
MAS 335 Cryptography

Notes 7: Public-key cryptography Spring 2008

In this section we will describe the RSA cryptosystem, the most popular public-
key cryptosystem at present. We need some number-theoretic background first.

Number theory

The RSA enciphering function has the formTe : x 7→ xe modn for some suitablen and
e. In order to be able to decipher, we must be assured that this function is one-to-one.
So we first discuss the number-theory required for this question.

Euler and Carmichael

Recall Euler’s phi-functionφ(n) whose value is the number of elements ofZ/(n) (the
integers modn) which are coprime ton. We calculated this function back in Notes 2:

Theorem 19 (a) If n = pa1
1 · · · par

r , where pi are distinct primes and ai > 0, then
φ(n) = φ(pa1

1 ) · · ·φ(par
r ).

(b) If p is prime and a> 0, thenφ(pa) = pa− pa−1 = pa−1(p−1).

A well-known theorem of Fermat (often calledFermat’s Little Theorem) asserts
that, if p is prime, thenap−1 ≡ 1 (modp) for any numbera not divisible byp. This
theorem was generalised by Euler as follows:

Theorem 20 If gcd(a,n) = 1, then aφ(n) ≡ 1 (modn).

Proof Let x1,x2, . . . ,xm be all the elements ofZ/(n) which are coprime ton, where
m= φ(n). Suppose that gcd(a,n) = 1. Thena has an inverseb modn, so thatab≡ 1
(modn). Now letyi = axi modn, and considery1, . . . ,ym. We have

• gcd(yi ,n) = 1, since gcd(a,n) = gcd(xi ,n) = 1;
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• y1, . . . ,ym are all distinct: for ifyi = y j , thenbyi = byj , that is,baxi ≡ baxj

(modn), or xi ≡ x j (modn), soxi = x j .

Thus, the set{y1, . . . ,ym} is the same as the set{x1, . . . ,xm} (possibly in a different
order), so their products are the same:

∏xi = ∏yi ≡∏axi = am∏xi (modn).

Since thexi are coprime ton, so is their product, and it has an inverse modn. Multi-
plying the equation by this inverse we getam≡ 1 (modn), as required.

One very important fact about Fermat’s Little Theorem is that it cannot be im-
proved:

Theorem 21 Let p be prime. Then there exists a such that ap−1≡ 1 (modp) but no
smaller power of a is congruent to1 mod p.

Such an elementa is called aprimitive root or primitive elementmod p. Since
all its powers up to the(p−2)nd are distinct, we see that every non-zero element of
Z/(p) can be expressed as a power ofa. This is very similar to a theorem we stated
without proof for finite fields in Notes 5; the proof given here easily adapts to the
result for finite fields as well. (Note that the integers modulo a prime do form a field;
this is used in the proof.)

For example, the powers of 3 mod 7 are

31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1 (mod 7)

so that 3 is a primitive root of 7. But 2 is not a primitive root of 7, since 23 ≡ 1.

Example We begin with a couple of examples to get the feel of the problem. Sup-
pose thatp= 17. Then the order of every non-zero element modp divides 16. If there
is no primitive element (one of order exactly 16), then the order of every element
would divide 8. But the polynomialx8−1 has at most 8 roots in the fieldZ/(17), so
this can’t be the case.

Next considerp= 37. The orders of all elements must divide 36; if the order of an
element is smaller than 36, then it must divide either 12 or 18. But there are at most
12+18 such elements (arguing as above), so there must be a primitive element.

In general we need to refine this crude counting a bit. Here is the general proof.
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Proof Let a be any element with gcd(a, p) = 1. We define theorder of a mod p to
be the smallest positive integerm such thatam≡ 1 (modp). In the proof below, we
write equality in place of congruence modp for brevity, so that this condition will be
writtenam = 1.

