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Question 1 (a) Explain the terms plaintext, ciphertext, and key, and illustrate
them in an example. [6]

(b) State Kerckhoff’s Principle for cryptography. Why is it reasonable to assume
that it holds? [4]

(c) Decrypt the following, which has been encrypted with a Caesar cipher: [9]

YFND LTYN FFUN FLCU RNFF UTYL TBTY LTBZ
WRNF FUTY LTBT FLCU TYLT BNFF U

(d) Why is it important for a cipher to have a large number of potential keys? [6]

Question 2 (a) Explain how a substitution cipher works. [5]

(b) Illustrate by encrypting the text

Eve has found the key

with the substitution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
T H E Q U I C K B R O W N F X J M P S V L A Z Y D G

[3]

(c) Explain briefly how a substitution cipher can be broken. [5]

(d) Alice and Bob wish to use the same substitution for both encryption and
decryption. What property must the substitution have, considered as a per-
mutation of the alphabet?

How many such substitutions are there of a 26-letter alphabet, assuming no
letter is encrypted as itself? [You may leave your answer in factorised form,
rather than multiplying it out.] [7]

(e) If Eve knows that the same substitution is used for both encryption and de-
cryption, does it make her job of breaking the cipher any easier? Why? [5]

Question 3 (a) What is an n-bit binary shift register? Explain briefly how it
may be described by a polynomial with coefficients in Z2. [5]

(b) Draw a diagram of the binary shift register corresponding to the polynomial
x5 + x + 1. [4]

(c) Calculate the next 5 bits of the sequence produced by this shift register follow-
ing 01011. [4]

(d) Define the terms irreducible and primitive as applied to polynomials (or shift
registers). [5]

(e) Determine (with proof) whether x5 + x + 1 is (i) irreducible, (ii) primitive. [7]
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Question 4 (a) Define the term Latin square over an alphabet A. [2]

(b) Explain how a Latin square can be used in conjunction with a random word
over A to create a stream cipher. [6]

(c) State and prove Shannon’s theorem for such a cipher. [10]

(d) Does Shannon’s theorem hold if the stream cipher uses a substitution table
which is not a Latin square? (Justify your answer.) [7]

Question 5 Explain how the RSA public-key cryptosystem works. Your explana-
tion should include a discussion of which problems are ‘easy’ and which are ‘hard’,
and why, and the significance of this for security and for practical implementations. [25]

Question 6 (a) If p is a prime, what is a primitive root modulo p? Find a prim-
itive root modulo 17. [5]

(b) Explain the discrete logarithm problem, and why it is thought to be hard. [6]

(c) Explain carefully the operation of the El-Gamal public-key cryptosystem. [10]

(d) Why is it important for the random exponent (or key) chosen by Alice to be
truly random? [4]

End of Paper
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