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In this section we will describe the RSA cryptosystem, the most popular public-
key cryptosystem at present. We need some number-theoretic background first.

Number theory

The RSA enciphering function has the foilig: x — x® mod n for some suitable and
e. In order to be able to decipher, we must be assured that this function is one-to-one.
So we first discuss the number-theory required for this question.

Euler and Carmichael

Recall Euler’s phi-functiorp(n) whose value is the number of elementZgin) (the
integers moah) which are coprime to. We calculated this function back in Notes 2:

Theorem 19 (a) If n= pi‘l--- pg, where p are distinct primes and;a> 0O, then
o(n) = @(p*) - P(PfY).
(b) If p is prime and a> 0, theng(p?) = p? — p? 1 = p*1(p—-1).

A well-known theorem of Fermat (often callée@rmat’s Little Theoremasserts
that, if pis prime, theraP~1 =1 (mod p) for any numbea not divisible byp. This
theorem was generalised by Euler as follows:

Theorem 20 If geda,n) = 1, then &M =1 (modn).

Proof Letxy,X,...,Xm be all the elements ¢f/(n) which are coprime tm, where
m= @(n). Suppose that g¢d,n) = 1. Thena has an inversb modn, so thatab= 1
(modn). Now lety; = ax modn, and considey;, . ..,ym. We have

e gcdlyi,n) =1, since gcf,n) = gcdx,n) =1;
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e y1,...,ym are all distinct: for ify; = yj, thenby, = by;, that is, bax = bax;
(modn), orx; =x; (modn), sox = X;.

Thus, the setys,...,ym} is the same as the sty,...,Xn} (possibly in a different
order), so their products are the same:

ﬂxi:nyizﬂax:amﬂxi (modn).

Since thex; are coprime ta, so is their product, and it has an inverse nmodviulti-
plying the equation by this inverse we g&t=1 (modn), as required.

One very important fact about Fermat’s Little Theorem is that it cannot be im-
proved:

Theorem 21 Let p be prime. Then there exists a such tHatle= 1 (mod p) but no
smaller power of a is congruent tomod p.

Such an elemerd is called aprimitive root or primitive elemenmod p. Since
all its powers up to thép — 2)nd are distinct, we see that every non-zero element of
Z/(p) can be expressed as a poweiofThis is very similar to a theorem we stated
without proof for finite fields in Notes 5; the proof given here easily adapts to the
result for finite fields as well. (Note that the integers modulo a prime do form a field;
this is used in the proof.)

For example, the powers of 3 mod 7 are

31=3 3P=2 3F=6 3*=4 3*=5 3*=1 (mod?

so that 3 is a primitive root of 7. But 2 is not a primitive root of 7, sinée=21.

Example We begin with a couple of examples to get the feel of the problem. Sup-
pose thap = 17. Then the order of every non-zero element rpativides 16. If there

is no primitive element (one of order exactly 16), then the order of every element
would divide 8. But the polynomiat® — 1 has at most 8 roots in the fiek}/(17), so

this can't be the case.

Next considelp = 37. The orders of all elements must divide 36; if the order of an
element is smaller than 36, then it must divide either 12 or 18. But there are at most
12+ 18 such elements (arguing as above), so there must be a primitive element.

In general we need to refine this crude counting a bit. Here is the general proof.



Proof Leta be any element with g¢d, p) = 1. We define therder of a mod p to
be the smallest positive integersuch thag™=1 (modp). In the proof below, we
write equality in place of congruence m@dor brevity, so that this condition will be
writtena™ = 1.

Now the order of any element dividgs- 1. For suppose thathas ordem, where
p—1=mqg+r and O<r <m. Then

l=aPl=(aM%.a =4,

contradicting the definition ah. Sor = 0 andmdividesp— 1.
Given a divisomof p— 1, how many elements of orderare there? Lef (m) be
this number. Now we have:

e f(m) < @(m) for all mdividing p— 1. For this is clearly true iff (m) = 0, so
suppose not. Then there exists some elera@vith orderm. Now the elements
a®=1,al,....,a™ L are all distinct and satisfy the polynomial equatiéh- 1 =
0. But a polynomial of degrem over a field has at mostroots; so these are all
the roots. Now it is easy to see ttéthas ordemif and only if gcdr,m) = 1,
so there are exactlg(m) elements of ordemin this case.

. f(m)=p—1. This is because each of tige— 1 non-zero elements of
m/p—1
Z/(p) has some order!