Now the order of any element dividesp−1. For suppose thata has orderm, where
p−1 = mq+ r and 0< r < m. Then

1 = ap−1 = (am)q ·ar = ar ,

contradicting the definition ofm. Sor = 0 andm dividesp−1.
Given a divisormof p−1, how many elements of ordermare there? Letf (m) be

this number. Now we have:

• f (m) ≤ φ(m) for all m dividing p−1. For this is clearly true iff (m) = 0, so
suppose not. Then there exists some elementa with orderm. Now the elements
a0 = 1,a1, . . . ,am−1 are all distinct and satisfy the polynomial equationxm−1=
0. But a polynomial of degreemover a field has at mostm roots; so these are all
the roots. Now it is easy to see thatar has orderm if and only if gcd(r,m) = 1;
so there are exactlyφ(m) elements of orderm in this case.

• ∑
m|p−1

f (m) = p−1. This is because each of thep− 1 non-zero elements of

Z/(p) has some order!

• ∑
m|p−1

φ(m) = p−1. This follows from the fact that the number of integersawith

0≤ a≤ p−1 and gcd(a, p−1) = (p−1)/m is preciselyφ(m), which is quite
easy to see; check it for yourself using the fact that gcd(a, p−1) = (p−1)/m if
and only if gcd(am/(p−1),m) = 1.

From these three statements it follows thatf (m) = φ(m) for all m dividing p−1.
In particular, f (p−1) = φ(p−1) > 0, so there are some elements which have order
p−1, as required.

Our proof actually shows us a little more: the number of primitive roots of the
prime p is φ(p−1). For example,φ(7−1) = φ(2 ·3) = 2, so there are two primitive
roots of 7, namely 3 and 5.

Now it is not true that Euler’s extension of the little Fermat theorem is best pos-
sible. For example, suppose that gcd(a,35) = 1. Then gcd(a,7) = 1, so a6 ≡ 1
(mod 7). Similarly, gcd(a,5) = 1, soa4 ≡ 1 (mod 5). From this we deduce that
a12≡ 1 (mod 7) anda12≡ 1 (mod 5), soa12≡ 1 (mod 35). On the other hand,
φ(35) = φ(7) ·φ(5) = 6·4 = 24, so Euler only guarantees thata24≡ 1 (mod 35).
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Carmichael’s lambda-functionλ(n) is defined to be the least numberm such that
am ≡ 1 (modn) for all a such that gcd(a,n) = 1. It follows from Euler and the
argument we used above thatλ(n) always dividesφ(n), but it may be strictly smaller;
for example,φ(35) = 24 butλ(35) = 12. (We can see thatλ(35) cannot be less than
12 since, for example, 26 ≡ 29 (mod 35) and 24 ≡ 16 (mod 35).)

Theorem 22 (a) If n = pa1
1 · · · par

r , where pi are distinct primes and ai > 0, then
λ(n) = lcm{λ(pa1

1 ), . . . ,λ(par
r )}.

(b) If p is an odd prime and a> 0, thenλ(pa) = φ(pa) = pa− pa−1 = pa−1(p−1).

(c) λ(2) = 1, λ(4) = 2, andλ(2a) = 2a−2 for a≥ 3.

The fact thatλ(p) = p−1 for all primesp is a consequence of Theorem 21. Fermat
tells us thatap−1 ≡ 1 (modp) for all a coprime top, and the theorem tells us that
no smaller exponent will do.

Suppose thatn is the product of two distinct primes, sayn = pq. The theorem
asserts thatλ(n) = lcm(p−1,q−1). To show this, letm= lcm(p−1,q−1). Now,
for any integerx coprime ton, we havexp−1≡ 1 (modp), and soxm≡ 1 (modp),
sincep−1 dividesm. Similarly xm≡ 1 (modq). By the Chinese Remainder Theo-
rem,xm≡ 1 (modn).

In the converse direction, suppose thata is primitive element modp, and b a
primitive element modq. Use the Chinese Remainder Theorem to findc such that

c≡ a (modp), c≡ b (modq).

