.1 holds for graphs with at most 6 edges.

Proof. The assertion of Theorem 3.1 clearly holds if G is Eulerian. So assume that u, v are
vertices of G with odd degree. Since G is 3-edge-connected and |E(G)| ≤ 6, |G| ≤ 4.

If |G| = 4 then G = K4. If |G| = 2 then, since G 6= K3
2 , G is obtained from K3

2 by adding
one, two or three edges, which can be either two more uv-edges and at most one loop, or all
loops. In each case it is easy to check that the desired Eulerian subgraph H exists.

Now assume |G| = 3. Let w denote the vertex of G other than u, v. Since G is 3-edge-
connected and |E(G)| ≤ 6, we see that G has at most two edges between u and v. If there
is no edge between u and v, then G is obtained from a path of length 2 by tripling each
edge, and it is easy to find the desired H. If there is exactly one edge between u and v, then
d(u) = d(v) = 3 (as |E(G)| ≤ 6) and d(w) = 4 or 6 (if d(w) = 6 then there is a loop on w);
and the desired H can be found directly. Finally, assume that there are precisely two edges
between u and v. Since G is 3-edge-connected and by symmetry, we may assume d(u) = 5 (so
that there are 3 edges between u and w). Then d(v) = 3 (since |E(G)| ≤ 6), and there is just
one edge between v and w. Again the desired H exists.

The next lemma will be used to construct the desired Eulerian subgraph of G from an Eu-
lerian subgraph of a graph obtained from G by contracting several disjoint induced subgraphs.

Lemma 3.3 Let G be a 3-edge-connected graph, w : E(G) → {1, 2}, and let C1, . . . , Ck be
disjoint induced subgraphs of G such that δ(Ci) = 3 and |E(Ci)| < |E(G)| − 3 for all i =
1, . . . , k. Let G̃ denote the graph obtained from G by contracting each subgraph Ci to a single
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vertex ci. Suppose Theorem 3.1 holds for all graphs with fewer edges than G, and assume
that G̃ contains an Eulerian subgraph H̃ such that ci ∈ V (H̃) for all i. Then G contains an
Eulerian subgraph H such that the edges of G corresponding to the edges in H̃ are in H and

w(H) ≥
k
∑

i=1

(w(Ci)/6)
α + w(H̃).

Proof. For each i, let ei, fi denote the edges of H̃ incident with ci. Let C∗
i be obtained from

G by contracting G−Ci to a single vertex c∗i . Since δ(Ci) = 3 and G is 3-edge-connected, C∗
i

is 3-edge-connected. Assign the edges incident with c∗i weight 1.
Since |E(Ci)| < |E(G)| − 3, we have |E(C∗

i )| < |E(G)|. If C∗
i 6= K3

2 then, by assumption,
C∗

i contains an Eulerian subgraph Hi such that ei, fi ∈ E(Hi) and w(Hi) ≥ (w(C∗
i )/6)α + 2 ≥

(w(Ci)/6)
α + 2. On the other hand, if C∗

i = K3
2 then E(Ci) = ∅, w(Ci) = 0 and we may also

construct an Eulerian subgraph Hi such that ei, fi ∈ E(Hi) and w(Hi) = 2 = (w(Ci)/6)
α + 2.

Since d(c∗i ) = 3, we see that Hi uses exactly two edges at c∗i , namely ei and fi. Then
⋃k

i=1 E(Hi) ∪ E(H̃) induces an Eulerian subgraph H of G such that

w(H) ≥
k
∑

i=1

(w(Hi) − 2) + w(H̃) ≥
k
∑

i=1

(w(Ci)/6)
α + w(H̃).

Lemma 3.4 Let L be a 3-edge-connected graph, w : E(G) → {1, 2}, and z1, z2 be two adjacent
vertices of degree three in L. Let L′ be obtained from L by deleting the edge joining z1 and z2,
and then suppressing z1, z2 to two edges k1, k2, respectively, of weight 1. Suppose Theorem 3.1
holds for all graphs with fewer edges than L. Then L′ has an Eulerian subgraph H with
k1, k2 ∈ E(H) and w(H − {k1, k2}) ≥ (w(L′)/6)α.

Proof. We use an inner induction on |E(L)|. If L′ is 3-edge-connected then we may apply Theo-
rem 3.1 to L′ to find an Eulerian subgraph H with k1, k2 ∈ E(H) and w(H ′) ≥ (w(L′)/6)α+2.
Then w(H ′ − {k1, k2}) ≥ (w(L′)/6)α as required.

Hence suppose that L′ is not 3-edge-connected. Since L is 3-edge-connected, L′ is 2-edge-
connected and every 2-edge-cut of L′ separates k1 and k2. Choose a 2-edge-cut {g, h} of
L′ and let L∗

1, L
∗
2 be the components of L′ − {g, h} with k1 ∈ E(L∗

1) and k2 ∈ E(L∗
2). For

i = 1, 2, construct L′
i from L∗

i by adding a new edge fi of weight 1 between the endvertices
of g and h in L∗

i . Let Li be obtained from L′
i by subdividing ki and fi with two new vertices

z′1 and z′2 and then adding an edge between z′1 and z′2. Then Li is 3-edge-connected since it
can be obtained from L by contracting L3−i ∪ {z3−i} to a single vertex. We may apply the
inner induction to Li to deduce that L′

i has an Eulerian subgraph Hi with ki, fi ∈ E(Hi) and
w(Hi − {ki, fi}) ≥ (w(L′

i)/6)
α. Then E(H1 − f1) ∪ E(H2 − f2) ∪ {g, h} induces an Eulerian

subgraph H of L′ with k1, k2 ∈ E(H) and

w(H − {k1, k2}) ≥ (w(L′
1)/6)

α + (w(L′
2)/6)

α + w(g) + w(h) ≥ (w(L′)/6)α

by Lemma 2.6.

Proof of Theorem 3.1. We use induction on |E(G)|. By Lemma 3.2, we may assume:

|E(G)| ≥ 7. (3.1)
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As induction hypothesis, we assume that:

the theorem holds for all graphs with fewer than |E(G)| edges. (3.2)

We may also assume that:

neither e nor f belongs to a splittable pair in G. (3.3)

For, suppose by symmetry that {e, g} is a splittable pair in G, with V (e) = {v, u} and
V (g) = {v, x}. Let G′ := Ge,g

v be obtained from G by splitting {e, g} at v, and assign weight
1 to the new edge e′ which corresponds to e and g, and also to the other new edge e′′ when
d(v) = 4. Let f ′ = f if none of V (f) is suppressed; otherwise let f ′ = e′ (if f = g) or f ′ = e′′

(if f 6= g).
Note that w(G′) ≥ w(G) − 6. Also note that |E(G′)| ≥ |E(G)| − 2 ≥ 5 (by (3.1)); so

G′ 6= K3
2 . Hence, by (3.2), G′ contains an Eulerian subgraph H ′ such that e′, f ′ ∈ E(H ′)

and w(H ′) ≥ (w(G′)/6)α + 2. Let H be obtained from H ′ by replacing e′ with e and g and
replacing e′′ (if it exists in H ′) with the corresponding edges in G. Then by Lemma 2.6,

w(H) ≥ w(H ′) + 1 ≥ (w(G′)/6)α + 2 + 1 ≥ (w(G)/6)α + 2.

2

Assumption (3.3) implies in particular that neither e nor f is a loop or is adjacent to a loop.
We may further assume that:

e and f are not adjacent. (3.4)

Suppose on the contrary that V (e) = {v, u} and V (f) = {v, x}. Then d(v) = 3 by (3.3) and
Lemma 2.1. So x 6= u; for otherwise, by (3.3) and Lemma 2.1 we would also have d(u) = 3,
and (since G 6∼= K3

2 ) G would not be 3-edge-connected.
Let g denote the edge incident with v other than e and f , and let y be the end of g other

than v. Note that y 6= v as d(v) = 3. Let G′ be obtained from G − g by suppressing degree 2
vertices (namely, v and possibly y) and assign weight 1 to the new edge(s) which resulted from
the vertex suppression(s). So w(G′) ≥ w(G)− 6 if both e and f have weight 1 in G; otherwise
w(G′) ≥ w(G) − 8 and e or f has weight 2 in G. By (3.1), |E(G′)| ≥ 4, and hence G′ 6= K3

2 .
Let e′ denote the edge of G′ obtained by suppressing v, and if d(y) = 3 let e′′ denote the edge
of G′ obtained by supressing y.