° Z @(m) = p— 1. This follows from the fact that the number of integarsith
m|p—1
O0<a<p-1landgcda p—1)=(p—1)/mis preciselyp(m), which is quite
easy to see; check it for yourself using the fact thatggd— 1) = (p— 1) /mif
and only if gcdam/(p—1),m) = 1.

From these three statements it follows tfiém) = ¢@(m) for all mdividing p— 1.
In particular,f(p—1) = @(p—1) > 0, so there are some elements which have order
p—1, as required.

Our proof actually shows us a little more: the number of primitive roots of the
primepis @(p—1). For example®7—1) = @(2-3) = 2, so there are two primitive
roots of 7, namely 3 and 5.

Now it is not true that Euler’s extension of the little Fermat theorem is best pos-

sible. For example, suppose that ¢a®5) = 1. Then gcda, 7) =1, soa® =1
(mod 7). Similarly, gcda,5) = 1, soa* =1 (mod5. From this we deduce that
al?=1 (mod?7 andal?=1 (mod5),soal?=1 (mod35. On the other hand,
@(35) = @(7) - @(5) = 6-4 = 24, so Euler only guarantees ti@&f =1 (mod 35.
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Carmichael’'s lambda-functioh(n) is defined to be the least numbarsuch that
a"=1 (modn) for all a such that gca,n) = 1. It follows from Euler and the
argument we used above thdn) always dividesp(n), but it may be strictly smaller;
for example @(35) = 24 butA(35) = 12. (We can see that(35) cannot be less than
12 since, for examplef2=29 (mod 35 and 2 =16 (mod 35.)

Theorem 22 (a) If n= pi‘l--- pg, where p are distinct primes and;a> O, then
A(n) = lem{A(pP), ..., A(P¥)},

(b) If p is an odd prime and & 0, thenA(p?) = @(p?) = p? — p? 1 = p*L(p—1).
(C)A(2) =1, A\(4) = 2, andA(2%) = 222 fora > 3.

The fact thak (p) = p— 1 for all primesp is a consequence of Theorem 21. Fermat
tells us thaaP~t =1 (modp) for all a coprime top, and the theorem tells us that
no smaller exponent will do.

Suppose than is the product of two distinct primes, say= pg. The theorem
asserts thak(n) = lcm(p—1,q—1). To show this, lem=Icm(p—1,g—1). Now,
for any integex coprime ton, we havex® 1 =1 (modp), andsx™=1 (modp),
sincep— 1 dividesm. Similarlyx™=1 (modq). By the Chinese Remainder Theo-
rem,x"=1 (modn).

In the converse direction, suppose tlaais primitive element modp, andb a
primitive element mod). Use the Chinese Remainder Theorem to @irsdich that

c=a (modp), c=b (modqg).

Then itis easy to see that the ordeicahodn is a multiple both ofp— 1 and ofg— 1,
and hence ofm. Somis the smallest positive number such tRdt=1 (modn) for
all x coprime ton; that is,A(n) = m.

We will not need the other cases of the above theorem.

For example, we havg(35) = Icm(A(7),A(5)) = lcm(6,4) = 12, as we found
earlier.

Power maps
Now consider the transformation
Te: X— x*modn.
First, we shall simply consider this transformation acting on the set
U(n)={xeZ/(n):gcdx,n) =1}
of x with gcd(x,n) = 1. (Note that if gcdix,n) = 1 then gcdx®,n) = 1 for all e.)
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Proposition 23 The transformation dis one-to-one on (h) if and only if e satisfies
gcde, A(n)) = 1. So the number of e for whicl IE one-to-one ig(A(n)).

We will prove this just in the reverse direction. Suppose thatgadn)) = 1.
Then there existd with de=1 (modA(n)). Then, since®™ = 1, we havexd® = x
for all x coprime ton; that is, Ty Te is the identity map, and s@ has an inverse.

For example, fon = 35, the invertible maps arg, Ts, T; andTy1. The maplyzis
equal toT; onU (35) sincex!?=1 (mod 35 for anyx € U (35).

This condition is not sufficient fofle to be one-to-one on the whole &@f/(n).
For example, taken = 9. ThenA(n) = @(n) = 6, and the numbee = 5 satisfies
gcde, A(n)) = 1. Now the fifth powers mod 9 are given in the following table:

X \ 012345678
x>mod9(0 1 5 07 20 4 38
So, in accordance with Proposition ZI3,is one-to-one o{1,2,4,5,7,8} (the num-
bers coprime to 9); but it maps all the others to zero.