Then it is easy to see that the order ofc modn is a multiple both ofp−1 and ofq−1,
and hence ofm. Som is the smallest positive number such thatxm≡ 1 (modn) for
all x coprime ton; that is,λ(n) = m.

We will not need the other cases of the above theorem.

For example, we haveλ(35) = lcm(λ(7),λ(5)) = lcm(6,4) = 12, as we found
earlier.

Power maps

Now consider the transformation

Te : x 7→ xe modn.

First, we shall simply consider this transformation acting on the set

U(n) = {x∈ Z/(n) : gcd(x,n) = 1}

of x with gcd(x,n) = 1. (Note that if gcd(x,n) = 1 then gcd(xe,n) = 1 for all e.)
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Proposition 23 The transformation Te is one-to-one on U(n) if and only if e satisfies
gcd(e,λ(n)) = 1. So the number of e for which Te is one-to-one isφ(λ(n)).

We will prove this just in the reverse direction. Suppose that gcd(e,λ(n)) = 1.
Then there existsd with de≡ 1 (modλ(n)). Then, sincexλ(n) = 1, we havexde = x
for all x coprime ton; that is,TdTe is the identity map, and soTe has an inverse.

For example, forn = 35, the invertible maps areT1, T5, T7 andT11. The mapT13 is
equal toT1 onU(35) sincex12≡ 1 (mod 35) for anyx∈U(35).

This condition is not sufficient forTe to be one-to-one on the whole ofZ/(n).
For example, taken = 9. Thenλ(n) = φ(n) = 6, and the numbere = 5 satisfies
gcd(e,λ(n)) = 1. Now the fifth powers mod 9 are given in the following table:

x 0 1 2 3 4 5 6 7 8
x5 mod 9 0 1 5 0 7 2 0 4 8

So, in accordance with Proposition 23,T5 is one-to-one on{1,2,4,5,7,8} (the num-
bers coprime to 9); but it maps all the others to zero.

However, there is a special case where we can guarantee thatTe is invertible on
Z/(n):

Proposition 24 Let n be the product of distinct primes. Ifgcd(e,λ(n)) = 1, then Te :
x 7→ xe modn is one-to-one onZ/(n).

Here is the proof in the case thatn is the product of two primes. (This is the only
case that is required for RSA, but the proof can be modified to work in general.)

We use the fact thatxp ≡ x (modp) for any primep. (If p doesn’t dividex,
this follows from Fermat’s little theorem; ifp | x it is trivial.) Hencexk(p−1)+1 ≡ x
(modp) for anyk > 0.

Now, if d is the inverse ofemodλ(n), thende≡ 1 (modλ(n)), and hencede≡ 1
(modp− 1), sincep− 1 dividesλ(n). From the preceding paragraph, we see that
xde≡ x (modp). Similarly xde≡ x (modq), and soxde≡ x (modn), by the
Chinese Remainder Theorem.

For example, suppose thatn = 15. Thenλ(n) = lcm(2,4) = 4, and we can choose
e= 3. The table of cubes mod 15 is:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x3 mod 15 0 1 8 12 4 5 6 13 2 9 10 11 3 7 14

We see thatT3 is indeed one-to-one.
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The RSA cryptosystem

Preliminaries

The system depends on the following problems. The easy problems are all inP. Un-
fortunately the hard problems are not known to beNP-complete!

Easy problems

(1) Test whether an integerN is prime.

(2) Givena andn, find gcd(a,n) and (if it is 1) find an inverse ofa modn.

(3) Calculate the transformationTe : x 7→ xe modN.

Hard problems

(4) Given an integerN, factorise it into its prime factors.

(5) Given an integerN, calculateλ(N) (or φ(N)).

(6) GivenN ande, find d such thatTd is the inverse ofTe modN.

Notes about the easy problems My job is to persuade you that they are easy, not to
give formal proofs that they belong to the classP.