First, consider the case when G′ is 3-edge-connected. Let f ′ be an arbitrary edge of G′

that is adjacent to e′. By (3.2), G′ contains an Eulerian subgraph H ′ such that e′, f ′ ∈ E(H ′)
and w(H ′) ≥ (w(G′)/6)α + 2. Let H be obtained from H ′ by replacing e′ with e and f and
by replacing e′′ (if e′′ exists and belongs to H ′) with the edges of G − g incident with y. Now
H is an Eulerian subgraph of G and e, f ∈ H. If both e and f have weight 1 in G then
w(H) ≥ w(H ′) + 1 ≥ ((w(G) − 6)/6)α + 2 + 1 ≥ (w(G)/6)α + 2 (by Lemma 2.6). Otherwise,
w(H) ≥ w(H ′) + 2 ≥ ((w(G) − 8)/6)α + 2 + 2 ≥ (w(G)/6)α + 2 (by Lemma 2.6).

Thus we may assume that G′ is not 3-edge-connected. Then G′ has a 2-edge-cut S =
{g1, g2} such that u, x are contained in the same component of G′ − S, say G1. We choose S
such that G1 is minimal (under subgraph containment). Let G2 denote the other component
of G′ − S, and let V (g1) = {u1, u2} and V (g2) = {v1, v2} with ui, vi ∈ Gi for i = 1, 2.
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Let G′
1 be obtained from G1 by adding an edge f ′ between u1 and v1 (which may be a

loop) and assign f ′ weight 1. By the minimality of G1 we see that G′
1 is 3-edge-connected.

When G′
1 6= K3

2 we may use (3.2) to deduce that G′
1 contains an Eulerian subgraph H ′

1 such
that e′, f ′ ∈ H ′

1 and w(H ′
1) ≥ (w(G′

1)/6)
α + 2. In the case when G′

1 = K3
2 , we choose H ′

1 to
be the Eulerian subgraph of G′

1 with E(H ′
1) = {e′, f ′} and w(H ′

1) = w(e′) + w(f ′) = 2.
Let G′

2 be obtained from G by contracting G[V (G1) ∪ {v}] to a single vertex z. Then G′
2

is 3-edge-connected. Assign weight 1 to g, g1, g2 in G′
2. Since G′ is not 3-edge-connected, we

see that |E(G2)| ≥ 1; so G′
2 6= K3

2 . Hence by (3.2), G′
2 contains an Eulerian subgraph H ′

2 such
that g1, g2 ∈ H ′

2 and w(H ′
2) ≥ (w(G′

2)/6)
α + 2.

Let H be the subgraph of G induced by E(H ′
1 − {e′, f ′}) ∪ {e, f} ∪ E(H ′

2). Then H
is an Eulerian subgraph of G (as both H ′

1 and H ′
2 are 2-edge-connected), e, f ∈ E(H) and

w(H) ≥ w(H ′
1)+w(H ′

2). If G′
1 = K3

2 then w(G′
2) ≥ w(G)−9 and w(H) ≥ 2+((w(G)−9)/6)α+

2 ≥ (w(G)/6)α + 2 by Lemma 2.6. So assume G′
1 6= K3

2 . Note that w(G′
1)+ w(G′

2) ≥ w(G1)+
1 + w(G2) + 3 ≥ w(G) − 8. Then w(H) ≥ (w(G′

1)/6)
α + 2 + (w(G′

2)/6)
α + 2 ≥ (w(G)/6)α + 2

again by Lemma 2.6. 2

We say that a 3-edge-cut S of G is trivial if some component of G − S consists of a single
vertex and no edge. Otherwise we say that S is non-trivial. We may assume that:

neither e nor f is contained in a non-trivial 3-edge-cut of G. (3.5)

For, suppose S = {e, g1, g2} is a 3-edge-cut of G and let G1, G2 be the components of G − S
such that |E(Gi)| ≥ 1 for i = 1, 2. Let V (e) = {u1, u2}, V (g1) = {x1, x2} and V (g2) = {y1, y2}
with ui, xi, yi ∈ V (Gi), i = 1, 2. Let G′

i be obtained from G by contracting G3−i, for i = 1, 2.
By symmetry, assume f ∈ E(G1) ∪ S. Assign weight 1 to e, g1, g2 in both G′

1 and G′
2. Then

w(G′
1) + w(G′

2) ≥ w(G) as the weight of every edge of G is at most 2.
Note that for i = 1, 2, G′

i is 3-edge-connected, and G′
i 6= K3

2 (since |E(Gi)| ≥ 1). So by
(3.2), G′

1 contains an Eulerian subgraph H ′
1 such that e, f ∈ H ′

1 and w(H ′
1) ≥ (w(G′

1)/6)
α +2.

Without loss of generality, we may assume that g1 ∈ H ′
1. By (3.2), G′

2 contains an Eulerian
subgraph H ′

2 such that e, g1 ∈ H ′
2 and w(H ′

2) ≥ (w(G′
2)/6)

α + 2.
Let H be the subgraph of G induced by E(H ′

1)∪E(H ′
2). Then H is an Eulerian subgraph

of G containing e, f and w(H) ≥ w(H ′
1) + w(H ′

2) − 2 ≥ (w(G′
1)/6)

α + (w(G′
2)/6)

α + 2 ≥
(w(G)/6)α + 2 by Lemma 2.6. 2

We may also assume that:

for any 3-edge-cut S of G, e and f are contained in the same component of G − S. (3.6)

Suppose on the contrary that S = {g1, g2, g3} is a 3-edge-cut of G such that e ∈ G1 and
f ∈ G2, where G1, G2 are the components of G − S. Let V (g1) = {x1, x2}, V (g2) = {y1, y2},
and V (g3) = {z1, z2} such that xi, yi, zi ∈ Gi for i = 1, 2.

Let G′
i be obtained from G by contracting G3−i, for i = 1, 2. In both G′

1 and G′
2, assign

weight 1 to g1, g2 and g3. Then w(Gi) = w(G′
i)− 3; so w(G′

1)+w(G′
2) = w(G1)+w(G2)+6 ≥

w(G).
Note that G′

i is 3-edge-connected and, since |E(Gi)| ≥ 1, G′
i 6= K3

2 . By symmetry, we may
assume |G′

1| ≤ |G′
2|.1 By (3.2), G′

1 contains an Eulerian subgraph H ′
1 such that e, g1 ∈ H ′

1

1This assumption will not be used in the proof of (3.6) but will be important when we convert the proof
into a polynomial time algorithm in Section 5.
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and w(H ′
1) ≥ (w(G′

1)/6)
α + 2. Without loss of generality, we may assume g2 ∈ H ′

1 (so
g3 /∈ H ′

1). By (3.2) again, G′
1 contains an Eulerian subgraph H ′′

1 such that e, g3 ∈ H ′′
1 and

w(H ′′
1 ) ≥ (w(G′

1)/6)
α + 2. We now have a symmetry between g1 and g2, and we may thus

assume that g1 ∈ H ′′
1 .

In G′
2 we find an Eulerian subgraph H ′

2 such that f, g1 ∈ H ′
2 and w(H ′

2) ≥ (w(G′
2)/6)

α +2.
If g2 ∈ H ′

2, let H be the subgraph of G induced by E(H ′
1)∪E(H ′

2); otherwise we have g3 ∈ H ′
2

and we let H the subgraph of G induced by E(H ′′
1 )∪E(H ′

2). Then H is an Eulerian subgraph
of G such that e, f ∈ H, and w(H) = w(H ′

1) + w(H ′
2) − 2 or w(H) = w(H ′′

1 ) + w(H ′
2) − 2.