However, there is a special case where we can guarante@ttginvertible on

Z/(n):

Proposition 24 Let n be the product of distinct primes.déde,A(n)) =1, then E:
X — X% modn is one-to-one oL,/ (n).

Here is the proof in the case thats the product of two primes. (This is the only
case that is required for RSA, but the proof can be modified to work in general.)

We use the fact that? = x (modp) for any primep. (If p doesn't dividex,
this follows from Fermat's little theorem; ip | x it is trivial.) HencexX(P-1+1 = x
(mod p) for anyk > 0.

Now, if d is the inverse o€ modA(n), thende=1 (modA(n)), and hencele=1
(modp— 1), sincep— 1 dividesA(n). From the preceding paragraph, we see that

e=x (modp). Similarly x*=x (modq), and sox? = x (modn), by the

Chinese Remainder Theorem.

For example, suppose that= 15. Then\(n) = Icm(2,4) = 4, and we can choose
e= 3. The table of cubes mod 15 is:

7
13

10 11 12 13 14
10 11 3 7 14

x|012 3

8 9
x*mod 15/0 1 8 12 2 9

We see thals is indeed one-to-one.



The RSA cryptosystem

Preliminaries

The system depends on the following problems. The easy problems aré>alUin-
fortunately the hard problems are not known to\d& complete!

Easy problems
(1) Test whether an integé\ is prime.
(2) Givena andn, find gcda,n) and (if it is 1) find an inverse cd modn.

(3) Calculate the transformatidia : X — x* modN.

Hard problems
(4) Given an integeN, factorise it into its prime factors.
(5) Given an integeN, calculatex(N) (or @(N)).

(6) GivenN ande, find d such thafly is the inverse offe modN.

Notes about the easy problems My job is to persuade you that they are easy, not to
give formal proofs that they belong to the cldss

Problem (1): Note that trial division does not solve this problem efficiently. For a
numberN requiringn bits of input is one which has digits when written in base 2,
and hence is of size roughly’2its square root is abouf'Z, and trial division would
require about half this many steps in the worst case. Only in 2002 was an algo-
rithm found which solves this problem in a polynomial number of steps, by Manindra
Agrawal, Neeraj Kayal and Nitin Saxena at the Indian Institute of Technology, Kan-
pur. However, the result had been widely expected, since ‘probabilistic’ algorithms
which tested primality with an arbitrarily small chance of giving an incorrect answer
have been known for some time. We will consider the question of primality testing
further in the next part of the notes.

Problem (2): This is solved by Euclid’s algorithm, as we have seen.

Problem (3). On the face of it, this problem seems hard, for two reasons:

e First, the numbek® will be absolutely vast, with abowdlogx digits (and re-
member that the number of digits efis part of the size of the input; & has
100 digits, therx® has too many digits to write down even if the whole universe
were our scrap paper).



e Second, we have on the face of it to perfaem 1 multiplications to find

=X-X-X---X efactors

But these difficulties can both be overcome:

Proposition 25 The number @modn can be computed with at md&iog, e multipli-
cations of numbers smaller than n and the same number of divisions by n; this can be
done in a polynomial number of steps.

The first difficulty is easily dealt with: we do all our calculations madThus,
to calculateab mod n, wherea,b < n, we calculateab as an integer, and take the
remainder on division by. We never have to deal with a number larger tham the
calculation.

We can reduce this number of multiplications required fesa1l to at most 2 loge
as follows.

Write ein base 2e= 2% 42% ... 4 2%, Suppose that; is the greatest exponent.
Thenk < a; + 1 anda; < log,e.

By a; — 1 successive squarings, calculatex’, ... x>

Now

& — ¥ 22 2%
can be obtained blg— 1 further multiplications. The total number of multiplications
required isay +k—2 < 2log, e.

This informal description of the algorithm can be translated into a formal proof

that problem (3) can be solved in polynomial time.

For example, let us compute 3 (mod 557.
First we find by successive squaring

[ 0 1 2 3 4 5 6 7 8
2 1 2 4 8 16 32 64 128 256

123 mod 557/ 123 90 302 413 127 533 19 361 540

Now 321= 28+ 261 1, so two further multiplications mod 557 give

123321 = 123%6.12%4.123= 540. 19. 123= 234-123= 375 (mod 557.