Problem (1): Note that trial division does not solve this problem efficiently. For a
numberN requiringn bits of input is one which hasn digits when written in base 2,
and hence is of size roughly 2n; its square root is about 2n/2, and trial division would
require about half this many steps in the worst case. Only in 2002 was an algo-
rithm found which solves this problem in a polynomial number of steps, by Manindra
Agrawal, Neeraj Kayal and Nitin Saxena at the Indian Institute of Technology, Kan-
pur. However, the result had been widely expected, since ‘probabilistic’ algorithms
which tested primality with an arbitrarily small chance of giving an incorrect answer
have been known for some time. We will consider the question of primality testing
further in the next part of the notes.

Problem (2): This is solved by Euclid’s algorithm, as we have seen.
Problem (3). On the face of it, this problem seems hard, for two reasons:

• First, the numberxe will be absolutely vast, with aboutelogx digits (and re-
member that the number of digits ofe is part of the size of the input; ife has
100 digits, thenxe has too many digits to write down even if the whole universe
were our scrap paper).

6



• Second, we have on the face of it to performe−1 multiplications to find

xe = x ·x ·x· · ·x efactors.

But these difficulties can both be overcome:

Proposition 25 The number ae modn can be computed with at most2log2e multipli-
cations of numbers smaller than n and the same number of divisions by n; this can be
done in a polynomial number of steps.

The first difficulty is easily dealt with: we do all our calculations modn. Thus,
to calculateab mod n, wherea,b < n, we calculateab as an integer, and take the
remainder on division byn. We never have to deal with a number larger thann2 in the
calculation.

We can reduce this number of multiplications required frome−1 to at most 2 log2e
as follows.

Writee in base 2:e= 2a1 +2a2 + · · ·+2ak. Suppose thata1 is the greatest exponent.
Thenk≤ a1 +1 anda1 ≤ log2e.

By a1−1 successive squarings, calculatex2,x22
, . . . ,x2a1 .

Now
xe = x2a1 ·x2a2 · · ·x2ak

can be obtained byk−1 further multiplications. The total number of multiplications
required isa1 +k−2 < 2log2e.

This informal description of the algorithm can be translated into a formal proof
that problem (3) can be solved in polynomial time.

For example, let us compute 123321 (mod 557).
First we find by successive squaring

i 0 1 2 3 4 5 6 7 8
2i 1 2 4 8 16 32 64 128 256

1232i
mod 557 123 90 302 413 127 533 19 361 540

Now 321= 28 +26 +1, so two further multiplications mod 557 give

123321 = 123256·12364 ·123≡ 540·19·123≡ 234·123≡ 375 (mod 557).
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Notes about the hard problems Problems (4)–(6) are not known to beNP-complete,
so it is possible that they may not be as hard as we would like. However, centuries of
work by mathematicians has failed to discover any ‘easy’ algorithm to factorise large
numbers. (We will see later that the advent of quantum computation would change
this assertion!)

We will be concerned only with numbersN which are the product of two distinct
primesp andq. So we really need the special case of (4) which asks:

Given a numberN which is known to be the product of two distinct prime
factors, find the factors.

Even this problem is intractable at present.
However, if we know thatN is the product of two distinct primes, then problems

(4) and (5) are equivalent, in the sense that knowledge of a solution to one enables us
to solve the other.

Proposition 26 Suppose that N is the product of two distinct primes. Then, from any
one of the following pieces of information, we can compute the others in a polynomial
number of steps:

• the prime factors of N;

• φ(N);

• λ(N).

For suppose first thatN = pq wherep andq are primes (which we know). Then
φ(N) = (p−1)(q−1) can be found by simple arithmetic. Also,λ(N) = lcm(p−1,q−
1) = (p−1)(q−1)/gcd(p−1,q−1); the greatest common divisor can be found by
Euclid’s Algorithm, and the rest is arithmetic.

Suppose that we knowφ(N). Then we know the sum and product ofp and q,
(namely,p+ q = N− φ(N)+ 1 andpq= N); and so the two factors are roots of the
quadratic equation

x2− (N−φ(N)+1)x+N = 0,

which can be solved by arithmetic (using the standard algorithm for finding the square
root).