Hence w(H) ≥ (w(G′
1)/6)

α + (w(G′
2)/6)

α + 2 ≥ (w(G)/6)α + 2 by Lemma 2.6. 2

We may further assume that:

the vertices incident to e and f all have degree 3 in G. (3.7)

Suppose on the contrary that V (e) = {u, v} and d(v) ≥ 4. By (3.3), e is not in any splittable
pair of G. Lemmas 2.1 and 2.2 now imply that d(v) = 5, and V (G) − {v} has a partition
Y0, Y1, Y2 such that u ∈ Y0, δ(v, Y0) = 1, δ(v, Y1) = δ(v, Y2) = 2, δ(Y0, Y1) = δ(Y0, Y2) = 1, and
δ(Y1, Y2) = 0. See Figure 1. By (3.5), |Y0| = 1. So by (3.4), f ∈ Y1 or f ∈ Y2. By symmetry,
we may assume f ∈ Y1. But then the edges from Y1 to {u, v} form a non-trivial 3-edge-cut in
G which separates e from f , contradicting (3.6). 2

Let V (e) = {u, v}. By (3.7), d(u) = d(v) = 3. Let gi, i = 1, 2, denote the other two edges
incident with u with V (gi) = {u, ui}; and let hi, i = 1, 2, denote the other two edges incident
with v with V (hi) = {v, vi}. Since G is 3-edge-connected and d(v) = d(u) = 3, e is the only
edge between u and v. So v 6= ui and u 6= vi for i = 1, 2.

Let Gi, i = 1, 2, be obtained from G − gi by suppressing u to e′ and, if dG(ui) = 3,
suppressing ui to ei. Define f ′ = f if ui /∈ V (f) or ui is not suppressed, and otherwise let
f ′ = ei. Similarly, let Hi, i = 1, 2, be obtained from G − hi by suppressing v to e′ and, if
dG(vi) = 3, suppressing vi to fi. Define f ′ = f if vi /∈ V (f) or vi is not suppressed, and
otherwise let f ′ = fi.

We may assume that:

G1, G2, H1, and H2 are not 3-edge-connected. (3.8)

Suppose on the contrary that G1 is 3-edge-connected. Assign weight 1 to the edges of G1 which
resulted from vertex suppressions. Note that w(G1) ≥ w(G)−6 if both e and g2 have weight 1
in G; otherwise w(G1) ≥ w(G) − 8. By (3.2), G1 contains an Eulerian subgraph H ′ such that
e′, f ′ ∈ E(H ′) and w(H ′) ≥ (w(G′

1)/6)
α +2. Let H be obtained from H ′ by replacing e′ with e

and g1 and, if e1 exists and belongs to H ′, replacing it with the suppressed edges at u1. Then
H is an Eulerian subgraph of G such that e, f ∈ H. If e and g2 both have weight 1 in G then
w(H) ≥ w(H ′)+1 ≥ ((w(G)−6)/6)α +1+2 ≥ (w(G)/6)α +2 by Lemma 2.6. So assume that
e or g2 has weight 2 in G. Then w(H) ≥ w(H ′)+2 ≥ ((w(G)−8)/6)α +2+2 ≥ (w(G)/6)α +2,
again by Lemma 2.6. 2

Since G is 3-edge-connected, Gi,Hi are all 2-edge-connected. By (3.8), we may choose a
2-edge-cut Si of Gi. Note that Si ∪ {gi} is a 3-edge-cut in G; so by (3.6), some component Ci

of G−Si satisfies e, f /∈ Ci. We choose Si and Ci such that Ci is maximal. Then |E(Ci)| ≥ 1;
as otherwise, Gi would be 3-edge-connected (by the maximality of Ci). Similarly, we choose Ti

to be a 2-edge-cut of Hi, Di to be the component of Hi − Ti such that e, f /∈ Di, and suppose
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that Ti,Di have been chosen such that Di is maximal (so |E(Di)| ≥ 1). We remark that the
argument given below to verify (3.9) does not use the maximality of Ci and Di; this maximality
will be used later to ensure that the graph obtained from Gi, or Hi, by contracting Ci, or Di,
to a single vertex of degree two and then suppressing this vertex, is 3-edge-connected.

We next show that:

C1, C2, D1 and D2 are pairwise disjoint. (3.9)

First, suppose C1 ∩ C2 6= ∅. Since u, v 6∈ V (C1 ∪ C2), C1 ∪ C2 6= V (G). Since G is 3-edge-
connected, we have

3 + 3 = δG(C1) + δG(C2) ≥ δG(C1 ∩ C2) + δG(C1 ∪ C2) ≥ 3 + 3.

Thus equality must hold throughout and, in particular, δG(C1 ∪C2) = 3. Since dG(u) = 3 and
δG(u,C1∪C2) = 2 we have δG(C1∪C2∪{u}) = 2. Since v 6∈ V (C1∪C2)∪{u}, this contradicts
the fact that G is 3-edge-connected.

Next, suppose C1 ∩ D1 6= ∅. We may deduce as above that δG(C1 ∪ D1) = 3. Since
dG(u) = 3 = dG(v) and δG({u, v}, C1 ∪ D1) = 2, we have δG(C1 ∪ D1 ∪ {u, v}) = 3. This
contradicts (3.6) since f is an edge of G − (C1 ∪ D1 ∪ {u, v}).

Similar arguments apply to all other pairs. 2

Our current knowledge on the structure of G is illustrated in Figure 4.

C1

C2

D1

D2

g1

g2

h1

h2

e
u v

Figure 4: The structure of G around e. Note that for each i = 1, 2, one of the edges leaving
Ci may be incident to Dj, for some j = 1, 2.

Let V (f) = {u′, v′} and let g′i, h
′
i, S

′
i, C

′
i,D

′
i be defined with respect to f in the same way that

gi, hi, Si, Ci,Di were defined with respect to e. Then |E(C ′
i)| ≥ 1 and |E(D′

i)| ≥ 1 for i = 1, 2,
and C ′

1, C
′
2,D

′
1,D

′
2 are pairwise disjoint by (3.9) and symmetry. Let S = {C1, C2,D1,D2},

S ′ = {C ′
1, C

′
2,D

′
1,D

′
2}, and K = G − {u, v, u′, v′} −⋃X∈S∪S′ X.

We next show that:

for all X ∈ S and X ′ ∈ S ′ we have either X = X ′ or X ∩ X ′ = ∅. (3.10)
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Suppose X∩X ′ 6= ∅. Then δG(X∩X ′) ≥ 3 since G is 3-edge-connected. Since u, v 6∈ V (X∪X ′)
we also have δG(X ∪ X ′) ≥ 3. Hence

3 + 3 ≥ δG(X) + δG(X ′) ≥ δG(X ∩ X ′) + δG(X ∪ X ′) ≥ 3 + 3.

This implies that δG(X ∪ X ′) = 3. The maximality of X and X ′ now gives X = X ′. 2

We may further assume that:

{C1, C2} 6= {C ′
1, C

′
2}. (3.11)

Suppose on the contrary that {C1, C2} = {C ′
1, C

′
2}. Relabeling if necessary we have C1 = C ′

1

and C2 = C ′
2. See the first graph in Figure 5. Let ki be the edge from Ci to G− (Ci ∪{u, u′}),

i = 1, 2. Let G∗ be obtained from G by contracting G[C1 ∪ C2 ∪ {u, u′}] to a single vertex z.
Then e, f, k1, k2 are the only edges of G∗ incident with z. See the second graph in Figure 5.
The graph G∗ is 3-edge-connected since contraction cannot reduce edge-connectivity.

C1

C2

D1D1

D2D2

g1

g2g′2

h1h1

h2h2

k1

k1

k2

k2

u′
ee ff

u vv
v′v′

G G∗

z

g′1

Figure 5: C1 = C ′
1 and C2 = C ′

2.