Notes about the hard problems Problems (4)—(6) are not known to N&-complete,
so it is possible that they may not be as hard as we would like. However, centuries of
work by mathematicians has failed to discover any ‘easy’ algorithm to factorise large
numbers. (We will see later that the advent of quantum computation would change
this assertion!)

We will be concerned only with numbebk$ which are the product of two distinct
primesp andq. So we really need the special case of (4) which asks:

Given a numbeN which is known to be the product of two distinct prime
factors, find the factors.

Even this problem is intractable at present.

However, if we know thal is the product of two distinct primes, then problems
(4) and (5) are equivalent, in the sense that knowledge of a solution to one enables us
to solve the other.

Proposition 26 Suppose that N is the product of two distinct primes. Then, from any
one of the following pieces of information, we can compute the others in a polynomial
number of steps:

e the prime factors of N;

e @(N);
e A(N).

For suppose first that = pgwherep andq are primes (which we know). Then
o(N) = (p—1)(q—1) can be found by simple arithmetic. Also(N) =lcm(p—1,9—
1)=(p—1)(g—1)/gcd p—1,g—1); the greatest common divisor can be found by
Euclid’s Algorithm, and the rest is arithmetic.

Suppose that we know(N). Then we know the sum and product pfand g,
(namely,p+qg=N—@(N)+ 1 andpg= N); and so the two factors are roots of the
guadratic equation

x> —(N—@N)+1)x+N=0,

which can be solved by arithmetic (using the standard algorithm for finding the square
root).

The case where we knoW andA(N) is a bit more complicated. Suppose tipat
is the larger prime factor. Thex(N) =lcm(p—1,q—1) is a multiple ofp—1, and
divides@(N). Letr = N modA(N) be the remainder on dividiny by A(N). Then

e N—@(N)=r (modA(N)), sinceA(N) | @N);



e N—@(N)=p+g—1<2\(N), sinceA(N) > p—1> g (assuming thal > 6).

SON—@(N)=r orN—@N)=r-+A(N). We can solve the quadratic for each of these
two possible values ap(N); one of them will give us the factors &f.

Example Suppose thaN = 589 andA(N) = 90. Now 589 mod 9G= 49. Trying
@(N) = 540, we get that the prime factors¥fare the roots of the quadratic

x? — 50x+589= 0,

so that
p,q= 25+ 1625—589=25+6 =31, 19

There is no need to try the other case.

Example Suppose thall =21 and\(N) = 6. ThenN —@(N) = 3 or 9. In the first
case the quadratic i€ — 4x+ 21 = 0, which has imaginary roots. In the second, it is
x? —10x+21= 0, with roots 3 and 7. Note that we only need the second cape if
dividesp— 1, since otherwis&(N) > 2(p—1).

Remark Infactwe have 2(N) | (N) (why?) so we can calculabé= N —@(N) mod
2\(N) and hence work out in advance which of the two cases is the right one.

Finally, we remark that, ifg(N) or A(N) is known, then problem (6) is easy. For
we choosee to be the inverse al modA(N), using Euclid’s Algorithm.

In the other direction, if we know a solution to problem (6) (that is, if we krebw
ande such thafly is the inverse of. modN), we can often factorisi. The algorithm
is as follows. We assume thiitis the product of two primes (neither of them being
2).

Letde—1=22-b, wherebis odd. Choose a randoxwith 0 < x < N.

First, calculate gogk, N). If this is not 1, we've found a factor already
and we can stop.

If ged(x,N) = 1, we proceed as follows. Lgt=x® modN. If y= +1
(modN), the algorithm has failed. Repeatedly replacby y*> modN
(remembering the preceding valueyot more formally,z:=y andy :=
y>modN) untily=+1  (modN).

If y=—-1 (modN), the algorithm has failed.

However, ify=1 (modN), then we have found such that?? = 1
(modN) andz#+1 (modN). ThengcdN,z+ 1) and gcdN,z—1) are
the prime factors oN.