The case where we knowN andλ(N) is a bit more complicated. Suppose thatp
is the larger prime factor. Thenλ(N) = lcm(p−1,q−1) is a multiple ofp−1, and
dividesφ(N). Let r ≡ N modλ(N) be the remainder on dividingN by λ(N). Then

• N−φ(N)≡ r (modλ(N)), sinceλ(N) | φ(N);

8



• N−φ(N) = p+q−1 < 2λ(N), sinceλ(N)≥ p−1 > q (assuming thatN > 6).

SoN−φ(N) = r or N−φ(N) = r +λ(N). We can solve the quadratic for each of these
two possible values ofφ(N); one of them will give us the factors ofN.

Example Suppose thatN = 589 andλ(N) = 90. Now 589 mod 90= 49. Trying
φ(N) = 540, we get that the prime factors ofN are the roots of the quadratic

x2−50x+589= 0,

so that
p,q = 25±

√
625−589= 25±6 = 31,19.

There is no need to try the other case.

Example Suppose thatN = 21 andλ(N) = 6. ThenN−φ(N) = 3 or 9. In the first
case the quadratic isx2−4x+21= 0, which has imaginary roots. In the second, it is
x2−10x+21= 0, with roots 3 and 7. Note that we only need the second case ifq−1
dividesp−1, since otherwiseλ(N)≥ 2(p−1).

Remark In fact we have 2λ(N) | φ(N) (why?) so we can calculateN≡N−φ(N) mod
2λ(N) and hence work out in advance which of the two cases is the right one.

Finally, we remark that, ifφ(N) or λ(N) is known, then problem (6) is easy. For
we choosee to be the inverse ofd modλ(N), using Euclid’s Algorithm.

In the other direction, if we know a solution to problem (6) (that is, if we knowd
andesuch thatTd is the inverse ofTe modN), we can often factoriseN. The algorithm
is as follows. We assume thatN is the product of two primes (neither of them being
2).

Let de−1= 2a ·b, whereb is odd. Choose a randomx with 0< x< N.
First, calculate gcd(x,N). If this is not 1, we’ve found a factor already

and we can stop.
If gcd(x,N) = 1, we proceed as follows. Lety = xb modN. If y≡±1

(modN), the algorithm has failed. Repeatedly replacey by y2 modN
(remembering the preceding value ofy – more formally,z := y andy :=
y2 modN) until y≡±1 (modN).

If y≡−1 (modN), the algorithm has failed.
However, ify≡ 1 (modN), then we have foundz such thatz2 ≡ 1

(modN) andz 6≡ ±1 (modN). Then gcd(N,z+1) and gcd(N,z−1) are
the prime factors ofN.
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Remarks:

• The chance that gcd(x,N) 6= 1 is very remote. However, we should make this
test, since the rest of the algorithm depends on the assumption that the gcd is 1.

• The loop where we doz := y and y := y2 modN will be repeated at mosta
times. For we know thatλ(N) dividesde−1, so thatxde≡ x (modN). Since
x is coprime toN, it has an inverse, and soxde−1 ≡ 1 (modN). But xde−1 =
x2a·b ≡ y2a

, wherex≡ xb, so aftera successive squarings we certainly have 1;
the loop will terminate no later than this step.

• If z2 ≡ 1 (modN), thenN dividesz2−1 = (z+1)(z−1). Both the factors lie
between 1 andN−1, so gcd(N,z+1) and gcd(N,z−1) are proper divisors of
N. They are coprime, so they must be the two prime factors ofN.

• It can be shown that, choosingx randomly, the probability that the algorithm
succeeds in factorisingN is approximately 1/2. So, by repeating a number of
times with different random choices ofx if necessary, we can be fairly sure of
finding the factorisation ofN.