We first consider the case when {e, k1} is splittable at z in G∗. Let G̃ be the graph obtained
from G∗ by splitting e, k1 at z, and let ẽ, f̃ be the edges of G̃ which correspond to e, k1 and
f, k2, respectively. Assign weight 1 to ẽ and to f̃ . By induction, G̃ has an Eulerian subgraph H̃
containing ẽ, f̃ and with w(H̃) ≥ (w(G̃)/6)α + 2. For i = 1, 2 let C∗

i be the 3-edge-connected
graph obtained from G by contracting G − Ci to a single vertex zi. By (3.2), C∗

1 has an
Eulerian subgraph H1 containing g1, k1 and with w(H1) ≥ (w(C∗

1 )/6)α + 2. Similarly, C∗
2 has

an Eulerian subgraph H2 containing g′2, k2 and with w(H2) ≥ (w(C∗
2 )/6)α + 2. Let H be the

Eulerian subgraph of G with E(H) = (E(H̃) − {ẽ, f̃}) ∪ E(H1) ∪ E(H2) ∪ {e, f}. Then

w(H) ≥ w(H̃) + w(H1) + w(H2) ≥ (w(G̃)/6)α + (w(C∗
1 )/6)α + 2 + (w(C∗

2 )/6)α + 2.

Since w(G) ≥ (w(G̃)−2)+w(C∗
1 )+w(C∗

2 )+w({e, f}), we may use Lemma 2.6 to deduce that
w(H) ≥ (w(G)/6)α + 2.

Hence we may assume that {e, k1} is not splittable at z in G∗, and, by symmetry, {e, k2}
is not splittable at z in G∗. Thus {e, f} is the only splittable pair at z in G∗ that contains e.
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C1

C2

Y1Y1 Y2

Y0 Y3
Y3

k1
k1

k2

k2

u′

v′

v′

ee

ff

g′2

g1
g′1

g2
u

v

v

z

Figure 6: {e, f} is the only splittable pair at z.

We may now choose a partition Y0, Y1, Y2, Y3 of V (G∗)−z satisfying the conclusions of Lemma
2.3, and with v ∈ Y0 and v′ ∈ Y2. See the first graph in Figure 6. We have δG(Yi) = 3 for all
0 ≤ i ≤ 3. Thus (3.5) implies that Y0 = {v} and Y2 = {v′}. We may now deduce that G has
the structure illustrated in the second graph of Figure 6, and that the graph G̃ obtained from
G by contracting Y1, Y3, C1, C2 to single vertices y1, y3, c1, c2, respectively, is isomorphic to the
cube. We may construct a Hamilton cycle H̃ = uvy3c2u

′v′y1c1u in G̃ which contains e, f . By
Lemma 3.3, G has an Eulerian subgraph H such that all edges of H̃ are in H and

w(H)) ≥ (w(C1)/6)
α + (w(C2)/6)

α + (w(Y1)/6)
α + (w(Y3)/6)

α + w(H̃)

≥ ([w(C1) + w(C2) + w(Y1) + w(Y3)]/6)α + 8

≥ ([w(G) − 24]/6)α + 8

≥ (w(G)/6)α + 2

by Lemma 2.6. 2

We may further assume that:
S 6= S ′. (3.12)

Suppose on the contrary that S = S ′. By (3.11) and symmetry we may assume that C ′
1 =

C1, C
′
2 = D2,D

′
1 = C2,D

′
2 = D1 and

w(D2) = min{w(C1), w(C2), w(D1), w(D2)}.

We first consider the case when K is empty. See the first graph in Figure 7. Then (3.5)
implies that δG(C1, C2) = δG(D1,D2) = δG(C2,D1) = δG(C1,D2) = 0. Hence δG(C1,D1) =
δG(C2,D2) = 1 and the graph G̃ obtained from G by separately contracting each of C1, C2,D1,D2

to single vertices c1, c2, d1, d2, respectively, is isomorphic to the Wagner graph. In G̃ there is a
cycle H̃ = uvd1c1u

′v′c2u containing e, f . By Lemma 3.3, G has an Eulerian subgraph H such
that all edges of H̃ are in H and

w(H) ≥ (w(C1)/6)
α + (w(C2)/6)

α + (w(D1)/6)
α + w(H̃)

≥ ([w(C1) + w(C2) + w(D1) + w(D2)]/6)
α + 7

≥ ([w(G) − 24]/6)α + 7

≥ (w(G)/6)α + 2,
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where the second inequality uses the minimality of w(D2) and Corollary 2.9(b), the third
inequality uses the fact that there are 12 edges in G which do not belong to C1, C2, D1 or D2,
and the last inequality uses Lemma 2.6.

C1C1

C2C2 D1D1

D2D2

K = ∅

K 6= ∅

u′u′

v′v′

ee

ff

uu vv

e1

f1

g1

h1g2

e2

f2

h2

g′1 g′2

h′
1 h′

2

x1

x2 y1

y2

K

Figure 7: The structure of G when S = S ′.

Hence we may assume that K is not empty. The 3-edge-connectivity of G now implies
that δG(X,K) = 1 and δG(X,Y ) = 0 for all X,Y ∈ S. Let e1, e2, f1, f2 be the edges from
K to C1, C2,D1,D2, respectively, and let x1, x2, y1, y2 be the endvertices of e1, e2, f1, f2 in K,
respectively. See the second graph in Figure 7. Since G is 3-edge-connected, K is connected.

Suppose K has a cut edge, say k, separating {x1, y1} from {x2, y2}. Let Ji denote the
component of K − k containing {xi, yi}, for i = 1, 2. See Figure 8. Then δ(Ji) = 3 for
i = 1, 2. Let G̃ be obtained from G by separately contracting C1, C2,D1,D2, J1, J2 to single
vertices c1, c2, d1, d2, j1, j2, respectively. Then G̃ is isomorphic to the Petersen graph and we
may construct a cycle H̃ in G̃ which contains e, f and all vertices of G̃ other than d2. By
Lemma 3.3, G has an Eulerian subgraph H such that all edges of H̃ are in H and

w(H) ≥ (w(C1)/6)
α + (w(C2)/6)

α + (w(D1)/6)
α + (w(J1)/6)

α + (w(J2)/6)
α + w(H̃)

≥ ([w(C1) + w(C2) + w(D1) + w(D2)]/6)
α + (w(J1)/6)

α + (w(J2)/6)
α + 9

≥ ([w(C1) + w(C2) + w(D1) + w(D2) + w(J1) + w(J2)]/6)
α + 9

≥ ([w(G) − 30]/6)α + 9

≥ (w(G)/6)α + 2,

where the second inequality uses the minimality of w(D2) and Corollary 2.9(b), the third and
fifth inequalities use Lemma 2.6, and the fourth inequality uses the fact that there are 15 edges
in G which do not belong to C1, C2, D1, D2, J1 or J2.
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C1

C2 D1
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v′

e

f
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e1

f1

g1

h1g2
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f2
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h′
1 h′

2

x1

x2y1

y2

k

J1 J2

Figure 8: The case when K has a cut edge separating {x1, y1} from {x2, y2}

Hence we may assume that K has a no cut edge separating {x1, y1} from {x2, y2}. Let L
be the graph obtained from K by adding two new vertices z1, z2, an edge g from z1 to z2, and
four other edges joining z1 to x1, y1 and z2 to x2, y2. Let F be obtained from L by contracting
g, and let K∗ be obtained from L− g by suppressing z1 and z2 to edges k1 k2, respectively, of
weight 1. Then F is 3-edge-connected since it can be obtained from G by contracting G−K to
a single vertex. The fact that K has no cut edge separating {x1, y1} from {x2, y2} now implies
that L is also 3-edge-connected. We may now apply Lemma 3.4 to L to deduce that K∗ has
an Eulerian subgraph H∗ such that k1, k2 ∈ E(H∗) and w(H∗ − {k1, k2}) ≥ (w(K)/6)α .