Remarks:

e The chance that g¢g, N) # 1 is very remote. However, we should make this
test, since the rest of the algorithm depends on the assumption that the gcd is 1.

e The loop where we da:=y andy := y> modN will be repeated at mosi
times. For we know that(N) dividesde— 1, so that®=x (modN). Since
x is coprime toN, it has an inverse, and s8¢ 1=1 (modN). Butxd® 1 =
x20 =y ‘wherex = x°, so aftera successive squarings we certainly have 1;
the loop will terminate no later than this step.

e If Z=1 (modN), thenN divideszZ — 1= (z+ 1)(z— 1). Both the factors lie
between 1 andl — 1, so gcdN,z+ 1) and gcdN, z— 1) are proper divisors of
N. They are coprime, so they must be the two prime factois. of

¢ It can be shown that, choosingrandomly, the probability that the algorithm
succeeds in factorisinly is approximately 12. So, by repeating a number of
times with different random choices &fif necessary, we can be fairly sure of
finding the factorisation oN.

e This algorithm is closely related to the Miller—Rabin test for primality. Suppose
we run the algorithm witiN being prime. Then it musalwaysproduce the
answely=—1 (modN). Butif N is not prime, then wexpecto get different
values fory at least half of the time. Therefore, if we repeat the experiment
many times, with different values of and always geg= —1 (modN), then
we take this as strong evidence tiNis prime. Of course, this is a statistical
argument, not a mathematical one! It is not hard to find examples of composite
numbers which the Miller—Rabin test thinks are prime.

Example Suppose thaN = 589 and we are told that the private exponent corre-
sponding toe=7 isd = 13. Nowde—1=90= 2-45. Apply the algorithm with

x = 2. We do have ga@,589 = 1. Nowy = 2*° mod 589= 94. At the next stage,

z =94 andy = 22 mod 589= 1. So the factors of 589 are gé&89,95) = 19 and
gcd(589,93) = 31 (these gcds are found by Euclid’s algorithm).

Implementation

Bob chooses two large prime numbeyg andgg. This involves a certain amount
of randomness. It is known that a fraction of aboutkin10) of k-digit numbers
are prime. Thus, if Bob repeatedly chooses a ran#élaiigit number and tests it for
primality, in mk trials the probability that he has failed to find a prime number is
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exponentially small (as a function af). Each primality test takes only a polynomial
number of steps. The chances of success at each trial can be doubled by the obvious
step of choosing only odd numbers; and excluding other small prime divisors such
as 3 improve the chances still further. We conclude that in a polynomial number of
steps (in terms ok), Bob will have found two primes, with an exponentially small
probability of failure.

Knowing pg andgg, Bob computes their produdls = pggs. He can also com-
puteA(Ng) = lcm(pg — 1,08 — 1). He now computes a large ‘exponesg satisfying
gcdes,A(Ng)) = 1 (again by choosing a randoeg and using Euclid’s algorithm).

The application of Euclid’s algorithm also gives the inversegpmodA(Ng), that is
the number such thay, is the inverse oflg;, where

Teg : X— X2 (modNg).

Proposition 24 shows that the maps are inverses on &l/0Rg), sinceNg is the
product of two primes.

Bob publishedNg andeg, and keeps the factorisation b and the numbedg
secret.

If Alice wishes to send a message to Bob, she first transforms her message into a
numberx less tharNg. (For example, if the message is a binary string, break it into
blocks of lengthk, where ¥ < Ng, and regard each block as an integer in the interval
0,2 — 1] written to the base 2. Now she computes T, (x) and sends this to Bob.

Bob deciphers the message by applying the inverse fungyoto it. This gives
a number less thaNg and congruent t& mod Ng. Sincex is also less thalg, the
resulting decryption is correct.

If Eve intercepts the messageshe has to compuii, (z), which is a hard problem
(problem (6) above). Alternatively, she could compdgefrom the published value
of eg. Sincedg is the inverse okg modA(Ng), this requires her to calculadéNg),
which is also hard (problem (5)). Finally, she could try to factoie this, too, is
hard (problem (4)). So the cipher is secure.

Since the plaintext and ciphertext are both integers smallerXgaand the en-
cryption function is a bijection, the RSA system supports digital signatures.

If Alice and Bob have both chosen a key, then Alice can sign her message to Bob
by the method for digital signatures that we described earlier. That is, Alice ‘decrypts’
with her secret keyq, before encrypting with Bob’s public key; after decrypting, Bob
then ‘encrypts’ with Alice’s public key to get the authenticated message.

Remark We saw that, if we knovd ande such thafly is the inverse offe modN,
then we have a very good chance of factorighigThe moral of this is that, if your
RSA key is broken (that is, if Eve comes to know baotlande), it is not enough to
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keep the samdl and choose differerd ande, since you must assume that Eve now
knows the factors dfN. You must begin again with a different choice of two prinpes
andag.
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