• This algorithm is closely related to the Miller–Rabin test for primality. Suppose
we run the algorithm withN being prime. Then it mustalwaysproduce the
answery≡−1 (modN). But if N is not prime, then weexpectto get different
values fory at least half of the time. Therefore, if we repeat the experiment
many times, with different values ofx, and always gety≡−1 (modN), then
we take this as strong evidence thatN is prime. Of course, this is a statistical
argument, not a mathematical one! It is not hard to find examples of composite
numbers which the Miller–Rabin test thinks are prime.

Example Suppose thatN = 589 and we are told that the private exponent corre-
sponding toe = 7 is d = 13. Nowde− 1 = 90 = 2 · 45. Apply the algorithm with
x = 2. We do have gcd(2,589) = 1. Now y = 245 mod 589= 94. At the next stage,
z = 94 andy = z2 mod 589= 1. So the factors of 589 are gcd(589,95) = 19 and
gcd(589,93) = 31 (these gcds are found by Euclid’s algorithm).

Implementation

Bob chooses two large prime numberspB and qB. This involves a certain amount
of randomness. It is known that a fraction of about 1/(k ln10) of k-digit numbers
are prime. Thus, if Bob repeatedly chooses a randomk-digit number and tests it for
primality, in mk trials the probability that he has failed to find a prime number is
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exponentially small (as a function ofm). Each primality test takes only a polynomial
number of steps. The chances of success at each trial can be doubled by the obvious
step of choosing only odd numbers; and excluding other small prime divisors such
as 3 improve the chances still further. We conclude that in a polynomial number of
steps (in terms ofk), Bob will have found two primes, with an exponentially small
probability of failure.

Knowing pB andqB, Bob computes their productNB = pBqB. He can also com-
puteλ(NB) = lcm(pB−1,qB−1). He now computes a large ‘exponent’eB satisfying
gcd(eB,λ(NB)) = 1 (again by choosing a randomeB and using Euclid’s algorithm).
The application of Euclid’s algorithm also gives the inverse ofeB modλ(NB), that is
the number such thatTdB is the inverse ofTeB, where

TeB : x 7→ xeB (modNB).

Proposition 24 shows that the maps are inverses on all ofZ/(NB), sinceNB is the
product of two primes.

Bob publishesNB andeB, and keeps the factorisation ofNB and the numberdB

secret.
If Alice wishes to send a message to Bob, she first transforms her message into a

numberx less thanNB. (For example, if the message is a binary string, break it into
blocks of lengthk, where 2k < NB, and regard each block as an integer in the interval
[0,2k−1] written to the base 2. Now she computesz= TeB(x) and sends this to Bob.

Bob deciphers the message by applying the inverse functionTdB to it. This gives
a number less thanNB and congruent tox modNB. Sincex is also less thanNB, the
resulting decryption is correct.

If Eve intercepts the messagez, she has to computeTdB(z), which is a hard problem
(problem (6) above). Alternatively, she could computedB from the published value
of eB. SincedB is the inverse ofeB modλ(NB), this requires her to calculateλ(NB),
which is also hard (problem (5)). Finally, she could try to factoriseNB: this, too, is
hard (problem (4)). So the cipher is secure.

Since the plaintext and ciphertext are both integers smaller thanNB, and the en-
cryption function is a bijection, the RSA system supports digital signatures.

If Alice and Bob have both chosen a key, then Alice can sign her message to Bob
by the method for digital signatures that we described earlier. That is, Alice ‘decrypts’
with her secret keyTdA before encrypting with Bob’s public key; after decrypting, Bob
then ‘encrypts’ with Alice’s public key to get the authenticated message.

Remark We saw that, if we knowd ande such thatTd is the inverse ofTe modN,
then we have a very good chance of factorisingN. The moral of this is that, if your
RSA key is broken (that is, if Eve comes to know bothd ande), it is not enough to
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keep the sameN and choose differentd ande, since you must assume that Eve now
knows the factors ofN. You must begin again with a different choice of two primesp
andq.
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