Let G′ be obtained from G by contracting K to a single vertex z, and G̃′ be obtained
from G′ by contracting C1, C2,D1,D2 to single vertices c1, c2, d1, d2, respectively. Then H̃ ′ :=
uvd1zd2u

′v′c2zc1u is an Eulerian subgraph of G̃′ which contains e, f . By Lemma 3.3, there is
an Eulerian subgraph H ′ of G′ such that all edges of H̃ ′ are contained in H ′ and

w(H ′) ≥ (w(C1)/6)
α + (w(C2)/6)

α + (w(D1)/6)
α + (w(D2)/6)

α + w(H̃ ′)

≥ ([w(C1) + w(C2) + w(D1) + w(D2)]/6)
α + 10

≥ ([w(G) − w(K) − 28]/6)α + 10

where the second inequality uses Lemma 2.6, and last inequality uses the fact that there are
14 edges in G which do not belong to C1, C2, D1, D2, or K.

The facts that k1, k2 ∈ E(H∗) and that E(H̃ ′) ⊆ E(H ′) imply that E(H∗−{k1, k2})∪E(H ′)
induces an Eulerian subgraph H of G with e, f ∈ H and

w(H) ≥ w(H∗−{k1, k2})+w(H ′) ≥ (w(K)/6)α+([w(G)−w(K)−28]/6)α +10 ≥ (w(G)/6)α+2

by Lemma 2.6. 2

Let S ∪ S ′ = {X1,X2, . . . ,Xq} where w(X1) ≥ w(X2) ≥ . . . w(Xq). By (3.12), q ≥ 5.
Relabeling if necessary we may suppose that Xq = C1. Let r = 41/α − q. We may assume
that:

w(K) ≤ rw(C1). (3.13)
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Suppose on the contrary that w(K) ≥ rw(C1). Since

w(G) ≥
q
∑

i=1

w(Xi) + w(K) + w(e, f, g1, g2, h1, h2, g
′
1, g

′
2, h

′
1, h

′
2)

we have

w(G) − w(C1) − w(C2) − 10 ≥ (q − 2 + r)w(C1) = (41/α − 2)w(C1) = 31/αw(C1).

Recall that, for i = 1, 2, Si is the 2-edge-cut which separates Ci from e in G − gi. See
Figure 4. Let S1 = {e1, e2}, V (ei) = {xi, yi} with xi ∈ C1 and yi 6∈ C1. Similarly let
S2 = {l1, l2}, V (li) = {ai, bi} with ai ∈ C2 and bi 6∈ C2. Let G′ be obtained from G by deleting
C1, suppressing u to e′, and adding an edge g with V (g) = {y1, y2} (which may be a loop).
Assign weight 1 to both e′ and g in G′. Recall that the maximality of C1 implies that G′ is
3-edge-connected.

Let G′′ be obtained from G′ by contracting C2 to a vertex c2 and assign weight one to
e′, l1, l2 in G′′. Since G′ is 3-edge-connected, G′′ is 3-edge-connected. We also have f ∈ E(G′′)
by (3.5) and (3.6). By (3.2), G′′ has an Eulerian subgraph H ′′ such that e′, f ∈ E(H ′′) and
w(H ′′) ≥ (w(G′′)/6)α + 2 ≥ ([w(G) − w(C1) − w(C2) − 10]/6)α + 2.

Without loss of generality, we may assume l1 ∈ H ′′. Let C∗
2 be the 3-edge-connected graph

obtained from G by contracting G − C2 to the single vertex z. Assign weight 1 to g2, l1, l2
in C∗

2 . Recall that E(C2) 6= ∅, and hence C∗
2 6= K3

2 . So by (3.2), C∗
2 contains an Eulerian

subgraph H ′ such that g2, l1 ∈ E(H ′) and w(H ′) ≥ (w(C∗
2 )/6)α + 2 ≥ ([w(C2) + 3]/6)α + 2.

Let J = (H ′′ − c2) ∪ (H ′ − z) ∪ {l1, e′}. Then J ⊆ G′ and w(J) ≥ w(H ′) + w(H ′′) − 2.
Let H = (J − e′) ∪ {u, e, g2} if g 6∈ E(J), and otherwise let H be the Eulerian subgraph
of G obtained from (J − e′) ∪ {u, e, g2} by replacing g by a path P between y1 and y2 and
with E(P ) ⊆ E(C1) ∪ S1. Then e, f ∈ E(H) and w(H) ≥ w(J) + 1 ≥ w(H ′) + w(H ′′) − 1.
Now Corollary 2.9(a) and the facts that w(C2) ≥ w(C1), and w(G) − w(C1) − w(C2) − 10 ≥
31/αw(C1), give:

w(H) ≥ w(H ′′) + w(H ′) − 1

≥ ([w(G) − w(C1) − w(C2) − 10]/6)α + ((w(C2) + 3)/6)α + 3

≥ (w(G)/6)α + 2.

2

We can now complete the proof of the theorem. Note that 41/α < 7 so the fact that
0 ≤ w(K) ≤ (41/α − q)w(C1) by (3.13) implies that q ≤ 6. For all 1 ≤ i ≤ 4 we have

q
∑

j=5

w(Xj) + w(K) ≤ (q − 4 + r)w(Xi) = (41/α − 4)w(Xi) (3.14)

by (3.13). Choose xi ∈ V (Xi) for 1 ≤ i ≤ 4.
Suppose that no Eulerian subgraph of G contains {x1, x2, x3, x4, e, f}. Then, by Lemma

2.5, G has the structure depicted in Figure 3(a) or (b). Since all 3-edge-cuts which contain
e or f are trivial by (3.6), we have |Zi| = 1 for 5 ≤ i ≤ 8. We may now deduce that
S = {Z1, Z2, Z3, Z4} = S ′, which contradicts the fact that S 6= S ′ by (3.12).
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Thus {x1, x2, x3, x4, e, f} is contained in an Eulerian subgraph H ′ of G. Let G̃ be the
graph obtained from G by contracting Xi to the single vertex xi for 1 ≤ i ≤ 4. We may obtain
an Eulerian subgraph H̃ of G̃ which contains {x1, x2, x3, x4, e, f} from H ′ by contracting the
edges which belong to Zi for all 1 ≤ i ≤ 4. By Lemma 3.3, there is an Eulerian subgraph H
of G such that all edges of H̃ are contained in H and

w(H) ≥ (w(X1)/6)
α + (w(X2)/6)

α + (w(X3)/6)
α + (w(X4)/6)

α + w(H̃)

≥







w(X1) + w(X2) + w(X3) + w(X4) +

q
∑

j=5

w(Xj) + w(K)



 /6





α

+ 8

≥ ([w(G) − 40]/6)α + 8

≥ ([w(G) − 40]/6 + 61/α)α + 2

≥ (w(G)/6)α + 2

where the second inequality uses (3.14) and Corollary 2.9(c), the third inequality uses the fact
that there are at most 20 edges of G which do not belong to X1,X2, . . . ,Xq or K, and the
fourth inequality uses Lemma 2.6.

4 Corollaries

It is easy to see that Theorem 1.1 is simply the case of Theorem 3.1 when all edges have the
same weight 1. Theorem 1.1 in turn has the following consequence.

Corollary 4.1 Let G be a 3-edge-connected graph with |G| ≥ 2, and let e, f ∈ E(G). Then G
contains an Eulerian subgraph H such that e, f ∈ H and |H| ≥ (|G|/12)α +1, where α ≈ 0.753
is the real root of 41/x − 31/x = 2.

Proof. Choose a counterexample G so that |E(G)| is minimum. It is easy to see that the
corollary holds if |G| = 2 and hence |G| ≥ 3.

Suppose G has a vertex v of degree at least 5. Then by Lemma 2.1 there exists a splittable
pair g, h at v. By splitting g, h at v, we arrive at a 3-edge-connected graph G′ := Gg,h

v . Since
d(v) ≥ 5, |G′| = |G|. Let e′ = e if e /∈ {g, h}; otherwise let e′ denote the edge resulted from
suppressing v. Define f ′ analogously. By the choice of G, G′ contains an Eulerian subgraph
H ′ such that e′, f ′ ∈ H ′ and |H ′| ≥ (|G′|/12)α + 1. Then H ′ gives rise the desired Eulerian
subgraph in G.

So we may assume ∆(G) ≤ 4. By Theorem 1.1, G contains an Eulerian subgraph H
such that e, f ∈ H and |E(H)| ≥ (|E(G)|/6)α + 2. Since ∆(G) ≤ 4, ∆(H) ≤ 4; and so,
|E(H)| ≤ 2|H|. Hence |H| ≥ |E(H)|/2 ≥ (|G|/12)α + 1, a contradiction.

Theorem 1.2 follows directly from the next result.

Theorem 4.2 Let G be a 3-connected claw-free graph and let x, y ∈ V (G). Then G contains
a cycle C such that x, y ∈ C and |C| ≥ (|G|/6)α + 2, where α ≈ 0.753 is the real root of
41/x − 31/x = 2.

Proof. Choose a counterexample G,x, y so that |G| is minimum and, subject to this condition,
|E(G)| is maximum.
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We claim that G is the line graph of a simple graph G1. Let G∗ denote the Ryjáček closure
of G. Suppose G∗ 6= G. Then |E(G∗)| > |E(G)| so, by the choice of G, G∗ has a cycle C∗ such
that x, y ∈ V (C∗) and |C∗| ≥ (|G|/6)α + 2. Then by Theorem 1.3, G has a cycle C such that
V (C∗) ⊆ V (C), a contradiction. So G = G∗, and the claim follows.

Since G is 3-connected, for each edge-cut S in G1 of size at most 2, G− S has exactly two
components, one of which is trivial. Let U = {v ∈ V (G1) : dG1

(v) ≥ 3}. Then U 6= ∅, and for
any v ∈ V (G1)−U , all neighbors of v are contained in G1 and the edges at v form a 1-edge-cut
or 2-edge-cut in G1.

Let G2 and w : E(G2) → {1, 2} be defined as follows. For each 1-edge-cut uv of G1 with
u ∈ U (hence dG1

(v) = 1), we delete v and add a loop at u. For each 2-edge-cut {ab, bc} of G1

(hence dG1
(b) = 2), we delete b and add an edge between a and c with weight 2. The loops

and all other edges in G1[U ] have weight 1. Then G2 is 3-edge-connected and w(G2) = |G|.
Since x, y ∈ V (G) we have x, y ∈ E(G1). Let x′ = x if x ∈ E(G2); otherwise, let x′ denote

the edge of G2 used to replace x. Define y′ analogously. By Theorem 3.1, G2 contains an
Eulerian subgraph H2 such that x′, y′ ∈ H2 and w(H2) ≥ (w(G2)/6)

α + 2. Then H2 gives rise
to a cycle C in G such that x, y ∈ C and |C| ≥ (w(G2)/6)

α + 2 = (|G|/6)α + 2.

5 Algorithmic considerations

There is a large gap between best known polynomial algorithms for approximating the longest
cycle in a graph and hardness results. The best known polynomial time approximation al-
gorithm, due to Gabow [24], finds a cycle of length at least exp(Ω(

√

log c(G)/ log log c(G))
in any graph G (which gives a polynomial algorithm for constructing a cycle of length at
least min{[log c(G)]t, c(G)} for any fixed t). Alon, Yuster and Zwick [1], give a polynomial
algorithm for constructing a cycle of length at least min{log |G|, c(G)}. On the other hand,
Karger, Motwani, and Ramkumar [33], show that it is NP-hard to find a path of length at
least rℓ(G) for any fixed r > 0, where ℓ(G) demotes the length of a longest path in G. Bet-
ter approximation algorithms are known for graphs of bounded degree, see [20, 21]. In [21],
Feder, Motwani and Subi give a polynomial time algorithm for finding a cycle of length at
least c(G)(log3 2)/2 > c(G)0.315 in any graph of maximum degree three. Their algorithm is
based on a polynomial-time algorithm for constructing a cycle of weight at least w(G)log3 2 in
any 3-connected cubic graph G equipped with nonnegative edge-weights. On the other hand
Bazgan, Santha, and Tuza [4], show that, for any fixed r > 0, it is NP-hard to find a path of
length at least r|G| in a cubic Hamiltonian graph G.

The situation seems to be just as unclear for exact algorithms. Algorithms for solving
the Travelling Salesman Problem, [6, 27, 34, 35], can be used to find a Hamilton cycle in a
graph G, or deduce that no such cycle exists, in O∗(2|G|) time. (The O∗-notation means that
factors which are polynomial in |G| are suppressed.) The time complexity can be improved
to O∗(b|G|), for various constants b with 1 < b < 2, when G has bounded maximum degree,
see [5, 19,28]. It is conceivable that these algorithms could be modified to give similar results
for constructing longest cycles but the only specific results we know of are an algorithm of
Monien [37], subsequently improved by Bodlaender [7] to find a longest cycle in an arbitrary
graph G in time O(c(G)! 2c(G) |G|), and a recent result of Broersma et al [10] which gives an
O∗(1.8878|G|) algorithm for finding a longest cycle when G is claw-free.

We indicate in Subsection 5.1 below how our proof of Theorem 3.1 can be adapted to give
a polynomial time algorithm for finding an Eulerian subgraph H in a {1, 2}-edge-weighted,
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3-edge-connected graph G such that w(H) ≥ (w(G)/6)α + 2. In particular, this finds a cycle
of length at least (|G|/4)α > (|G|/4)0.753 in any 3-connected cubic graph G. Our algorithm
uses a subroutine which finds an Eulerian subgraph containing two given edges and four given
vertices in a 3-edge-connected graph (when such a subgraph exists). This will be described
in Subsection 5.2. We then use the algorithm from Subsection 5.1 to obtain a polynomial
algorithm for finding a cycle of length at least (|G|/6)α in any 3-connected claw-free graph G
in Subsection 5.3.

5.1 Large Eulerian subgraphs containing two given edges

Recall the proof of Theorem 3.1. Let G be a 3-edge-connected graph, e, f ∈ E(G), and
w : E(G) → {1, 2}. We outline an algorithm for finding an Eulerian subgraph H in G such
that e, f ∈ H and w(H) ≥ (w(G)/6)α + 2. For convenience, we write (G, e, f) for the input,
with the understanding that edges are assigned weights 1 or 2. We will use the fact that,
given a graph G, two disjoint subsets X,Y ⊆ V (G), and a fixed integer k, we can use maxflow
computations to find either k edge-disjoint paths joining X to Y , or a minimal set X ′ ⊆ V (G)
with X ⊆ X ′, Y ⊆ V (G) \ X ′ and δ(X ′) < k, in O(|E(G)|) time.

Algorithm Euleriansubgraph

INPUT: A 3-edge-connected graph G, e, f ∈ E(G), and w : E(G) → {1, 2}.
OUTPUT: An Eulerian subgraph H of G such that e, f ∈ H and w(H) ≥ (w(G)/6)α + 2.
COMPLEXITY: f(|E(G)|) = O(|E(G)|)3.

Step 1. Check if e or f belongs to a splittable pair. If not, go to Step 2. If yes, we apply the
argument in (3.3) to reduce the problem to (G′, e′, f ′), with |E(G′)| ≤ |E(G)| − 1. This
shows f(|E(G)|) ≤ f(|E(G)| − 1) + O(|E(G)|2), as it takes O(|E(G)|) time to check
whether a particular splitting preserves 3-edge-connectivity and there are O(|E(G)|)
splittings to check.

Step 2. Check if e and f are adjacent. If not, go to Step 3. If yes, then by the argument in
(3.4) we reduce the problem to (G′, e′, f ′) with |E(G′)| ≤ |E(G)| − 1 (when G′ is 3-
edge-connected), or (G′

1, e
′, f ′) and (G′

2, g1, g2) (when G′ is not 3-edge-connected, with
|E(G′

1)| + |E(G′
2)| = |E(G)|. Note that G′, G′

1, G
′
2 can be found in O(|E(G)|) time.

So f(|E(G)|) ≤ f(|E(G′)| − 1) + O(|E(G)|) or f(|E(G)|) ≤ f(|E(G′
1)|) + f(|E(G′

2)|) +
O(|E(G)|).

Step 3. Check to see if e or f is contained in a non-trivial 3-edge-cut of G. If not, go to Step 4.
If yes, we use the argument for (3.5) to reduce the problem to (G′

1, e, f) and (G′
2, e, g1),

with |E(G′
1)| + |E(G′

2)| = |E(G)| + 3 and |E(G′
i)| < |E(G)|. Note that G′

1, G
′
2 can be

found in O(|E(G)|) time, so f(|E(G)|) ≤ f(|E(G′
1)|) + f(|E(G′

2)|) + O(|E(G)|).

Step 4. Check if there is a 3-edge-cut S such that e and f are contained in different components
of G−S. If not, go to Step 5. If yes, we use the argument for (3.6) to reduce the problem
to (G′

1, e, g1), (G′
1, e, g3) and (G′

2, g1, f), with |E(G′
1)| ≤ |E(G′

2)| < |E(G)| and |E(G′
1)|+

|E(G′
2)| = |E(G)| + 3. This implies f(|E(G)|) ≤ 2f(|E(G′

1)|) + f(|E(G′
2)|) + O(|E(G)|).

Note that the multiplicative factor of ‘2’ in the first term on the right hand side of this
inequality is compensated for by the fact that |E(G′

1)| ≤ (|E(G)| + 3)/2.
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Step 5. Construct Gi,Hi with respect to e as in the paragraph above (3.8). Similarly construct
G′

i,H
′
i with respect to f . Check if there is some i ∈ {1, 2} such that Gi,Hi, G

′
i or H ′

i is
3-edge-connected. If not, got to Step 6. If yes, say, G1 is 3-edge-connected, then we use
the argument for (3.8) to reduce the problem to (G1, e

′, f ′) with |E(G1)| ≤ |E(G)| − 1.
This implies f(|E(G)|) ≤ f(|E(G)| − 1) + O(|E(G)|).

Step 6. Construct Ci,Di with respect to e as in the paragraph above (3.9). Similarly construct
C ′

i,D
′
i with respect to f . Check to see if {C1, C2} = {C ′

1, C
′
2} or {C1, C2} = {D′

1,D
′
2}

or {D1,D2} = {C ′
1, C

′
2} or {D1,D2} = {D′

1,D
′
2}. If not, go to Step 7. If yes, say

{C1, C2} = {C ′
1, C

′
2}, apply the argument in (3.11): we either reduce the problem to

(G̃, ẽ, f̃), (C∗
1 , g1, k1) and (C∗

2 , g′2, k2); or find a partition Y0, Y1, Y2, Y3 of V (G∗) − {z}
given by Lemma 2.3, and reduce the problem to G/(G − Y1), G/(G − Y3), G/(G − C1)
and G/(G−C2) via Lemma 3.3. In the first case, f(|E(G)|) ≤ f(|E(G̃)|)+f(|E(C∗

1 )|)+
f(|E(C∗

2 )|) + O(|E(G)|) with |E(G̃)|, |E(C∗
1 )|, |E(C∗

2 )| < |E(G)| and |E(G̃)|+ |E(C∗
1 )|+

|E(C∗
2 )| ≤ |E(G)| + 6. In the latter case, f(|E(G)|) ≤ f(|E(Y1)|+ 3) + f(|E(Y3)|+ 3) +

f(|E(C1)|+3)+f(|E(C2)|+3)+O(|E(G)|) with |E(Y1)|+ |E(Y3)|+ |E(C1)|+ |E(C2)| ≤
|E(G)| − 8.

Step 7. Check to see if S = S ′. If not go to Step 8. If yes, we apply the argument in (3.12). We
find the member of S with minimum weight, say D2. When K = ∅, we reduce the problem
to G/(G−C1), G/(G−D1), G/(G−C2) via Lemma 3.3. We have f(|E(G)|) ≤ f(|E(C1)|+
3) + f(|E(C2)| + 3) + f(|E(D1)| + 3) + O(|E(G)|) with |E(C1)| + |E(C2)| + |E(D1)| ≤
|E(G)|−8. When K 6= ∅, we reduce the problem to either G/(G−C1), G/(G−C2), G/(G−
D1), J1, J2 via Lemma 3.3 (if K has a cut-edge separating {x1, y1} from {x2, y2}), or
to K∗, G/(G − C1), G/(G − C2), G/(G − D1), G/(G − D2) via Lemmas 3.4 and 3.3 (if
K has no cut-edge separating {x1, y1} from {x2, y2}). In the former case, f(|E(G)|) ≤
f(|E(C1)|+3)+f(|E(C2)|+3)+f(|E(D1)|+3)+f(|E(J1)|+3)+f(|E(J2)|+3)+O(|E(G)|)
with |E(C1)| + |E(C2)| + |E(D1)| + |E(J1)| + |E(J2)| = |E(G)| − |E(D2)| − 15. In the
latter case, f(|E(G)|) ≤ f(|E(C1)|+ 3) + f(|E(C2)|+ 3) + f(|E(D1)|+ 3) + f(|E(D2)|+
3) + f(|E(K∗)|) + O(|E(G)|) with |E(C1)| + |E(C2)| + |E(D1)| + |E(D2)| + |E(K∗)| =
|E(G)| − 12.

Step 8. Check to see if w(K) ≥ r minX∈S∪S′{w(X)}, where r = 41/α−|S ∪S ′|. If not, go to Step
9. If yes, we use the argument in (3.3) to reduce the problem to (G′′, e′, f ′), (C∗

2 , g2, l1),
and possibly finding an x1x2-path in C1. We have |E(G′′)| + |E(C∗

2 )| < |E(G)| and
f(|E(G)|) ≤ f(|E(G′′)|) + f(|E(C∗

2 )|) + O(|E(G)|).

Step 9. We proceed as in the last paragraph of the proof of Theorem 3.1. Choose the four heaviest
subgraphs X1,X2,X3,X4 ∈ S ∪S ′ and let G̃ be obtained from G by contracting each Xi

to a single vertex xi, for 1 ≤ i ≤ 4. We can use the algorithm cover, given in Subsection
5.2 below, to construct an Eulerain subgraph H̃ of G̃ containing {e, f, x1, x2, x3, x4} in
time O(|E(G̃)|3). This allows us to reduce the problem to that for (X ′

i, ei, fi), 1 ≤ i ≤
4, where X ′

i = G/(G − Xi) and ei, fi are the edges of H̃ incident to xi. This gives
f(|E(G)|) ≤∑4

i=1 f(|E(X ′
i)|) + O(|E(G̃)|3), where |E(X ′

i)| < |E(G)| for 1 ≤ i ≤ 4 and
|E(G̃)| +∑4

i=1 |E(X ′
i)| = |E(G)| + 12.

From Steps 1–9, we see that f(|E(G)|) = O(|E(G)|3). So given a 3-edge-connected graph
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G, e, f ∈ E(G), and weight function w : E(G) → {1, 2}, one can, in O(|E(G)|3) time, find an
Eulerian subgraph H such that e, f ∈ H and w(H) ≥ (w(G)/6)α + 2.

5.2 Eulerian subgraphs containing a given set of four vertices and two edges

Let G be a 3-edge-connected graph. We say that G is essentially 4-edge-connected if all 3-
edge-cuts of G are trivial. Let F ⊆ E(G) and X ⊆ V (G) with |F | = 2 and |X| ≤ 4. We
say that (G,F,X) is admissible if G has an Eulerian subgraph H which contains F ∪ X. We
will outline an O(|E(G)|3) algorithm which constructs such a subgraph H given an admissible
triple (G,F,X). Note that we can check whether a given triple is admissible, and construct
disjoint subgraphs Z1, Z2, . . . , Zm as in Lemma 2.5 if it is not, in O(|E(G)|3), as follows. We
use maxflow computations to check if G is essentially 4-edge-connected in O(|E(G)|2) time.
If yes then it suffices to check if G is the Wagner graph or the Peterson graph with F,X as
indicated in Figure 3. If not then we find a non-trivial 3-edge-cut S of G and construct the
components G1, G2 of G− S. If |V (Gi) ∩ X| ≤ 1 and E(Gi) ∩ F = ∅ for some 1 ≤ i ≤ 2, then
we reduce the problem to (G′, F,X ′) where G′ = G/Gi and X ′ is the image of X under this
contraction. Otherwise we deduce that (G,F,X) is admissible.

We first give a special case of the algorithm for cubic graphs. We use a result of Andersen
et al [2] that an essentially 4-edge-connected cubic graph G on at least fourteen vertices has
at least (|E(G)| + 12)/5 removable edges i.e. edges e such that G − e is homeomorphic to an
essentially 4-edge-connected cubic graph.

Algorithm Cubic cover

INPUT: An admissible triple (G,F,X) where G is cubic.
OUTPUT: A cycle C of G such that F ∪ X is contained in C.
COMPLEXITY: f1(|E(G)|) = O(|E(G)|3).

Step 1 Let F = {e, f}. Put G+ = G if e, f are adjacent and otherwise let G+ be obtained from
G by subdividing e, f with two new vertices x5, x6 and adding a new edge joining them.
Check to see if G+ is essentially 4-edge-connected. If yes, go to Step 3. If not, go to Step
2.

Step 2 Construct a non-trivial 3-edge-cut S+ in G+. Then S+ gives rise to a non-trivial 3-edge-
cut S in G such that G−S has two components G1, G2 and at least one of them, say G1,
has E(G1) ∩ F = ∅. Let G′

1 = G/G2 and G′
2 = G/G1. It is not difficult to see that the

problem can be reduced to two admissible triples (G′
1, F1,X1), (G

′
2, F2,X2) for suitably

defined sets F1, F2,X1,X2. Hence f1(|E(G)|) ≤ f1(|E(G′
1)|) + f1(|E(G′

2)|) + O(|E(G)|2)
where |E(G′

1)|, |E(G′
2)| < |E(G)| and |E(G′

1)| + |E(G′
2)| = |E(G)| + 3.

Step 3 Check to see if |G| ≥ 16 and if G+ has a removable edge h which does not belong to F
(when e, f are adjacent) and is not incident with X∪{x5, x6} (when e, f are not adjacent).
If not, go to Step 4. If yes, let G1 be the cubic graph which is homeomorphic to G − h.
Then (G1, F,X) is admissible since |G1| ≥ 14 and G+

1 is essentially 4-edge-connected.
We have |E(G′)| = |E(G)| − 3 and f1(|E(G)|) ≤ f1(|E(G′)|) + O(|E(G)|2).

Step 4 By the above mentioned result of [2], we have |G+| ≤ 48, so |G| ≤ 46. We can now find
C by exhaustive search.
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We next give an algorithm based on the proof of Lemma 2.5 which reduces the general
case to that of cubic graphs.

Algorithm Reduce to cubic

INPUT: An admissible triple (G,F,X).
OUTPUT: Either an Eulerian subgraph H such that F ∪X is contained in H, or an admissible
triple (G′, F,X) such that G′ is cubic, G = G′/{e1, e2, . . . , es} for some e1, e2, . . . , es ∈ E(G′)
with s =

∑

v∈V (G)(dG(v) − 3).

COMPLEXITY: f2(|E(G)|) = O(|E(G)|3).
Step 1 We construct a sequence of graphs G = G0, G1, . . . , Gs = G′ recursively. Given Gi we

construct Gi+1 as follows. Find a vertex vi ∈ V (Gi) of degree at least four, and edges
fi = viui, gi = viwi incident to vi such that the graph Gi+1 obtained from G−{fi, gi} by
adding a new vertex zi and three new edges ei, fi, gi from zi to vi, ui, wi respectively, is
3-edge-connected. (The edges fi, gi exist by the argument given in first paragraph in the
proof of Lemma 2.5, with G,G′, v, u1, u2, e1, e2, e3 replaced by Gi, Gi+1, vi, ui, wi, fi, gi, ei

respectively, and Gi = Gi+1/ei.) Each step in this recursion takes O(|E(G)|2) time so
the whole step takes O(|E(G)|3) time.

Step 2 Check to see if (G′, F,X) is admissible. If yes output (G′, F,X). If not, go to Step 3.

Step 3 Construct pairwise disjoint subgraphs Z1, Z2, . . . , Zm of G′ as described in Lemma 2.5.
Choose ei ∈ {e1, e2, . . . , es} such that ei 6∈ E(Zj) for all 1 ≤ j ≤ m and i is as large as
possible. (The edge ei exists since (G,F,X) is admissible.) Then T := {ei+1, . . . , es} ⊆
⋃m

j=1 E(Zj) so (Gi, F,X) is not admissible. We may construct pairwise disjoint sub-
graphs Z ′

1, Z
′
2, . . . , Z

′
m of Gi as described in Lemma 2.5 by putting Z ′

j = Zj/(E(Zj)∩T ).
We may now use maxflow computations for each Z ′

j to construct an Eulerian subgraph

Hi of Gi with F ∪ X contained in Hi in time O(|E(Gi)|2) as in the proof of Lemma
2.5. We then construct the required subgraph H from Hi by contracting any edges of
e1, e2, . . . , ei−1 which belong to E(Hi).

It is straightforward to combine these two algorithms to obtain:

Algorithm Cover

INPUT: An admissible triple (G,F,X).
OUTPUT: An Eulerian subgraph H such that F ∪ X is contained in H.
COMPLEXITY: f3(|E(G)|) = O(|E(G)|3).

5.3 Long cycles in claw-free graphs

Let G be a 3-connected claw-free graph. It takes O(|E(G)||V (G)|) time to find the Ryjáček
closure G∗ of G. We can find a graph G1 such that L(G1) = G∗ in O(|E(G∗)|) time by a
result of Roussopolos [39]. From the proof of Theorem 4.2, G1 is obtained from a 3-edge-
connected graph G′

1 by adding some pendant edges and by subdividing certain edges of G′
1

exactly once. By assigning appropriate weights to edges of G′
1 and replacing pendant edges

with loops of weight 1, we arrive at a {1, 2}-edge-weighted 3-edge-connected graph G2 with
w(G2) = |E(G1)| = |G∗| = |G|. Applying Algorithm Euleriansubgraph to G2, we find
an Eulerian subgraph H of G2 such that w(H) ≥ (w(G2)/6)

α + 2 = (|G|/6)α + 2. Now an
Euler tour of H can be transformed into a cycle in G of length at least w(H) as in [11]. The
complexity of the algorithm is O(|E(G2)|3) = O(|V (G)|3).
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[14] R. Cada, E. Flandrin, H. Li and Z. Ryjáček, Cycles through given vertices and closures,
Discrete Math. 276 (2004) 65–80.

[15] G. Chen, Z. Gao, X. Yu, and W. Zang, Approximating the longest cycle problem on
graphs with bounded degree, Lecture Notes in Comput. Sci. 3595 (2005), pp. 870–884.

[16] G. Chen, J. Xu, and X. Yu, Circumference of graphs with bounded degree, SIAM J.
Comput., 33 (2004), pp. 1136–1170.

[17] G. Chen and X. Yu, Long cycles in 3-connected graphs, J. Combin. Theory Ser. B 86
(2002) 80–99.

[18] M.N. Ellingham, D.A. Holton and C.H.C. Little, A ten vertex theorem for 3-connected
cubic graphs, Combinatorica 4 (1984) 256-273.

[19] D. Eppstein, The traveling salesman problem for cubic graphs, Journal of Graph Algo-
rithms and Applications 11 (2007) 6181.

27



[20] T. Feder and R. Motwani, Finding large cycles in Hamiltonian graphs, Discrete Applied
Math. to appear.

[21] T. Feder, R. Motwani, and C. Subi, Approximating the longest cycle problem in sparse
graphs, SIAM J. Comput. 31 (2002) 1596–1607.

[22] H. Fleischner and B. Jackson, A note concerning some conjectures on cyclically 4-
connected cubic graphs, Annals of Discrete Math. 41 (1989) 171–178.

[23] A. Frank, On a theorem of Mader, Discrete Math. 101 (1992) 49–57.

[24] H. N. Gabow, Finding paths and cycles of superpolylogarithmic length, SIAM J. Comput.
36 (2007) 1648–1671.
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